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1. INTRODUCTION

Inference on a function of the parameter(s), such as quantiles, hazard rates,
reliability function, and stress-strength in the case of the two-parameter exponen-
tial model, is quite challenging and interesting due to its real-world applications.
Particularly, the hazard rate (failure rate) function is helpful in reliability engi-
neering and quality control since it provides information about the failure time
distribution. Basically, hazard rate defines the probability that a system will fail
before time (t + △t) if it survives up to time t. In reliability and life testing,
inference about the hazard rate parameter of an exponential distribution is quite
necessary. The simplest and the most widely used model in life testing situations
is the (one or two-parameter) exponential distribution.

Suppose we have samples from two two-parameter exponential distributions
with a common scale parameter σ and different location parameters µ1 and µ2.
The objective is to obtain test procedures and interval estimators for the common
hazard rate parameter λ = 1/σ. Mathematically, the testing problem is stated
as, test the hypothesis

H0 : λ = λ0 against Ha : λ ̸= λ0,(1.1)

where λ0 is some known specified value.

Inference on the common parameter is not new in the literature and has
a long history in the area of statistical inference. The problem has been consid-
ered under various probabilistic model assumptions in the past. For example, the
problem of estimating the common mean of several normal populations is quite
old, and several researchers have done a lot of studies from classical and decision-
theoretic viewpoints. We refer to Fairweather (1972) [9], Mitra and Sinha (2007)
[24], Chang and Pal (2008) [3], Tripathy and Kumar (2015) [30] and the refer-
ences cited therein for a detailed review on inference on the common mean of
several normal populations. The problem of estimating the common standard
deviation of several normal populations with ordered means has been considered
by Tripathy et al. (2013) [32]. The estimation of ordered means with common
variance has been considered by Gupta and Singh (1992) [14].

Some studies have also been done to estimate common parameters in the
case of exponential distribution. The problem of estimating the common location
parameter of several exponential distributions has been considered by Ghosh and
Razmpour (1984) [10]. Some further results on inference on common location
parameter of several exponential populations can be seen in Jin and Pal (1991)
[19], Tripathy et al. (2014) [31], Gunasekera (2019) [12] and the references cited
therein. The problem of inferences on the common scale parameter for several
exponential populations has been considered by Madi and Tsui (1990) [21], Madi
and Leonard (1996) [22], Gunasekera (2013) [11], Jena and Tripathy (2019) [18].
From a decision-theoretic point of view, Rukhin and Zidek (1985) [28] considered
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the estimation of quantiles of several exponential populations with a common
scale parameter. The problem of estimating the common hazard rate parameter
under ordered location for several exponential populations has been considered
by Patra and Kumar (2018) [27]. The authors have derived certain inadmissibil-
ity results in the classes of affine equivariant estimators. Mahapatra et al. (2012)
[23] considered simultaneous estimation of hazard rates of several exponential
populations with a common location parameter. The authors adopted a differ-
ential inequality approach to obtain improved estimators. Jana et al. (2019) [17]
considered estimating the stress strength reliability parameter of two exponential
distributions with a common scale parameter. Moreover, the authors proposed
several confidence intervals, such as generalized confidence interval, percentile
bootstrap interval, and Bayesian interval for the stress-strength reliability pa-
rameter.

The problem of estimating the hazard rate (reciprocal of scale parameter)
of an exponential population was first considered by Sharma (1977) [29]. The
author proved some inadmissibility results in the class of affine equivariant es-
timators and consequently obtained improved estimators dominating the best
affine equivariant estimator. Based on a doubly censored sample, Elfessi (1997)
[8] derived improved estimators for the scale parameter, the reciprocal of the
scale parameter, and the location parameter of a two-parameter exponential dis-
tribution. For an exponential family, Berger (1980) [1] and Gupta (1986) [13]
investigated simultaneous estimation of the scale parameters and the reciprocals
of the scale parameters. The authors used the differential inequality approach to
obtain a class of dominating estimators.

The current article contributes in two main directions: one is related to
hypothesis testing, where specific test procedures have been developed, and the
other is related to interval estimation. The following are the main contributions
of this study: Hypothesis testing of the common hazard rate parameter λ is ad-
dressed in Section 2. In particular, in Subsection 2.1, we explain the concept of the
generalized variable approach, and several test statistics have been constructed
using it. The computational approach test (CAT) and its modified version are
utilized to produce specific test statistics in Subsection 2.2. In Subsection 2.3,
we derive the test statistics using the popular parametric bootstrap method. In
Subsection 2.4, a detailed simulation study has been conducted to numerically
compare the performances of all the test procedures in terms of powers and sizes.
Section 3 considers the interval estimation of the common hazard rate parameter
under the same model assumption. In Subsection 3.1, we derive the generalized
confidence intervals using the generalized pivot variable. In Subsection 3.2, we
propose the bootstrap confidence intervals using bootstrap samples. In Subsec-
tion 3.3, we consider the Bayesian interval estimation using the Markov Chain
Monte Carlo (MCMC) method and the Metropolis-Hastings algorithm. In Sub-
section 3.4, we compare the performances of all the interval estimators in terms of
coverage probability (CP) and average length (AL). In Section 4, we discuss the
application of the current model problem using real-life data sets and conclude
the remarks.
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2. HYPOTHESIS TESTING ON COMMON HAZARD RATE

In this section, we derive various test procedures to test the null hypothesis
H0 : λ = λ0 against the alternative Ha : λ ̸= λ0.

2.1. Hypothesis Testing Using the Generalized Variable Approach

In this subsection, several generalized test statistics are constructed to test
the hypothesis H0 against Ha. Tsui and Weerahandi (1989) [33] and Weerahandi
(1993) [34] proposed this generalized variable method, which is used to construct
the test statistics and confidence intervals for a function of the parameter(s).
First, we will discuss the hypothesis testing procedure that uses the generalized
variable and the generalized p-value. The generalized p-value approach test pro-
cedure gives a closed-form expression for the test variable, though the power and
size can be obtained numerically. The following two definitions are essential for
constructing generalized pivot variables and the corresponding p- values.

Definition 2.1. Let X be a random variable with the probability den-
sity function fX(x, ω, κ), where ω is the parameter of interest, and κ is a nuisance
parameter. Suppose the problem is to test the hypothesis:

H0 : ω ≤ ω0 against Ha : ω > ω0,(2.1)

where ω0 is a particular value of ω. A variable U(X;x, ω, κ) is called a generalized
pivot variable for testing the hypothesis given in (2.1) if it satisfies the following
criteria.

� For a fixed value of x, the distribution of U(X;x, ω, κ) is free from the
nuisance parameter κ.

� When X = x, is fixed the distribution of U(X;x, ω, κ) is free from all the
unknown parameters.

� The distribution of U(X;x, ω, κ) is either stochastically increasing or stochas-
tically decreasing in ω for fixed x and κ. That is, for every fixed real number
a, P{U(X;x, ω, κ) ≥ a} is either an increasing or decreasing function of ω.

Definition 2.2. Let u = U(X;x, ω, κ) be the observed value of U(X;x,
ω, κ) at X = x. If U(X;x, ω, κ) is stochastically increasing in ω, the generalized
p-value for testing the hypothesis defined in (2.1) is given by

sup
H0

P{U(X;x, ω, κ) ≥ u} = P{U(X;x, ω0, κ) ≥ u}(2.2)
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and if U(X;x, ω, κ) is stochastically decreasing in ω, then the generalized p-value
for testing the hypothesis given in (2.1) can be obtain as

sup
H0

P{U(X;x, ω, κ) ≤ u} = P{U(X;x, ω0, κ) ≤ u}.(2.3)

2.1.1. Generalized Variable Method for Testing the Common Hazard Rate

Let X˜ = (X1, X2, . . . , Xm) and Y˜ = (Y1, Y2, . . . , Yn) be independent ran-
dom samples obtained from two exponential populations Exp(µ1, σ) and Exp(µ2,
σ), respectively. For the proposed model, the complete and sufficient statistics
exist and are given by X(1), Y(1), and S, where the variables are defined as

X(1) = min
1≤i≤m

Xi, Y(1) = min
1≤j≤n

Yj , and S =
m∑
i=1

(Xi −X(1)) +
n∑

j=1

(Yj − Y(1)).

It is easy to observe that X(1) ∼ Exp(µ1, σ/m), Y(1) ∼ Exp(µ2, σ/n), and S ∼
Gamma(m + n − 2, σ), a Gamma distribution with shape parameter m + n − 2
and scale parameter σ. Moreover the random variables X(1), Y(1), and S are
independently distributed.

The Maximum likelihood estimators (MLEs) of the parameters µ1, µ2, and
σ are, respectively, obtained as X(1), Y(1), and S/(m+ n). Further, the uniformly
minimum variance unbiased estimator (UMVUE) of the parameter σ is obtained
as S/(m+ n− 2). Moreover, the best affine equivariant estimator (BAE) of σ is
obtained as S/(m+ n− 1). Using the invariant property of MLE, the MLE of
the common hazard rate parameter λ is obtained as λ̂ml = (m+ n)/S.

In order to compute the generalized pivot variable and the generalized p-
value, we introduce a new random variable W1 = 2S/σ. It is easy to verify that
W1 ∼ χ2

2(m+n−2), a chi-square distribution with 2(m+ n− 2) number of degrees
of freedom. Utilizing the random variable W1, the generalized pivot variable for
λ is obtained as

Us =
W1

2s̄
,(2.4)

where s̄ is the observed value of the sufficient statistic S. The generalized test
variable to test the null hypothesis H0 against the alternative Ha is thus obtained
as Ts = Us−λ. Easily, it can be shown that Ts meets the definition’s requirements
given in Definition 2.1 and Definition 2.2. As a consequence, the generalized p-
value for testing the hypothesis H0 : λ = λ0 against Ha : λ ̸= λ0 is calculated
as

2min[(P (Us ≥ λ0), P (Us ≤ λ0)].(2.5)

Next, utilizing the estimators of common scale parameter σ, we construct
some more generalized test statistics for testing the underlying hypothesis. The
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MLE of the parameter σ is given by σ̂ml = S/(m+ n). Using the MLE σ̂ml, the
generalized pivot variable for λ is given by

Uml =
W1

2(m+ n)σ̄ml
,(2.6)

where σ̄ml is the observed value of MLE σ̂ml. Thus the generalized test variable
to test the hypothesis H0 against Ha is obtained as Tml = Uml − λ, and the
corresponding p-value is computed as

2min[P (Uml ≥ λ0), P (Uml ≤ λ0)].(2.7)

In a similar manner, using the UMVUE of σ, that is σ̂mv = S/(m+ n− 2)
the generalized pivot statistic for λ is obtained as

Umv =
W1

2(m+ n− 2)σ̄mv
,(2.8)

where σ̄mv is the observed value of UMVUE σ̂mv. Thus the generalized test vari-
able to test the hypothesis H0 against Ha is given by Tmv = Umv − λ, and the
corresponding p-value is computed as

2min[P (Umv ≥ λ0), P (Umv ≤ λ0)].(2.9)

Finally, considering the BAE of σ, that is σ̂ba = S
m+n−1 the generalized

pivotal statistic for λ is obtained as

Uba =
W1

2(m+ n− 1)σ̄ba
,(2.10)

where σ̄ba is the observed value of σ̂ba. Thus the generalized test statistic to test
the hypothesis defined in (1.1) is obtained as Tba = Uba−λ, and the corresponding
p-value is determined as

2min[P (Uba ≥ λ0), P (Uba ≤ λ0)].(2.11)

2.2. The Computational Approach Test (CAT)

In this subsection, we employ a computational approach method known
as the computational approach test(CAT) method to test the null hypothesis
H0 against the alternative hypothesis Ha. Pal et al. (2007) [26] proposed this
computational method and effectively used by Chang and Pal (2008) [3] to test
the common mean of several normal populations. This method is a step-by-
step procedure implemented through computer programming without knowing
the exact distribution of sufficient statistics involved. Generally, one can use the
MLEs of the parameters to construct the test statistics so that the size value
and power of the test can be determined numerically. The following are the
detailed algorithmic steps for determining the test procedure size and power in
the proposed problem.
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� Step-1: Generate samples (X1, X2, . . . , Xm) and (Y1, Y2, . . . , Yn) from two
exponential populations Exp(µ1, σ) and Exp(µ2, σ), respectively, and obtain
the MLEs of the parameters µ1, µ2 and σ, say µ̂1ml, µ̂2ml, and σ̂ml. Using the
invariance property of MLE, the MLE of the common hazard rate parameter
λ is given as λ̂ml = 1/σ̂ml, and is denoted as ∆.

� Step-2: It is important to mention that the MLEs of the parameters µ1, and
µ2 do not depend on the parameter σ, when the null hypothesis H0 is true.
Therefore, generate artificial samples (X∗

1 , X
∗
2 , . . . , X

∗
m) and (Y ∗

1 , Y
∗
2 , . . . ,

Y ∗
n ) from Exp(µ̂1ml, 1/λ0) and Exp(µ̂2ml, 1/λ0), respectively, and calculate

the MLE of parameter λ, say ∆0 = λ̂0ml.

� Step-3: Repeat the Step-2 for a large number of times, sayN times to obtain
the estimates of λ, say ∆01,∆02, . . . ,∆0N . Arrange all these estimates in
increasing order as ∆0(1) ≤ ∆0(2) ≤ . . . ≤ ∆0(N).

� Step-4: Define the lower and upper cut-off points as ∆L = ∆0(α
2
N) and

∆U = ∆0((1−α
2
)N), respectively.

� Step-5: Reject the null hypothesis H0 if ∆ ≤ ∆L or ∆ ≥ ∆U , otherwise
accept the hypothesis H0.

� Step-6: Let us call this test as Tct. The power of the test Tct is computed
as

Υml = P (∆ ≤ ∆L ∪ ∆ ≥ ∆U ) .(2.12)

One can modify the two sided test problem defined in (1.1) to a one sided
test by rewriting it as,

H∗
0 : h(λ) = (λ− λ0)

2 = 0 against H∗
a : h(λ) > 0.(2.13)

The algorithmic steps to implement this modified CAT are as follows:

1. Generate the artificial samples as discussed above and calculate ĥ0 =(λ̂0ml−
λ0)

2 for a large number of times, say N times and determine the estimates
ĥ01, ĥ02, . . . , ĥ0N . Arrange all these estimates in ascending order as ĥ0(1) ≤
ĥ0(2) ≤ . . . ≤ ĥ0(N).

2. Obtain the statistic δ = (λ̂ml − λ0)
2. Reject the null hypothesis H∗

0 if
δ > ĥ0((1−α)N), otherwise accept the hypothesis H∗

0 .

3. Let us name this test as Tmt, and thus the power of this modified CAT
(Tmt) procedure can be determined as

Υmt = P (δ > ĥ0((1−α)N)).(2.14)
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2.3. Parametric Bootstrap Method

In this subsection, we propose a likelihood ratio test procedure based on the
artificial bootstrap samples obtained using the MLEs of the parameters under the
null hypothesis H0. Chang et al. (2010) [4] suggested this well-known parametric
bootstrap likelihood ratio test (PBLRT) method, which has certain advantages
over the conventional likelihood ratio test (LRT) procedure. To use this method,
we first derive the likelihood function in our model from computing the test
statistic and the corresponding power.

Based on the complete and sufficient statistic (X(1), Y(1), S), the likelihood
function for the proposed problem is given by

L(µ1, µ2, σ) =
mnsm+n−3

Γ(m+ n− 2)σm+n

× exp
{
− (mx+ ny + s−mµ1 − nµ2)

σ

}
, s > 0, x > µ1, y > µ2.(2.15)

Here the random variables X(1), Y(1), and S are denoted by X, Y, and S,
respectively. In order to obtain a test statistic using the LRT approach, one
needs to maximize the likelihood function L with respect to the null space Θ0 =(
(µ1, µ2, σ),−∞ < µ1, µ2 < ∞, σ = 1/λ0

)
and over the whole parameter space

Θ =
(
(µ1, µ2, σ),−∞ < µ1, µ2 < ∞, σ > 0

)
, then take the ratio. Thus, the LRT

statistic is given by

Λ =
supΘ0

L

supΘ L
,(2.16)

and after some calculations, one gets

Λ =

(
λ0

λ̂ml

)m+n [
exp

{
1− λ0

λ̂ml

}]m+n

.(2.17)

Taking logarithms on both the sides of (2.17), the statistic becomes

Λ∗ = log(Λ) = (m+ n)

[
log(λ0)− log(λ̂ml) +

{
1− λ0

λ̂ml

}]
.(2.18)

Due to the complicated structure, it is quite challenging to determine the exact
distribution of the likelihood ratio statistic Λ∗, under the null hypothesis H0.
Furthermore, under H0, the chi-square distribution can not be used for (−2Λ∗)
(see Chang et al. (2013) [2]). Because of this and inspired by the results of Chang
et al. (2010) [4], we adopt the parametric bootstrap method to test the hypothesis
H0 against Ha. The detailed algorithmic steps necessary for computing the size
and power of the PBLRT procedure are described below.
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� Step-1: Using the original samples (X1, X2, . . . , Xm) and (Y1, Y2, . . . , Yn)
from two exponential populations Exp(µ1, σ) and Exp(µ2, σ), compute the
statistic Λ∗.

� Step-2: Under the hypothesis H0, generate artificial samples (X∗
1 , X

∗
2 , . . . ,

X∗
m) and (Y ∗

1 , Y
∗
2 , . . . , Y

∗
n ) from Exp(µ̂1ml, 1/λ0), and Exp(µ̂2ml, 1/λ0),

respectively. Based on these sample values, calculate the statistic Λ∗ and
denote it as Λ∗

0.

� Step-3: Repeat the Step-2 a large number of times, sayQ times to determine
the estimates Λ∗

01,Λ
∗
02, . . . ,Λ

∗
0Q of Λ∗. Arrange all these Λ∗ values in an

ascending order as Λ∗
01 ≤ Λ∗

02 ≤ . . . ≤ Λ∗
0Q. Define the lower and upper

cut-off points as Λ∗
L = Λ∗

0(α
2
Q) and Λ∗

U = Λ∗
0((1−α

2
)Q), respectively.

� Step-4: Reject H0 if Λ∗ ≤ Λ∗
L or Λ∗ ≥ Λ∗

U ; else, accept it. Let us call this
test as Tpb. Moreover, the power of the test Tpb is computed as

Υpb = P (Λ∗ ≤ Λ∗
L ∪ Λ∗ ≥ Λ∗

U ).(2.19)

2.4. Numerical Comparison

This section conducts a detailed simulation study to evaluate and compare
the performances of all suggested test methods in terms of size values and powers.
It is essential to mention that no other test procedures have closed-form expres-
sions except for the generalized test. Therefore, it is quite challenging to analyze
the test procedures behavior analytically. So, taking advantage of advanced com-
putational facilities available nowadays, we attempt to numerically compare the
performances of all the proposed test procedures in terms of their powers and
size values.

To compute the powers and sizes of all the test procedures, we have gener-
ated 20, 000 random samples each from the two exponential populations Exp(µ1,σ)
and Exp(µ2, σ) of sample sizes m and n, respectively. In the case of the general-
ized variable approach test, the number of replications in the inner loop is taken
as 10, 000 times. The same number of replications, 10, 000 times, is used for the
computational approach test procedure (both CAT and modified CAT) and for
the PBLRT procedure. In our simulation investigation, we used α = 0.05 as the
significance level for computing the tests’ sizes and powers. Note that the sizes of
all the test procedures are independent of µ1, µ2, and only depend on the sample
values. Therefore, the sizes of all the tests are computed by considering several
combinations of λ = λ0 values and varying the sample sizes. The powers of the
selected tests (whose size values lie within 15% of the significance level α) are
computed by keeping fixed as λ0 = 1 and varying the value of λ from 1.10 to 5.0
for several combinations of sample sizes. In computing the size/power, a high
level of accuracy has been reached in the sense that the simulation’s standard
error is bounded above by 0.005.
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The simulation study has been conducted for several combinations of sam-
ple sizes and parameter values; however, for illustration purposes, we have re-
ported the sizes/powers only for a few choices of sample sizes and parameters.
The sizes of all the recommended tests for equal and unequal sample sizes are
reported in Tables 1−2. The powers of all test procedures have been presented in
Table 3− 4. In Tables 1− 4, corresponding to one choice λ (in the first column),
there correspond six values that represent the sizes/powers of the tests for six
different combinations of sample sizes. The values given in the tables should be
read vertically downward in the given order of sample sizes. The results of our
extensive simulation analysis and the Tables 1− 4 are summarized below.

� It is observed that all the test procedures are very conservative and attain
the size value more frequently within 15% of nominal level α = 0.05.

� It is noticed that as the sample sizes increase, the powers of all the test
procedures increase. For fixed sample sizes, as the values of λ go away from
λ0, the powers of all the test procedures increase and become 1.

� The sizes and powers of all the generalized tests Ts, Tml Tmv, and Tba are
almost equal for all choices of sample sizes and parameter values. Therefore,
we presented the sizes and powers of the test Tml only in the tables.

� In terms of powers, the modified CAT (Tmt) has the best performance with
the highest power for almost all sample sizes and parameter values. The
CAT (Tct) comes in second position, followed by the generalized test (Tml),
and in the end the PBLRT (Tpb).

� Similar trends have been seen for other combinations of sample sizes and
the parameter choices used in our simulation study in terms of the sizes
and powers of all the proposed test procedures.
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Table 1: Comparing the Sizes of All the Proposed
Tests of λ for Equal Sample Sizes (m,n) =
(5, 5), (8, 8), (12, 12), (20, 20), (30, 30), (40, 40) with α = 0.05.

λ Tml Tct Tmt Tpb λ Tml Tct Tmt Tpb

0.10 0.0480 0.0476 0.0482 0.0486 2.00 0.0488 0.0498 0.0518 0.0460
0.0504 0.0488 0.0506 0.0484 0.0494 0.0482 0.0472 0.0476
0.0506 0.0504 0.0530 0.0498 0.0504 0.0498 0.0494 0.0498
0.0468 0.0472 0.0474 0.0472 0.0514 0.0528 0.0520 0.0502
0.0480 0.0500 0.0484 0.0500 0.0488 0.0496 0.0464 0.0440
0.0478 0.0480 0.0496 0.0514 0.0508 0.0522 0.0534 0.0518

0.50 0.0536 0.0544 0.0550 0.0534 2.50 0.0422 0.0424 0.0452 0.0468
0.0452 0.0462 0.0486 0.0530 0.0526 0.0534 0.0512 0.0492
0.0510 0.0514 0.0492 0.0490 0.0504 0.0488 0.0458 0.0500
0.0508 0.0510 0.0538 0.0488 0.0544 0.0526 0.0462 0.0506
0.0518 0.0524 0.0486 0.0462 0.0498 0.0526 0.0532 0.0488
0.0476 0.0492 0.0518 0.0532 0.0490 0.0488 0.0470 0.0516

1.00 0.0500 0.0486 0.0528 0.0494 3.00 0.0486 0.0486 0.0494 0.0484
0.0512 0.0534 0.0498 0.0506 0.0482 0.0480 0.0478 0.0522
0.0494 0.0490 0.0484 0.0468 0.0454 0.0456 0.0484 0.0464
0.0556 0.0562 0.0558 0.0524 0.0484 0.0464 0.0392 0.0438
0.0524 0.0518 0.0516 0.0484 0.0458 0.0448 0.0482 0.0448
0.0526 0.0538 0.0544 0.0518 0.0482 0.0482 0.0474 0.0450

1.50 0.0500 0.0500 0.0544 0.0500 4.00 0.0486 0.0476 0.0460 0.0476
0.0504 0.0520 0.0482 0.0508 0.0484 0.0492 0.0532 0.0506
0.0522 0.0526 0.0496 0.0458 0.0504 0.0500 0.0484 0.0534
0.0490 0.0500 0.0518 0.0508 0.0522 0.0508 0.0468 0.0496
0.0502 0.0498 0.0480 0.0564 0.0474 0.0486 0.0492 0.0440
0.0532 0.0540 0.0524 0.0530 0.0454 0.0456 0.0450 0.0488
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Table 2: Comparing the Sizes of All the Proposed
Tests of λ for Unequal Sample Sizes (m,n) =
(5, 10), (5, 15), (12, 20), (10, 5), (15, 5), (20, 12) with α = 0.05.

λ Tml Tct Tmt Tpb λ Tml Tct Tmt Tpb

0.10 0.0468 0.0448 0.0528 0.0472 2.00 0.0492 0.0498 0.0550 0.0558
0.0520 0.0528 0.0514 0.0520 0.0502 0.0516 0.0498 0.0486
0.0446 0.0464 0.0510 0.0510 0.0524 0.0514 0.0476 0.0524
0.0490 0.0482 0.0514 0.0544 0.0496 0.0486 0.0564 0.0486
0.0530 0.0540 0.0528 0.0542 0.0488 0.0498 0.0450 0.0452
0.0448 0.0456 0.0476 0.0518 0.0488 0.0494 0.0482 0.0466

0.50 0.0480 0.0472 0.0480 0.0498 2.50 0.0526 0.0526 0.0534 0.0534
0.0504 0.0522 0.0500 0.0516 0.0506 0.0508 0.0538 0.0502
0.0510 0.0492 0.0500 0.0466 0.0532 0.0546 0.0540 0.0550
0.0466 0.0464 0.0504 0.0494 0.0568 0.0552 0.0528 0.0540
0.0512 0.0514 0.0504 0.0492 0.0524 0.0522 0.0542 0.0568
0.0508 0.0518 0.0482 0.0452 0.0502 0.0506 0.0534 0.0506

1.00 0.0460 0.0456 0.0426 0.0478 3.00 0.0470 0.0480 0.0476 0.0492
0.0478 0.0476 0.0436 0.0476 0.0508 0.0520 0.0522 0.0526
0.0472 0.0474 0.0456 0.0476 0.0490 0.0490 0.0484 0.0492
0.0478 0.0484 0.0474 0.0485 0.0484 0.0476 0.0502 0.0506
0.0486 0.0486 0.0504 0.0524 0.0508 0.0522 0.0556 0.0500
0.0498 0.0498 0.0450 0.0478 0.0510 0.0508 0.0506 0.0514

1.50 0.0488 0.0496 0.0506 0.0476 4.00 0.0548 0.0564 0.0520 0.0504
0.0486 0.0500 0.0492 0.0520 0.0514 0.0502 0.0530 0.0490
0.0518 0.0518 0.0518 0.0504 0.0458 0.0478 0.0536 0.0478
0.0480 0.0474 0.0526 0.0520 0.0570 0.0574 0.0504 0.0516
0.0500 0.0500 0.0518 0.0518 0.0568 0.0558 0.0550 0.0512
0.0496 0.0508 0.0516 0.0506 0.0466 0.0484 0.0544 0.0500
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Table 3: Powers of the Proposed Test Methods for Testing λ =
λ0 against λ ̸= λ0 with Equal Sample Sizes (m,n) =
(5, 5), (8, 8), (12, 12), (20, 20), (30, 30), (40, 40).

λ Tml Tct Tmt Tpb λ Tml Tct Tmt Tpb

1.10 0.0512 0.0526 0.0738 0.0616 3.00 0.8128 0.8098 0.9078 0.8070
0.0564 0.0562 0.0858 0.0650 0.9802 0.9808 0.9952 0.9798
0.0662 0.0680 0.1096 0.0764 0.9996 0.9996 1.0000 0.9996
0.0884 0.0890 0.1354 0.0910 1.0000 1.0000 1.0000 1.0000
0.0988 0.0964 0.1652 0.1012 1.0000 1.0000 1.0000 1.0000
0.1320 0.1305 0.2095 0.1235 1.0000 1.0000 1.0000 1.0000

1.50 0.1542 0.1574 0.2558 0.1596 3.50 0.9148 0.9164 0.9702 0.9142
0.2532 0.2536 0.3828 0.2506 0.9982 0.9980 0.9994 0.9980
0.4154 0.4162 0.5506 0.4052 1.0000 1.0000 1.0000 1.0000
0.6618 0.6608 0.7822 0.6420 1.0000 1.0000 1.0000 1.0000
0.8478 0.8486 0.9216 0.8236 1.0000 1.0000 1.0000 1.0000
0.9495 0.9495 0.9765 0.9360 1.0000 1.0000 1.0000 1.0000

2.00 0.3918 0.3946 0.5520 0.3924 4.00 0.9654 0.9646 0.9898 0.9632
0.6706 0.6712 0.7994 0.6642 0.9990 0.9990 0.9998 0.9990
0.8838 0.8864 0.9402 0.8796 1.0000 1.0000 1.0000 1.0000
0.9884 0.9888 0.9956 0.9872 1.0000 1.0000 1.0000 1.0000
0.9998 0.9996 1.0000 0.9996 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

2.50 0.6380 0.6398 0.7762 0.6358 5.00 0.9962 0.9964 0.9994 0.9962
0.9028 0.9056 0.9570 0.9012 1.0000 1.0000 1.0000 1.0000
0.9870 0.9884 0.9976 0.9872 1.0000 1.0000 1.0000 1.0000
1.0000 0.9998 1.0000 0.9998 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 4: Powers of the Proposed Test Methods for Testing λ =
λ0 against λ ̸= λ0 with Unequal Sample Sizes (m,n) =
(5, 10), (5, 15), (12, 20), (10, 5), (15, 5), (20, 12).

λ Tml Tct Tmt Tpb λ Tml Tct Tmt Tpb

1.10 0.0530 0.0538 0.0892 0.0642 3.00 0.9738 0.9722 0.9912 0.9714
0.0596 0.0590 0.0956 0.0672 0.9972 0.9976 0.9998 0.9972
0.0674 0.0676 0.1206 0.0754 1.0000 1.0000 1.0000 1.0000
0.0532 0.0530 0.0834 0.0648 0.9744 0.9742 0.9912 0.9730
0.0618 0.0606 0.1004 0.0680 0.9976 0.9976 0.9998 0.9974
0.0728 0.0710 0.1244 0.0808 1.0000 1.0000 1.0000 1.0000

1.50 0.2466 0.2470 0.3696 0.2466 3.50 0.9952 0.9948 0.9986 0.9944
0.3378 0.3382 0.4806 0.3296 0.9990 0.9990 0.9998 0.9990
0.5496 0.5510 0.6916 0.5320 1.0000 1.0000 1.0000 1.0000
0.2446 0.2466 0.3612 0.2456 0.9948 0.9946 0.9988 0.9940
0.3380 0.3422 0.4834 0.3334 0.9990 0.9988 1.0000 0.9988
0.5612 0.5634 0.7042 0.5448 1.0000 1.0000 1.0000 1.0000

2.00 0.6148 0.6160 0.7596 0.6086 4.00 0.9992 0.9990 1.0000 0.9990
0.7962 0.7930 0.8880 0.7852 1.0000 1.0000 1.0000 1.0000
0.9642 0.9640 0.9872 0.9598 1.0000 1.0000 1.0000 1.0000
0.6196 0.6212 0.7586 0.6166 0.9994 0.9992 1.0000 0.9992
0.7916 0.7900 0.8886 0.7820 1.0000 1.0000 1.0000 1.0000
0.9656 0.9670 0.9880 0.9616 1.0000 1.0000 1.0000 1.0000

2.50 0.8740 0.8728 0.9396 0.8696 5.00 1.0000 1.0000 1.0000 1.0000
0.9684 0.9686 0.9882 0.9670 1.0000 1.0000 1.0000 1.0000
0.9988 0.9992 0.9998 0.9984 1.0000 1.0000 1.0000 1.0000
0.8784 0.8786 0.9436 0.8742 1.0000 1.0000 1.0000 1.0000
0.9692 0.9680 0.9882 0.9648 1.0000 1.0000 1.0000 1.0000
0.9988 0.9990 1.0000 0.9986 1.0000 1.0000 1.0000 1.0000
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3. CONFIDENCE INTERVAL FOR THE COMMON HAZARD
RATE

In this section, we derive several confidence intervals for the common hazard
rate parameter λ utilizing some of the existing methodologies.

3.1. Generalized Confidence Intervals

The generalized confidence interval is a method for approximately obtain-
ing the confidence interval of a function of the parameter(s). To employ the
technique, we introduce the concept of generalized pivot variable proposed by
Weerahandi (1993) [34] for constructing the generalized confidence intervals in
this subsection. The following definition is helpful in constructing the generalized
confidence intervals for λ.

Definition 3.1. Let X be a random variable with density fX(x, ω, κ),
where ω is the parameter of interest, and κ is the nuisance parameter. More-
over, let x be the observed value of the random variable X. If the statistic
U = U(X;x, ω, κ) satisfies the following two conditions, then it is considered
a generalized pivotal variable for constructing generalized confidence intervals of
parameter ω.

� The statistic U(X;x, ω, κ) has a probability distribution which is free of all
unknown parameters when X = x is fixed.

� At X = x, the value of the statistic U is ω, that is U(X;x, ω, κ) = ω, the
parameter of interest.

Observe that the generalized pivotal statistic Us defined in (2.4) satisfies the
conditions of Definition 3.1. The generalized pivot variable Us for the parameter λ
is Us = W1/2s̄, where W1 is a chi-square random variable with degrees of freedom
2(m+ n− 2) and s̄ is the observed value of S. Thus (1 − α)100% generalized
confidence interval for the parameter λ is obtained as

(Us(α/2), Us(1− α/2)).(3.1)

Similarly, utilizing the pivot variables Uml, Umv, and Uba, we propose (1−
α)100% generalized confidence intervals for the common hazard rate parameter
λ, and are respectively, defined as

(Uml(α/2), Uml(1− α/2)),(3.2)
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(Umv(α/2), Umv(1− α/2)),(3.3)

and

(Uba(α/2), Uba(1− α/2)).(3.4)

3.2. Parametric Bootstrap Confidence Intervals

In this subsection, we propose two parametric bootstrap methods, namely
bootstrap-p, and bootstrap-t, to obtain approximate confidence intervals for the
common hazard rate parameter λ. This method is purely based on computer pro-
gramming and provides intervals as good as other exact intervals. The bootstrap-
p (Boot-p) confidence interval was proposed by Efron (1982) [7], whereas Hall
and Martin (1988) [15] proposed the bootstrap-t (Boot-t) confidence interval.
The following are the step-by-step procedures for obtaining these two approxi-
mate confidence intervals for the common hazard rate parameter λ.

3.2.1. Bootstrap-p Method

The algorithmic steps for applying the bootstrap-p method to construct
the estimated confidence interval of the parameter λ are as follows.

� Step-1: Using the original samples (X1, X2, . . . , Xm) and (Y1, Y2, . . . , Yn)
from two exponential populations Exp(µ1, σ) and Exp(µ2, σ), compute the
MLEs µ̂1ml, µ̂2ml, and σ̂ml for parameters µ1, µ2 and σ, respectively. Con-
sidering the MLE’s invariance property, the MLE of the common hazard
rate parameter λ is obtained as λ̂ml = 1/σ̂ml.

� Step-2: Generate the artificial bootstrap samples (X∗
1 , X

∗
2 , . . . , X

∗
m) and

(Y ∗
1 , Y

∗
2 , . . . , Y

∗
n ) from Exp(µ̂1ml, σ̂ml), and Exp(µ̂2ml, σ̂ml), respectively, and

obtain the bootstrap MLEs µ̂1bml, µ̂2bml, and σ̂bml. Consequently, compute
the bootstrap MLE for parameter λ, as λ̂bml = 1/σ̂bml.

� Step-3: Repeat the Step-2 for a large number of times, say B times to de-
termine the bootstrap MLEs λ̂1bml, λ̂2bml, . . . , λ̂Bbml of λ. Arrange all these
MLE values in an ascending order.

� Step-4: The (1− α)100% bootstrap-p confidence interval for λ is obtained
using the bootstrap MLEs and is given by(

λ̂Boot−p(α/2), λ̂Boot−p(1− α/2)
)
,

where λ̂Boot−p(x) = F−1(x), F (x) = P (λ̂bml ≤ x).
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3.2.2. Bootstrap-t Method

The algorithmic steps for applying the bootstrap-t method to construct the
approximate confidence interval of the parameter λ are discussed below.

� Step-1: Compute the MLE λ̂ml for parameter λ, as discussed in Step-1 of
bootstrap-p method.

� Step-2: This step is also the same as Step-2 of the bootstrap-p method.
Obtain λ̂bml= 1/σ̂bml.

� Step-3: Compute the new statistic T =
λ̂bml − λ̂ml

ŝe(λ̂bml)
, where ŝe(λ̂bml) is the

standard error estimate of the bootstrap MLE λ̂bml.

� Step-4: Repeat the Steps 2 and 3, a large number of times, say B times and
collect the several values of the bootstrap statistic T.

� Step-5: The approximate (1 − α)100% bootstrap-t confidence interval of
the parameter λ is computed as(

λ̂Boot−t(α/2), λ̂Boot−t(1− α/2)
)
,

where λ̂Boot−t(x) = λ̂ml +G−1(x)ŝe(λ̂ml), G(x) = P (T ≤ x).

In the following subsection, we will propose another approximate confidence
interval based on the Markov Chain Monte Carlo (MCMC) method. This method
is very effective when some prior information regarding the parameter is available.

3.3. Highest Posterior Density (HPD) Interval Using MCMC Method

This section uses the Markov Chain Monte Carlo (MCMC) process and the
Metropolis-Hastings algorithm to compute the HPD confidence interval for the
common hazard rate parameter λ.

Suppose independent random samples X˜ = (X1, X2, . . . , Xm) and Y˜ =
(Y1, Y2, . . . , Yn) are available from two exponential populations Exp(µ1, σ) and
Exp(µ2, σ), respectively. In order to compute the HPD interval for the parameter
λ, some appropriate prior information about the parameters µ1, µ2, and σ are
required. In this connection, we consider the joint prior for the parameters σ, µ1

and µ2 as given by (Madi and Leonard (1996) [22]).

The prior distribution of µ1 given σ is taken as exponential and is given by

π(µ1|σ) =
c

σ
exp

{−c(µ− µ1)

σ

}
; µ ≥ µ1.(3.5)
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Similarly the prior distribution of µ2 given σ is also exponential and is given by

π(µ2|σ) =
c

σ
exp

{−c(µ− µ2)

σ

}
; µ ≥ µ2.(3.6)

The distribution of σ is taken as inverse gamma (IGamma) distribution with
shape parameter k and scale parameter θ and is given by,

π(σ) =
θk

Γ(k)

( 1

σ

)k+1
exp{−θ/σ}; σ > 0, θ > 0, k > 0.(3.7)

It is further assumed that c, k, and θ are specified positive constants and µ has
a uniform distribution which is independent of σ. The density of µ is given by

π(µ) ∝ 1, −∞ < µ < ∞.(3.8)

Now, combining all the above information, and the likelihood function given
in (2.15), one gets the joint posterior density of µ1, µ2 and σ, given µ, as

π
(
(µ1, µ2, σ) | (x˜, y˜, µ)

)
=

mnc2θksm+n−3

Γ(k)Γ(m+ n− 2)

( 1

σ

)m+n+k+3

× exp
{
− (mx+ ny + s+ 2cµ− (m+ c)µ1 − (n+ c)µ2)

σ

}
,(3.9)

where −∞ < µ1 < δ1, −∞ < µ2 < δ2; and δ1 = min(x, µ), and δ2 = min(y, µ).

Observe that, from the joint posterior density of (µ1, µ2, σ), it is easy to
obtain the marginal posterior density of the parameter σ, and is obtained as

π
(
σ | (x˜, y˜, µ1, µ2, µ)

)
∝ IGamma(k1, θ1)

where k1 = m+ n+ k and θ1 = mx+ ny + s+ 2cµ− (m+ c)δ1 − (n+ c)δ2.

Thus the marginal posterior distribution of the common hazard rate pa-
rameter λ, given µ1, µ2, µ and the data is proportional to Gamma distribution
with the shape parameter k1 and the rate parameter θ1, that is,

π
(
λ | (x˜, y˜, µ1, µ2, µ)

)
∝ Gamma(k1, θ1)

Since the marginal posterior density of the required parameter λ is pro-
portional to the well-known gamma distribution; we use the MCMC method
along with the Random walk Metropolis-Hastings algorithm proposed by Hast-
ings (1970) [16] to generate posterior samples for the parameter λ. The details
of the algorithmic steps of the Random-Walk-Metropolis method are described
below.

Random Walk Metropolis-Hastings Algorithm:
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� Step-1: Let the kth iteration step of the Markov chain consists of λ(k−1)

with a suitable initial value λ(0).

� Step-1: Generate a sample ε from N(0, σ2
λ) and put λ∗ = λ(k−1) + ε.

� Step-3: Determine the term φ = min

1,
π
(
λ∗ | (x˜, y˜, µ1, µ2, µ)

)
π
(
λ(k−1) | (x˜, y˜, µ1, µ2, µ)

)


� Step-4: Generate a random sample u from U(0, 1). If u ⩽ φ, accept λ∗

and update the parameter as λ(k) = λ∗ and otherwise, reject λ∗ and do
λ(k) = λ(k−1). This completes the transition from kth iteration step to
(k + 1)th iteration step.

� Step-5: Repeat the above Random walk Metropolis algorithm for k =
1, 2, . . . ,M where M is a suitable large number. Collect these M inde-
pendent MCMC samples as λ1, λ2, . . . , λM .

In order to compute the (1−α)100% HPD confidence interval for λ, arrange

all the MCMC samples in the ascending order as
(
λ(1), λ(2), . . . , λ(M)

)
. Then

using the technique of Chen and Shao (1999) [5], we obtain the (1 − α)100%
HPD confidence interval for λ as

HPD = (λ(s∗), λ(s∗+[(1−α)M ]))(3.10)

where s∗ is chosen in such a way that

λ(s∗+[(1−α)M ]) − λ(s∗) = min
1≤s≤M−[(1−α)M ]

(λ(s+[(1−α)M ]) − λ(s)).

Remark 3.1. In order to start the MCMC chain, we have used the
suitable initial guess λ(0) as λ(0) = λ̂ml, the MLE of λ.

Remark 3.2. The choice of the value of σ2
λ is quite crucial in the Ran-

dom walk Metropolis method. Chib and Greenberg (1995) [6] discussed this issue
and reported that for small choices of σ2

λ there is a high chance of accepting the
sample. Hence to make the process more fair, we choose the value of σ2

λ in such
a way that the acceptance rate is in between 20% and 30%, that is neither too
high nor too low.

Remark 3.3. It is important to note that, we have formed test proce-
dures using the confidence intervals, such as bootstrap-p, bootstrap-t and HPD.
The null hypothesis H0 (given in (1.1) is rejected, if the intervals do not contain
the true value of parameter λ0 with probability 0.95. We have computed the sizes
for all these three test procedures, and seen that none of these attain the size
value 0.05 within 15% of the nominal level. Thus we have not considered these
test procedures for power comparison, and omitted in our simulation study.
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3.4. Simulation Study: Comparing the Confidence Intervals

In this section, we compare all the proposed confidence intervals (CIs) in
terms of coverage probability (CP) and average length (AL) by considering many
combinations of sample sizes and parameters.

It is important to mention that the CPs and ALs of all the proposed CIs
for λ could not be compared analytically, so utilizing the superior computational
facilities available nowadays, we attempt to evaluate and compare the CPs and
ALs of all the intervals, numerically.

The sample generation and the parameter choices for computing the CPs
and ALs remain the same as in the previous section (Subsection 2.4). Moreover,
in computing the bootstrap intervals, the number of replications for generating
the bootstrap samples is set to B = 5000. The same number of replications is
used in the inner loops for computing the HPD and the generalized intervals.
The confidence level for computing all the intervals is fixed at 1−α = 0.95. Note
that the CPs and ALs of all the intervals are independent of µ1 and µ2, and only
depend upon the sample sizes. Therefore, the CPs and ALs of all the CIs of λ
are computed by keeping µ1 = µ2 = 1 fixed and considering various combinations
of sample sizes. However, we have reported for selected combinations of sample
sizes and parameters for illustration purposes. Table 5 presents the ALs and CPs
of all the CIs of λ for some equal and unequal sample sizes. Note that all the
generalized CIs have equal ALs and CPs; that is, they perform equally well in
terms of ALs and CPs. Therefore, we only consider the generalized interval Uml

in the tables for presentation purposes.

The following observation can be drawn from our simulation study as well
as from Table 5.

Remark 3.4. (i) The ALs of all the CIs decrease as the sample sizes
increase; however; whereas, their CPs lie in the range 60% and 98%. Notably, the
CPs of all generalized intervals are always 0.95, that is, they are exact.

(ii) All the generalized CIs perform equally well in terms of AL and CP for
both equal and unequal sample sizes. Thus, we only present the AL and CP of
the interval Uml in the Table 5.

(iii) If we compare the performances of all the CIs in terms of CPs, consid-
ering 0.95 as the nominal level, then all the generalized CIs and Boot-t interval
attain it. Among these CIs, the Boot-t CI performs better with higher CP, fol-
lowed by the generalized CIs. However, for small values of λ (say λ < 0.50) the
HPD interval attains the CP, for almost all the combinations of samples sizes
that we have considered.

(iv) In terms of AL, and for small values of λ (say λ < 0.50) the generalized
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CI Uml performs better with the shortest AL; followed by the Boot-t, Boot-p and
finally the HPD interval. For other choices of λ the HPD interval performs better
with shortest AL, however its CP falls short from attaining the nominal level of
0.95.

(v) While ranking all the proposed CIs in terms of shortest AL and highest
CP, it is seen that all the generalized CIs performs the best among all the proposed
CIs with the shortest AL and also attain the confidence level of 0.95.

(v) A similar type of trend has been observed for other combinations of
sample sizes and parameters choices. We have also considered the simulation
study considering 1 − α = 0.90, 0.99, which have produced similar performance
in terms of CPs and ALs.
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Table 5: Average Lengths and Coverage Probabilities of Vari-
ous Confidence Intervals of λ for Sample Sizes (m,n) =
(5, 5), (8, 8), (12, 12), (20, 20), (30, 30), (40, 40), (5, 10), (5, 15),
(12, 20), (10, 5), (15, 5), (20, 12) with α = 0.05.

λ Boot-p Boot-t HPD Uml

0.314 ( 0.60 ) 0.187 ( 0.97 ) 0.408 ( 0.94 ) 0.157 ( 0.95 )
0.166 ( 0.73 ) 0.124 ( 0.97 ) 0.276 ( 0.96 ) 0.112 ( 0.95 )
0.113 ( 0.80 ) 0.095 ( 0.97 ) 0.177 ( 0.98 ) 0.087 ( 0.95 )
0.076 ( 0.85 ) 0.070 ( 0.96 ) 0.109 ( 0.98 ) 0.065 ( 0.95 )
0.057 ( 0.88 ) 0.055 ( 0.96 ) 0.083 ( 0.99 ) 0.052 ( 0.95 )

λ = 0.10 0.048 ( 0.90 ) 0.069 ( 0.99 ) 0.045 ( 0.94 ) 0.045 ( 0.95 )
0.181 ( 0.70) 0.131 ( 0.97 ) 0.283 ( 0.97 ) 0.116 ( 0.95 )
0.133 ( 0.76 ) 0.107 ( 0.97 ) 0.217 ( 0.98 ) 0.097 ( 0.95 )
0.089 ( 0.84 ) 0.079 ( 0.96 ) 0.133 ( 0.98 ) 0.074 ( 0.95 )
0.178 ( 0.72 ) 0.129 ( 0.97 ) 0.292 ( 0.97 ) 0.117 ( 0.95 )
0.133 ( 0.77 ) 0.106 ( 0.97 ) 0.207 ( 0.98 ) 0.097 ( 0.95 )
0.089 ( 0.84 ) 0.079 ( 0.97 ) 0.131 ( 0.97 ) 0.074 ( 0.95 )

1.543 ( 0.60) 0.92 ( 0.98 ) 0.646 ( 0.89 ) 0.787 ( 0.95 )
0.837 ( 0.73 ) 0.624 ( 0.97 ) 0.567 ( 0.92 ) 0.558 ( 0.95 )
0.563 ( 0.80 ) 0.472 ( 0.96 ) 0.496 ( 0.92 ) 0.435 ( 0.95 )
0.377 ( 0.85 ) 0.347 ( 0.96 ) 0.397 ( 0.94 ) 0.326 ( 0.95 )
0.287 ( 0.89 ) 0.277 ( 0.95 ) 0.319 ( 0.96 ) 0.261 ( 0.95 )

λ = 0.50 0.241 ( 0.90 ) 0.270 ( 0.98 ) 0.238 ( 0.96 ) 0.224 ( 0.95 )
0.891 ( 0.73 ) 0.648 ( 0.97 ) 0.565 ( 0.95 ) 0.588 ( 0.95 )
0.665 ( 0.76 ) 0.532 ( 0.96 ) 0.520 ( 0.94 ) 0.488 ( 0.95 )
0.445 ( 0.84 ) 0.396 ( 0.97 ) 0.432 ( 0.98 ) 0.372 ( 0.95 )
0.899 ( 0.70 ) 0.654 ( 0.96 ) 0.576 ( 0.96 ) 0.585 ( 0.95 )
0.666 ( 0.76 ) 0.533 ( 0.97 ) 0.523 ( 0.94 ) 0.486 ( 0.95 )
0.445 ( 0.84 ) 0.396 ( 0.96 ) 0.430 ( 0.95 ) 0.370 ( 0.95 )

3.093 ( 0.60 ) 1.844 ( 0.98 ) 0.673 ( 0.87 ) 1.584 ( 0.95 )
1.657 ( 0.74 ) 1.234 ( 0.97 ) 0.621 ( 0.89 ) 1.119 ( 0.95 )
1.125 ( 0.80 ) 0.945 ( 0.97 ) 0.569 ( 0.89 ) 0.874 ( 0.95 )
0.756 ( 0.85 ) 0.696 ( 0.96 ) 0.493 ( 0.91 ) 0.650 ( 0.95 )
0.574 ( 0.89 ) 0.554 ( 0.96 ) 0.434 ( 0.92 ) 0.523 ( 0.95 )

λ = 1.00 0.479 ( 0.90 ) 0.388 ( 0.93 ) 0.472 ( 0.96 ) 0.448 ( 0.95 )
1.800 ( 0.70 ) 1.309 ( 0.97 ) 0.632 ( 0.89 ) 1.163 ( 0.95 )
1.324 ( 0.77 ) 1.060 ( 0.96 ) 0.588 ( 0.91 ) 0.968 ( 0.95 )
0.890 ( 0.84 ) 0.791 ( 0.96 ) 0.524 ( 0.91 ) 0.741 ( 0.95 )
1.801 ( 0.70 ) 1.311 ( 0.96 ) 0.628 ( 0.98 ) 1.164 ( 0.95 )
1.328 ( 0.77 ) 1.063 ( 0.97 ) 0.594 ( 0.98 ) 0.970 ( 0.95 )
0.892 ( 0.83 ) 0.794 ( 0.96 ) 0.528 ( 0.90 ) 0.739 ( 0.95 )

4. APPLICATION USING REAL-LIFE DATA SETS

Example 1: In this section, we consider real data sets to demonstrate the test
procedures and interval estimation methods. The data sets have been taken from
Xia et al. (2009) [35] and are presented in Table 6. These data sets represent the
breaking strength of jute fiber at gauge lengths 10 mm and 20 mm, respectively.
Using the Kolmogorov-Smirnov test, it is seen the two-parameter exponential
distribution fits well to these two datasets, with p-values 0.2831 and 0.5891, re-
spectively. The equality of the scale parameters holds true at 5% significance
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level, using the test proposed by Nagarsenker and Nagarsenker (1986) [25]. Sup-
pose X and Y denote the breaking strengths of jute fiber with 10 mm and 20
mm, respectively. Using the data X and Y, we computed the p-values and the
confidence intervals for the common hazard rate parameter λ. In Table 7, we have
reported all the intervals with their corresponding lengths for λ with confidence
level (1 − α) = 95%. From Table 7, it is clear that the generalized confidence
interval Uml has the shortest length, which also validates our simulation results.

Suppose we are interested in testing the hypothesis H0 : λ = 0.003 against
the alternative Ha : λ ̸= 0.003 at a level of significance α = 0.05 using the given
data sets. The p-values for all the proposed test procedures are computed and
reported in Table 8. The p-values indicate that all the test procedures accept the
null hypothesis, except the PBLRT Tpb, at a level of significance α = 0.05.

Table 6: Breaking Strength of Jute Fiber of Gauge Length 10mm
and 20 mm.

693.73 704.66 323.83 778.17 123.06 637.66
383.43 151.48 108.94 50.16 671.49 183.16

10 mm(X) 257.44 727.23 291.27 101.15 376.42 163.40
141.38 700.74 262.90 353.24 422.11 43.93
590.48 212.13 303.90 506.60 530.55 177.25

71.46 419.02 284.64 585.57 456.60 113.85
187.85 688.16 662.66 45.58 578.62 756.70

20 mm(Y) 594.29 166.49 99.72 707.36 765.14 187.13
145.96 350.70 547.44 116.99 375.81 581.60
119.86 48.01 200.16 36.75 244.53 83.55

Table 7: Computing the Lower Limits, Upper Limits and
Lengths of Confidence Intervals with Confidence Level
(1− α) = 0.95.

Method Boot-p Boot-t HPD Uml

Lower 0.00263 0.00204 0.00193 0.00233
Upper 0.00434 0.00375 0.93563 0.00394
Length 0.00171 0.00171 0.09163 0.00160

Table 8: Computing the p-values of All the Proposed Tests with
α = 0.05.
Method Tml Tct Tmt Tpb

p-value 0.7572 0.7668 0.9988 0.0024

Example 2: Let us consider the data sets given in Lawless (2011) [20], and the
data sets are tabulated in Table 9. The data sets represent the failure times of two
types of electrical insulators in an experiment when the insulators were subjected
to a continuously increasing voltage stress. Using the Kolmogorov-Smirnov test,
the two-parameter exponential distribution is fitted to these two data sets, whose
p-values are obtained as 0.2831 and 0.5891, respectively. Equality of the scale
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parameters has been tested at 5% significance level, using the method proposed
Nagarsenker and Nagarsenker (1986) [25]. Suppose X and Y denote the failure
times (in minutes) of the two types of electrical insulators, say Type-A and Type-
B, respectively.

Using the data X and Y, we computed the p-values and the confidence
intervals for the common hazard rate parameter λ. In Table 10, we have reported
all the intervals with their corresponding lengths for λ with confidence level (1−
α) = 95%. From Table 10, it is clear that the generalized confidence interval Uml

has the shortest length.

Further, we are interested in testing the hypothesis H0 : λ = 0.0166 against
the alternative Ha : λ ̸= 0.0166 at the level of significance α = 0.05. The p-values
for all the proposed test procedures are computed and given in Table 11. The
p-values indicate that all the test procedures accept the null hypothesis, except
the PBLRT Tpb.

Table 9: Failure Times (in Minutes) for Two Types of Electrical
Insulators.

Type-A (X) 219.3 79.4 86.0 150.2 21.7 18.5
121.9 40.5 147.1 35.1 42.3 48.7

Type-B (Y) 21.8 70.7 24.4 138.6 151.9 75.3
12.3 95.3 98.1 43.2 28.6 46.9

Table 10: Computing the Lower Limits, Upper Limits and
Lengths of Confidence Intervals with Confidence Level
(1− α) = 0.95.

Method Boot-p Boot-t HPD Uml

Lower 0.01250 0.00529 0.00785 0.00972
Upper 0.02785 0.02063 0.02596 0.02224
Length 0.01534 0.01534 0.01811 0.01252

Table 11: Computing the p-values of All the Proposed Tests with
α = 0.05.
Method Tml Tct Tmt Tpb

p-value 0.6048 0.6428 1.0000 0.0000

5. CONCLUDING REMARKS

The problems of point estimation of the common scale parameter σ and the
hazard function 1/σ of several exponential distributions have been considered by
researchers in the past from classical and decision-theoretic viewpoints. In this
article, we have investigated the problems of hypothesis testing and confidence
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interval of the common hazard rate parameter when samples are available from
two two-parameter exponential distributions with different location parameters.
The problem is quite important from an application point of view.

Several test procedures, namely the generalized tests, tests based on the
computational approach we call CAT and modified CAT, and the parametric
bootstrap likelihood ratio test, have been derived for testing the common haz-
ard rate. The powers and sizes of all the test procedures have been computed
numerically. It has been seen that all the generalized tests perform quite well
as compared to other tests. Several confidence intervals, such as generalized
confidence intervals, bootstrap-p and bootstrap-t, and highest posterior density
intervals, have been proposed for the common hazard rate. The performances of
all the intervals in terms of coverage probability and average length have been
evaluated. It is seen that the generalized confidence intervals perform quite well.
The current problem can be considered from a Bayesian point of view, such as
Bayesian hypothesis testing.
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