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1. INTRODUCTION

The Binomial distribution gave rise for the development of the Normal and the Chi-

square distributions. The first one who worked with the Normal distribution was De Moivre,

in 1733, Daw and Pearson (1972), while the Weak Law of Large Numbers (WLLN) provided

by Bernoulli, on 1713 was the first step towards the Probability Theory. The Statistical

Theory on the Normal distribution was strengthened and enlarged with Gauss’ Least Square

Method, where his “bell-shaped” curve, the “Gaussian”, in current terminology, was the

backbone of his research Seal (1967), as Gauss worked with the distribution of the involved

errors.

Through the Binomial distribution and the Normal (the idea to sum up the square of

Normals was there) Pearson worked to provide his cumulative test statistic Pearson (1900),

which is approaching the Chi-square distribution. For the development of the Chi-square see

Pearson and Plackett (1983).

Both, Normal and Chi-square, are very popular to applications: It was Adolph Quetelet

who adopted the Gaussian distribution to Astronomy, being fundamental Airy (1861) for

astronomers, while Francis Galton applied the Normal distribution to all of his research

fields, working also with the logarithms of the observations. He also moved a step forward

working with pairs of measurements, while Karl Pearson and others developed the “correlation

coefficients”, so the Bivariate Normal was “ante portas” and was approached eventually

by Laplace (1811), Gauss (1823). Recently the Normal distribution is so essential to the

Information Theory, Cover and Thomas (2006), while the Chi-square tests, Schervish (1997)

for a theoretical approach, are widely used in Applied Statistics. Moreover recall that the

Chi-square X 2
n distribution comes from the sum of squares of n given independent standard

Normal random variables, Zi, i = 1, 2, . . . , n. We denote by Y =
∑n

i=1 Z
2
i ∼ X 2

n . This result

has been generalized in Section 3. Recall that for the expected value and the variance of Y it

holds that E(Y ) = n = 1
2V ar(Y ). This result has been generalized in Section 3, Corollary 3.3.

The multivariate Normal distribution, see Anderson (2003) among others, attracts more

interest in applications than the multivariate Chi-square Royen (1991). One explanation

might be that the multivariate Normal offers very useful results to many fields of interest,

the Information Theory being one of them, Cover and Thomas (2006). Even as an inverse

Gaussian, as introduced by Schrödinger (1915), Normal distribution is really very attractive,

especially to the experimentalists. Therefore a number of attempts have been made to offer

a generalized form for the Normal distribution.

Defining a Generalized Normal, Nadarajah (2005), Domı́nguez-Molina et al. (2003),

is referred on a shape parameter of a generalized Gaussian, with no theoretical framework,

see also Gómez et al. (1998), similar to those from Kitsos and Toulias (2010). But neither

in Gómez et al. (1998) nor in Nadarajah (2005) the presentation of the “new” Gaussian is

based on theoretical background. A hard attempt of trials and errors it might be behind, to

form coefficients, while Yu et al. (2012), Dytso et al. (2018) are reviewing the exponential

power distribution. Therefore, with an extra shape parameter γ and the strong theoretical

background of the Logarithm Sobolev Inequalities (LSI), Kitsos and Tavoularis (2009) pro-

posed the γ-order Generalized Normal, Nγ(µ,Σ) as an extremal function to Euclidean LSI.
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This distribution, introduced in Kitsos and Tavoularis (2009), has been discussed in detail in

Kitsos and Toulias (2011), Kitsos et al. (2014) while it was adopted to Economical problems

by Halkos and Kitsos (2018), Halkos and Kitsou (2018) and to Transfer Entropy problems

by Hlavackova-Schindler (2011), Hlavackova-Schindler et al. (2016).

The Nγ(µ,Σ) distribution is presented in a compact form in Section 2 and the gener-

alized γ-order standard Normal Nγ(0, 1) is obtained. Now we are moving in this paper one

step forward: Due to the Nγ(0, 1), we introduce the γ-order Generalized Chi-γ. Indeed: for

independent variables Zi, i = 1, 2, . . . , n from Nγ(0, 1) i.e. Zi ∼ Nγ(0, 1), i = 1, 2, . . . , n the

sum

(1.1) Yn =

n∑
i=1

Zγ1
i , γ0 =

γ − 1

γ
, γ1 = γ−1

0 =
γ

γ − 1
, γ ∈ R− [0, 1]

is obtained and the γ-order generalized Chi-γ, γX γ
n is defined, while for γ = 2 the Chi-square

can be achieved. The distribution of the square root of Yn with n = 2 and n = 3 (and γ = 2)

are essential both in Statistics and Physics: with n = 2 the Rayleigh distribution, Rayleigh

(1919), is obtained and with n = 3 the Maxwell-Boltzmann distribution, Mandl (2008), see

Section 3. A small number of different graphs is presented and the extensions are discussed.

2. THE γ-ORDER GENERALIZED NORMAL Nγ(µ,Σ)

For a given function g such that 1 = ∥g∥2 ∈ L2(Rp, dm) let us define

Ip(κ, λ, dm) =

∫
Rp

∥g∥κ log ∥g∥λdm,

Jp(κ, dm) =

∫
Rp

∥g∥κdm.

Then, following Kitsos and Tavoularis (2009), the Gross logarithm inequality with

respect to a Gaussian weight dµ = exp{−π|x|2}dx, see Gross (1975), states that

(2.1) Ip(2, 2, dµ) ≤
1

π
Jp(2, dµ).

Inequality (2.1) is equivalent to the Euclidean LSI of the form

(2.2) Ip(2, 2, dx) ≤
p

2
log

[
2

πpe
Jp(2, dx)

]
with e the well-known mathematical constant (Euler’s number), g ∈ W 1,2(Rp) and ∥g∥2 = 1.

Moreover inequality (2.2) is optimal, in the sense of Weissler (1978), and can be extended,

Pino et al. (2004), to a, γ-order say, LSI of the form

(2.3) Ip(γ, 1, dx) ≤
p

γ2
log [A(γ, p)Ip(γ, dx)] ,

where

A(γ, p) =
γ

p

(
γ − 1

e

)γ−1

π−γ/2

[
Γ(p2 + 1)

Γ(pγ−1
γ + 1)

]γ/p
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with Γ(·) being the Gamma function. Inequality (2.3) is optimal and the equation holds

when, Kitsos and Tavoularis (2009), the function g(x) equals to

(2.4) g(x) = ϕγ(x) = C exp

{
−γ − 1

γ
[Q(x)]

γ
2(γ−1)

}
with

(2.5) C = Cp(µ,Σ; γ) =
1

πp/2

1

|Σ|1/2
Γ(p2 + 1)

Γ(pγ−1
γ + 1)

(
γ − 1

γ

)p γ−1
γ

and

Q(x) = (x− µ)TΣ−1(x− µ), µ ∈ Rp, Σ ∈ Rp×p.

For the random variable X following (2.4) we shall denote X ∼ Nγ(µ,Σ) and we shall

refer to it as the γ-order Generalized Normal (γ −GN) distribution. It is essential to notice

that the defined probability density function (pdf) ϕγ(x) works as an extremal function, see

Kitsos and Tavoularis (2009) for details. For the probability function (2.4) a strong theoretical

background was developed, see Kitsos and Toulias (2011) and Kitsos et al. (2014), while for

some Information Theory results see Kitsos (2023). Moreover it holds:

Theorem 2.1. In case where X ∼ Nγ(µ, σ
2Ip) the Shannon entropy is

H(X) = p
γ − 1

γ
+ lnσp − ln Λ(p, γ),

where Λ(p, γ) = σpC, with C as in (2.5).Therefore for the (spherically) contoured multivariate

distributions holds

H(X) =


ln (πσ2)p/2

Γ( p
2
+1)

X ∼ N1(µ, σ
2I) Uniform, γ = 1

p ln(
√
2πeσ) X ∼ N2(µ, σ

2I) Normal, γ = 2

ln p!ep(πσ2)p/2

Γ( p
2
+1)

X ∼ N±∞(µ, σ2I) Laplace, γ → ±∞
∞ X ∼ N0(µ, σ

2I) Dirac, γ ↑ 0, p = 1, 2

Consider the Nγ(µ, σ
2), see Kitsos and Toulias (2011), with position (mean) µ, positive

scale parameter σ2, extra shape parameter γ (γ ∈ R− [0, 1]) and density function ϕγ(x;µ, σ
2)

given by

(2.6) ϕγ(x;µ, σ
2) =

λγ√
πσ2

exp

{
−γ − 1

γ

(
|x− µ|√

σ2

) γ
γ−1

}
where

(2.7) λγ =
Γ(12 + 1)

Γ(γ−1
γ + 1)

(
γ − 1

γ

) γ−1
γ

.

Figure 1 represents (2.6), the family of γ-order standard Normal with different values

of γ corresponding to γ ↑ 0 (Dirac), γ ↓ 1 (Uniform), γ = 2 (Normal), γ → ∞ (Dirac).

For the Laplace transform of Nγ(µ, σ
2) the following theorem has been stated and

proved.
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Figure 1: Plots of the univariate ϕγ(x; 0, 1) for different γ.

Theorem 2.2. The Laplace transform of ϕγ(x;µ, σ
2), recall (2.6), is

Lϕγ(ξ) =
eξµ

Γ(γ0)

∞∑
j=0

1

(2j)!
(ξσ(γ1)

γ0)2j Γ ((2j + 1)γ0) .

Proof: See Kitsos and Stamatiou (2024).

Therefore due to Theorem 2.2 the Moment Generating Function is well defined, as well

as the cumulative distribution function (cdf) of Nγ(µ, σ
2). Furthermore, the well known for

applications in Physics Heat Equation (Karlin and Taylor, 1975, Chapter 7) can be generalized

through the ϕγ(x) distribution, see Kitsos (2023) for details.

3. THE γ-ORDER GENERALIZED CHI-γ, γX γ
n

In cases where “fat-tailed” distributions are needed, the Normal distribution is inad-

equate and the Nγ(µ, σ
2) can be applied with an appropriate choice of γ. Therefore for

independent Zi, i = 1, 2, . . . , n as in (1.1) an extension is needed. The basis of our extension

from Chi-square to γ-order Chi-γ is the well defined γ-order Generalized Normal distribution

discussed in Section 2. We shall proceed as in (1.1). Thinking in terms of “shape parameter”

we can say that in X 2
n the degrees of freedom (df) n are acting as a shape parameter. In prin-

ciple all the distributions are associated with a shape parameter, to which we traditionally

refer as the “degrees of freedom”, for example X 2
n , tn, the Gamma distribution e.t.c. With

the γ-order GN, the Normal distribution is associated with an extra shape parameter γ with

the value γ = 2. This is certainly a new approach.
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Practically, the consideration of the shape parameter influences the Chi-square distri-

bution emerged from Nγ(µ, σ
2), and not only, to be associated with the same extra shape

parameter. Notice that in classical situations the standard Normal distribution is unique, an

ideal model, that a collected data set never reaches exactly. Thus, to be realistic, we need

Nγ(µ, σ
2) which can be “intuitively” perceived, as we now work in three dimensions (position

(mean), scale (variance), shape) to approach the collected data set. In addition, for all the

distributions according to Central Limit Theorem for “large” n, theoretically n → ∞, the

shape is ”stabilized” so the shape parameter is meaningless, as the “ideal” standard Normal

distribution appears. But the shape exists in a real data set and we don’t perceive it, because

finally, even now (with powerful computers) n is getting large, but does not tend to infinity!

So n acts as a shape parameter for small n to X 2
n . Mainly for the approach of a fat-tailed

distribution we can adopt an “almost Normal distribution” with a shape parameter γ. The

following theorem is useful to our development.

Theorem 3.1. Let Z ∼ Nγ(0, 1), γ ∈ R − [0, 1], γ0 = γ−1
γ , γ1 = 1/γ0. Consider

the transformation

(3.1) W = 2γ0|Z|γ1 with γ =
1

1− k
, k ∈ N, k > 1.

Then W ∼ X 2
2γ0

, that is W follows a Chi-square distribution with 2γ0 degrees of freedom.

Moreover
∑n

i=1Wi ∼ X 2
2nγ0

for γ = 2n
2n−k , k ∈ N, k ̸= 2n.

Proof: As γ0 needs to be integer this requires γ = 1/(1 − k) for k ∈ N, k > 1.

By (3.1) it is |Z| =
(

W
2γ0

)1/γ1
so the pdf of W can be obtained using the Jacobian of the

transformation. The absolute value of Z and the symmetry of Nγ(0, 1), see (2.6), give rise to

the coefficient 2 below.

fW (w) = 2ϕγ(w; 0, 1)
dz

dw

= 2
λγ√
π
e−w/2 1

γ1

(
w

2γ0

)γ0−1

(recall (2.7))

=
γγ00 γ0

Γ(γ0 + 1)

(
1

2γ0

)γ0

2
2γ0
2 Γ(

2γ0
2

)
w

2γ0
2

−1e−w/2

2
2γ0
2 Γ(2γ02 )

(pdf of Chi-square)

=
1

2
2γ0
2 Γ(2γ02 )

w
2γ0
2

−1e−w/2 = fX 2
2γ0

(w).

Consequently we come across the result that

(3.2) Wn,γ1 =

n∑
i=1

2γ0|Zi|γ1 ∼ X 2
2nγ0 .

With Theorem 3.1 we are working on Chi-square line of thought due to the proposed

transformation. The idea behind is to restrict n to “small” values and Theorem 3.1 offers

food for thought for the “small” values of n, as the sum of n = 3, 2 Chi-square distributions is

essential in applied Physics, as Maxwell-Boltzmann and Rayleigh distributions are emerged

respectively with such n.
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Corollary 3.1. With n = 3 and γ = 2 thus γ0 = 1/2, γ1 = 2 we get from (3.2) that

(3.3) W3,2 =
3∑

i=1

|Zi|2 ∼ X 2
3 .

Notice that W3,2 = Z2
1 +Z2

2 +Z2
3 with Zi ∼ N2(0, 1) ≡ N(0, 1). That is in principle the

Maxwell-Boltzmann distribution depends on a X 2
3 with given scale parameter. Notice that we

consider for convenience σ = 1. The scale parameter has a physical meaning considering (3.4)

for the chosen values of γ. Then
√
W3,2 is known to follow a Maxwell-Boltzmann distribution,

Mandl (2008). Therefore we say that

(3.4) MBγ =

√√√√ 3∑
i=1

2γ0|Zi|γ1 =
√
W3,γ1

follows a γ-order generalized Maxwell-Boltzmann distribution with γ = 6
6−k and k ∈ N, k ̸= 6,

see Theorem 3.2 and Figure 2.
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Figure 2: Plots of pdf of MBγ and Rγ(1) for different values of γ.

Example 3.1. Let the independent random variables vx, vy and vz be distributed

according to the γ-order generalized standard Normal distribution and assume a particle with

velocity v = (vx, vy, vz) and velocity measure equal to |v| =
√

v2x + v2y + v2z . Then according

to the above discussion |v| ∼ MBγ . If we let γ take the value 2 the usual Maxwell-Boltzmann

distribution is implied, |v| ∼ MB2 while when we suppose that vx, vy, vz ∼ N1.5(0, 1) or

N3(0, 1) respectively then |v| ∼ MB1.5 and |v| ∼ MB3 respectively. In particular according

to (3.3), (3.4) and (3.2) the distribution of the velocity for γ = 2, 1.5 and 3 is

MB2 =
√
(vx)2 + (vy)2 + (vz)2 ∼

√
X 2
3 when vx, vy, vz ∼ N2(0, 1)

MB1.5 =

√
2

3
(|vx|2+1 + |vy|2+1 + |vz|2+1) ∼

√
X 2
2 when vx, vy, vz ∼ N1.5(0, 1),

where X 2
2 appears due to (3.2) with 2nγ0 = 2 ·3 · 1.5−1

1.5 = 2 df, while 2
3 = 2γ0 and the exponent

γ1 = 3 = 2 + 1 and

MB3 =

√
4

3

(
|vx|2−

1
2 + |vy|2−

1
2 + |vz|2−

1
2

)
∼
√
X 2
4 when vx, vy, vz ∼ N3(0, 1),
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where X 2
4 appears due to (3.2) with 2nγ0 = 2 ·3 · 3−1

3 = 4 df, while 4
3 = 2γ0 and the exponent

γ1 =
3
2 = 2− 1

2 , respectively, see Figure 3. The exponents in MB1.5 and MB3 are presented

in relation with the value γ = 2 as in MB2.
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Figure 3: The Maxwell-Boltzmann distribution of the velocity of the par-
ticle for different values of γ, see Example 3.1.

Now, recall the definition of Rayleigh distribution, Meyer (1970), Rayleigh (1919).

From (3.2) for n = 2 and γ = 2 thus γ0 = 1/2, γ1 = 2 as above, the
√

W2,2 follows a Rayleigh

distribution. Therefore we define the γ-order Generalized Rayleigh distribution and denote

Rγ(1) to be

(3.5) Rγ(1) =

√√√√ 2∑
i=1

2γ0|Zi|γ1 =
√
W2,γ1

with γ = 4
4−k and k ∈ N, k ̸= 4, see Theorem 3.3 and Figure 2.

In Theorem 3.2 and Theorem 3.3 we obtain the pdf to these generalizations we worked

with and with γ = 2 the classical case is obtained.

Theorem 3.2. Consider the γ-order generalized Maxwell-Boltzmann distribution.

Let Y ∼ MBγ as in (3.4) with γ = 6
6−k and k ∈ N, k ̸= 6. Then its pdf is equal to

(3.6) fMBγ (y) =
21−3γ0

Γ(3γ0)
y6γ0−1e−y2/2.

Proof: Due to the Jacobian of the transformation of (3.4) and to the result in (3.2)
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it is MBγ =
√
W3,γ1 =

√
X 2
6γ0

. Thus

fMBγ (y) = 2yfX 2
6γ0

(y2) = 2y
2−6γ0/2

Γ(6γ0/2)
(y2)

6γ0
2

−1e−y2/2

=
21−3γ0

Γ(3γ0)
y6γ0−1e−y2/2,

which is exactly (3.6).

Notice that (3.6) has a Gamma function flavor, see Theorem 3.7. The following theorem

refers to Rayleigh distribution, Rγ(1).

Theorem 3.3. Consider the γ-order generalized Rayleigh distribution. Let Y ∼
Rγ(1) as in (3.5) with γ = 4

4−k and k ∈ N, k ̸= 4. Then its pdf is equal to

(3.7) fRγ(1)(y) =
21−2γ0

Γ(2γ0)
y4γ0−1e−y2/2.

Proof: Due to the Jacobian of the transformation of (3.5) and to the result in (3.2)

it is Rγ(1) =
√
W2,γ1 =

√
X 2
4γ0

. Thus

fRγ(1)(y) = 2yfX 2
4γ0

(y2) = 2y
2−4γ0/2

Γ(4γ0/2)
(y2)

4γ0
2

−1e−y2/2

=
21−2γ0

Γ(2γ0)
y4γ0−1e−y2/2,

which is exactly (3.7).

Let the independent random variables Zi ∼ Nγ(0, 1), where i = 1, 2, . . . , n. Denote the

sum of their power to γ1, Yn, recall (1.1), i.e. Yn =
∑n

i=1 Z
γ1
i . We define Yn as the γ-order

generalized Chi-γ distribution with n degrees of freedom and we write Yn ∼ γX γ
n . The pdf of

Yn is evaluated in the following theorem.

Theorem 3.4. The pdf of Yn as in (1.1) equals to

(3.8) fYn(y) =

(√
π

γγ00
2Γ(γ0 + 1)

)n
2γ0

Γ(n/2)
ynγ0−1 exp{−γ0y}, γ0 =

γ − 1

γ
.

Proof: Consider n samples zi from the γ-order standard generalized normal, i.e.

from (2.6) with µ = 0 and σ = 1. We let

(3.9) y =

n∑
i=1

zγ1i ,



10 C.P. Kitsos and I.S. Stamatiou

and V be the elemental shell volume at y, proportional to the (n− 1)-dimensional surface in

n-space for which (3.9) holds. Then due to (2.6) and then to (3.9)

fYn(y)dy =

∫
V

n∏
i=1

Nγ(zi; 0, 1)dzi

=

∫
V

(
λγ√
π

)n

exp{−γ0(z
γ1
1 + zγ12 + . . .+ zγ1n )}dz

=
λn
γ

πn/2
exp{−γ0y}

∫
V
dz1dz2 . . . dzn,(3.10)

which remains constant within the set V. As Nγ(µ,Σ) is a Kotz-type elliptical distribution, see

Kitsos and Tavoularis (2009), the considered Nγ(0, 1) is a spherical contoured distribution.

The integral in (3.10) is equal to the sphere V = Sn−1 with radius r = y1/γ1 times the

infinitesimal thickness of the sphere dr = 1
γ1
y

1
γ1

−1
dy. Equivalently∫

V
dz1dz2 . . . dzn =

2(y−γ1)n−1πn/2

Γ(n/2)
· 1

γ1
y

1
γ1

−1
dy

=
2

γ1
y

n
γ1

−1 πn/2

Γ(n/2)
dy

Therefore,

fYn(y)dy =
λn
γ

Γ(n/2)
2γ0y

nγ0−1 exp{−γ0y}dy,

which by (2.7) reduces to (3.8).

Notice that also (3.8) has a Gamma function flavor, see Theorem 3.7. The trivial case γ = 2

is discussed below.

Corollary 3.2. When γ = 2 the pdf of the Chi-square distribution with n degrees

of freedom is obtained

f
2X 2

n
(y) =

1

2n/2Γ(n/2)
y

n
2
−1 exp{−y/2},

for y > 0.

Proof of Corollary 3.2: See the Appendix.

The central moments of γX γ
n can be evaluated due to the following theorem, which we

state and prove.

Theorem 3.5. Let Yn ∼ γX γ
n and m ∈ N. Then

(3.11) E(Y m
n ) =

πn/2

2n−1

Γ(m+ nγ0)

Γn(γ0 + 1)Γ(n/2)
γ1−m
0 .
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Proof: Recall the definition of the moment of a random variable and (3.8) we have

E(Y m
n ) =

∫ ∞

0
ymfY (y)dy

=

(√
π

γγ00
2Γ(γ0 + 1)

)n
2γ0

Γ(n/2)

∫ ∞

0
ym+nγ0−1e−γ0ydy

=

(√
π

γγ00
2Γ(γ0 + 1)

)n
2γ0

Γ(n/2)

(
1

γ0

)m+nγ0

Γ (m+ nγ0)

where the following result was applied from the second to the third step

(3.12)

∫ ∞

0
xs−1e−γ0xdx =

(
1

γ0

)s

Γ(s)

with s = m+ nγ0. Thus (3.11) is proved.

In Table 1 the central moments of Yn ∼ γX γ
n are presented for various choices of γ, n and m

according to (3.11). Notice that with γ = 2 and m = 1 it is clear that E(Yn) = n while for

γ > 2,E(Yn) > n. In Table 2 the central moments of Yn ∼ γX γ
n are presented with “small”

and “large” positive values of γ, (γ = 1.1 and γ = 50), which correspond to γ → 1 and

γ → ±∞, i.e. Uniform and Laplace distributions, Kitsos and Toulias (2011), for the defined

γ-order Generalized Normal (2.4). It is clear that there is no need for m to be greater than

3, while n was considered “small”.

E(Y m
n )

n γ = 2 γ = 2.5 γ = 3

1 1 3 15 1 2.667 11.556 1 2.5 10

2 2 8 48 2.168 7.949 42.393 2.295 8.032 40.161

3 3 15 105 3.692 17.228 109.107 4.270 19.216 115.297

4 4 24 192 4.264 32.698 239.785 7.453 40.992 286.941

5 5 35 315 8.665 57.766 481.379 12.704 82.574 660.589

m 1 2 3 1 2 3 1 2 3

Table 1: Central moments for Yn ∼ γX γ
n for different values of γ, n,m.

E(Y m
n )

n γ = 1.1 γ = 50

1 1 102 276 1 2.020 6.144

2 1.590 20.667 496.012 3.080 9.301 37.586

3 1.626 22.769 569.218 8.966 36.048 181.711

4 1.319 19.791 514.560 27.156 136.334 823.571

5 0.916 14.665 395.963 86.832 522.764 3680.689

m 1 2 3 1 2 3

Table 2: Central moments of Yn ∼ γX γ
n for “small” and “big” γ.
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Corollary 3.3. Let Yn ∼ γX γ
n . Then the variance of Yn is equal to

(3.13) V ar(Yn) = Q(n, γ0) (n+ γ1 −Q(n, γ0)) ,

where

(3.14) Q(n, γ0) =
πn/2

2n−1

Γ(1 + nγ0)

Γn(γ0 + 1)Γ(n/2)
.

In particular when γ = 2, i.e. Yn ∼ 2X 2
n , then the variance of the Chi-square distribution

with n degrees of freedom is obtained That is

V ar(Yn) = V ar(2X 2
n) = V ar(X 2

n) = 2n.

Proof of Corollary 3.3: See the Appendix.

From (3.13) we can easily evaluate the values of the variances of Yn ∼ γX γ
n .

The Laplace transform of the defined generalized γ-order Chi-γ distribution, γX γ
n , can

be evaluated due to the following theorem.

Theorem 3.6. The Laplace transform of Yn ∼ γX γ
n is

L{fYn(ξ)} = Ξγ
n

(
1

γ0 − ξ

)nγ0

for ξ < γ0 where, see also (3.14), with

(3.15) Ξγ
n = Q(n, γ0)

γnγ00

n
.

Proof: By the definition of the Laplace transform and denoting cγn the normalizing

constant in (3.8), it holds

L{fYn(ξ)} =

∫ ∞

0
eξxcγnx

nγ0−1e−γ0xdx = cγn

∫ ∞

0
xnγ0−1e−(γ0−ξ)xdx

= cγnΓ(nγ0)

(
1

γ0 − ξ

)nγ0

,

where in the last step (3.12) is appropriately used. By (3.14) it holds that

cγnΓ(nγ0) =

(√
π

γγ00
2Γ(γ0 + 1)

)n
2γ0

Γ(n/2)
Γ(nγ0)

= Q(n, γ0)
γnγ00

n
=: Ξγ

n

as in (3.15).

Corollary 3.4. Let us consider the case where Yn ∼ 2X 2
n . Then the Laplace trans-

form of Yn is

(3.16) L{fYn(ξ)} = (1− 2ξ)−n/2 = LX 2
n(ξ)

for ξ < 1/2.
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Proof of Corollary 3.3: See the Appendix.

Therefore due to the theoretical results produced in this section the introduced generalized

γ-order distributions are well-defined, their moments have been evaluated and the comparison

with the “classical cases” is easily performed. We were thinking that there exists a Gamma

distribution flavor, see (3.6) and (3.8), to these results and therefore we stated and proved

Theorem 3.7. The following theorem proves that indeed there is a such line of thought.

Theorem 3.7. Let the random variable Z be from the γ-order generalized standard

normal, Z ∼ Nγ(0, 1). Consider the transformation

Y = γ0|Z|γ1 , γ0 =
γ − 1

γ
, γ1 = γ−1

0 =
γ

γ − 1
, γ ∈ R− [0, 1].

Then Y follows a Gamma distribution with shape parameter γ0, scale parameter 1, that is

fY (y) =
1

Γ(γ0)
yγ0−1 exp{−y}

for any y > 0.

Proof: Let FY (y) be the cdf of Y

FY (y) = P(Y ≤ y) = P(γ0|Z|γ1 ≤ y)

= P(|Z| ≤ (γ1y)
1/γ1)

= P(Z ≤ (γ1y)
1/γ1)− P(Z ≤ −(γ1y)

1/γ1)

= 2P(Z ≤ (γ1y)
1/γ1)− 1(3.17)

for any y > 0. Differentiating (3.17) and considering (2.7) with µ = 0, σ = 1 and proceeding

as in the proof of Theorem 3.1, the pdf of Y, say fY , is

fY (y) = 2
1

γ1
(γ1y)

1
γ1

−1
γ1

γγ00
2Γ(γ0 + 1)

exp{−γ0((γ1y)
1/γ1)γ1}

= (γ1y)
1
γ1

−1 γ
−1/γ1
1

γ0Γ(γ0)
exp{−γ0γ1y}

=
1

Γ(1/γ1)
y

1
γ1

−1
exp{−y},

which is the Gamma distribution with shape parameter 1/γ1 = γ0.

Corollary 3.5. Assume the setting of Theorem 3.7, where Y = γ0|Z|γ1 , with Z ∼
Nγ(0, 1). Then

E(Y ) = V ar(Y ) = γ0 =
γ − 1

γ
.

Proof of Corollary 3.5: By Theorem 3.7 Y follows a Gamma distribution with

shape parameter γ0 and scale parameter 1 therefore it is known that the mean of Y is the

product of these parameters, that is E(Y ) = γ0 · 1 = γ0, and the variance of Y is the square

of the scale parameter times the shape parameter, that is V ar(Y ) = γ0 · 12 = γ0.
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4. CONCLUSION

In this paper it was considered that all the distributions under investigation are as-

sociated with a shape parameter γ, even the “ideal” standard normal distribution, the case

γ = 2. Every deviation from γ = 2 creates another Normal distribution within the family of

γ-order Generalized Normal distributions in which well known distribution are included, see

also Theorem 2.1. Therefore, the generalized “Chi-square” distribution was introduced due

to the γ-order Generalized Normal, as γX γ
n and the pdf, as well as the moments, were eval-

uated. For γ = 2 the X 2
n distribution is obtained, while for fat tailed Nγ(0, 1) distributions,

for values of γ = 2.5, 3 the corresponding γX γ
n for different values of n are generated, see

Figure 4. In Figure 5 we keep n constant to 3 and 5 respectively and vary between different

values of γ. Recall that values of γ near to 1 or “large” correspond to Uniform or Laplace.

Finally with γ = 2, Nγ(0, 1) becomes a Normal distribution and E(Y50) is equal to 50 as ex-

pected. In Tables 1 and 2 the values of E(Y m
n ) with n ≥ 10 are very large. With Theorem 3.7

there is a transformation of the Nγ(0, 1) to a Gamma distribution with shape parameter γ0,

scale parameter 1. For any request on software providing calculations communicate with the

authors.

Moreover the well-known in Physics distributions, Maxwell-Boltzmann and Rayleigh,

have been generalized, due to the existent extra shape-parameter γ.

The international constant ( 1
1−γ )

1
1−γ , Takashi and Takasi (2001), see for example (3.15),

plays an important role to our development from Normal distribution to γ-order Generalized

Normal, then to γ-order Generalized Chi-γ and γ-order Rayleigh, γ-order Maxwell-Boltmzann

Generalized distributions.
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APPENDIX. PROOFS

Proof of Corollary 3.2: When γ = 2 then γ0 = 1/2. Using this value for γ0 in

(3.8), implies that

f
2X 2

n
(y) =

(
√
π

√
1/2

2Γ(12 + 1)

)n
1

Γ(n/2)
y

n
2
−1 exp{−y/2}

=
1

2n/2Γ(n/2)
y

n
2
−1 exp{−y/2}

which is the pdf of the Chi-square distribution, Schervish (1997), with n degrees of freedom.

Proof of Corollary 3.3: Since V ar(Yn) = E(Yn)2 − E2(Yn), Theorem 3.5 implies

that

V ar(Yn) =
πn/2

2n−1

Γ(2 + nγ0)

Γn(γ0 + 1)Γ(n/2)
γ−1
0 −

(
πn/2

2n−1

Γ(1 + nγ0)

Γn(γ0 + 1)Γ(n/2)

)2

=
πn/2

2n−1

Γ(1 + nγ0)

Γn(γ0 + 1)Γ(n/2)

nγ0 + 1

γ0
−

(
πn/2

2n−1

Γ(1 + nγ0)

Γn(γ0 + 1)Γ(n/2)

)2

= Q(n, γ0)(n+ γ1 −Q(n, γ0)).

Therefore (3.13) is true. When γ = 2 then γ0 = 1/2 and γ1 = 2 so that

(A1) Q(n, 1/2) =
πn/2

2n−1

Γ(1 + n
2 )

Γn(12 + 1)Γ(n/2)
=

πn/2

2n−1

n/2

(
√
π/2)n

= n.

By (3.13) the variance for 2X 2
n equals

V ar(2X 2
n) = n(n+ 2− n) = 2n

which is the variance of the Chi-square distribution with n degrees of freedom.

Proof of Corollary 3.4: Application of Theorem 3.6 with γ = 2 implies

L{fYn(ξ)} = Ξ1/2
n

(
1

1
2 − ξ

)n/2

= Q(n, 1/2)
(1/2)n/2

n

(
2

1− 2ξ

)n/2

=

(
1

1− 2ξ

)n/2

for ξ < 1/2 where (3.15) and (A1) are used or equivalently (3.16).
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