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1. INTRODUCTION

In statistics and matrix theory, the famous Craig-Sakamoto theorem asserts that for

two n × n real symmetric matrices A and B and for a random vector x ∼ Nn(0, In), where

In to denote an n× n identity matrix, the following are equivalent:

(a) det(In − αA− βB) = det(In − αA)det(In − βB) for any α, β ∈ IR.

(b) AB = 0.

(c) Two quadratic forms xTAx and xTBx are independent.

This theorem has drawn the attention of many researchers since its first appearance, the

interested reader may look at Driscoll and Gundberg (1986), Driscoll and Krasnicka (1995),

Ogawa and Olkin (2008) for the history of this result. Also, many different proofs of this

result can be found in Driscoll and Krasnicka (1995), Li (2000), Olkin (1997), Zhang and Yi

(2012). When the covariance matrix Σ is a general positive definite matrix (non-identity),

the transformation x → Σ− 1
2x, A → Σ

1
2AΣ

1
2 , B → Σ

1
2BΣ

1
2 reduces the problem to the case

that the x′s are independent, identically distributed standard normal random variables. The

condition AB = 0 then becomes AΣB = 0 (see Ogawa and Olkin (2008)).

Replacing normal random variates by Wishart random variates on symmetric cones,

Letac and Massam Letac and Massam (1995) extended the Craig-Sakamoto theorem from

IRn to simple Euclidean Jordan algebras. Recently, Tao and Wang Tao and Wang (2016)

provided another proof for an extension of the Craig-Sakamoto theorem by reformulating

the result in terms of rank and determinant equalities and by proving the result in each

of the simple Euclidean Jordan algebras. When their results are specialized to the cone of

symmetric positive semidefinite matrices, we have the following theorem.

Throughout, we use the notation tr to denote the trace of a matrix, the notation X ⪰ 0

(X ≻ 0) to denote that X is a symmetric positive semidefinite (positive definite) matrix, the

notation In to denote an n× n identity matrix, and the notation ⊗ to denote the Kronecker

product.

Theorem 1.1. (see Theorem 4.1 in Letac and Massam (1995) and Theorem 3.2 in

Tao and Wang (2016)) Let A and B be p × p symmetric matrices and let S be a random

symmetric matrix with Wishart distribution W (Ip, p, n) (see Definition 2.2), where Ip is the

p× p identity matrix. Then the following are equivalent:

(a) tr(AS) and tr(BS) are independent.

(b) AB = 0.

(c) The nonzero eigenvalues of A+B are just the nonzero eigenvalues of A and B.

(d) rank(A+B) = rank(A)+rank(B) and ndet(A+B) = ndet(A)ndet(B), where ndet(X)

denotes the products of all nonzero eigenvalues of X and rank(X) denotes the rank of

X.
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(e) PAPB = 0, where PA(X) := AXA for all n× n symmetric matrices X.

The Craig-Sakamoto theorem also establishes the independence of two linear forms. In

a recent paper Zhang (2017), Zhang provided an elegant proof for the following results.

Theorem 1.2. Let x ∼ Np(µ,Σ) with Σ ≻ 0 (Σ is a symmetric positive definite

matrix), and A and B be p× p symmetric matrices. Then the following are equivalent:

(a) AΣB = 0.

(b) Ax and Bx are independent.

(c) xTAx and xTBx are independent.

Motivated by Theorem 1.2, as a random matrix is a generalization of a random vector

and the Wishart distribution is the generalization of chi-square distribution, it is natural to

ask the following questions:

� Question 1: Replacing the random normal vectors by random normal matrices, does

the Craig-Sakamoto theorem still give a characterization of the independence of two

linear forms/quadratic forms?

� Question 2: Replacing the random normal vector by Wishart variates, does the Craig-

Sakamoto theorem still give a characterization of the independence of two linear forms/two

quadratic forms?

The main objective of this paper is to answer these two questions.

2. PRELIMINARIES

In this section, we recall some concepts, properties, and results used in this paper.

Let Mn×p(IR) be the space of n × p real matrices. Then the vectorization of a matrix

(aij) ∈Mn×p(IR) , denoted by vec(A), is the np× 1 column vector obtained by the following

way:

vec(A) = [a11, . . . , an1, a12, . . . , an2, . . . , a1p, . . . , anp]
T .

It is well-known that the mapping X 7→ vec(X) creates a linear isomorphism between

Mn×p(IR) and IRnp. The definition of vec with the Kronecker product immediately yields

the following proposition.

Proposition 2.1. ((1.15), Page 340 and Theorem 16.21, Harville (2012)) For ma-

trices A, B, and X of appropriate sizes,

(a) vec(AXB) = (BT ⊗A) vec(X).
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(b) (A⊗B)T = AT ⊗BT .

As a random vector is a generalization of a random variable, a random matrix is a

generalization of a random vector. The following definition is a random matrix with normal

distribution.

Definition 2.1. (Definition 2.2.1, Van Perlo-ten Kleij (2004)) Let X be an n × p

matrix of random elements such that

vec(XT ) ∼ Nnp(vec(M
T ),Ω),

where M = E(X) is an n× p matrix and Ω is the np×np convariance matrix of vec(XT ). It

is then written

X ∼ Nn×p(M,Ω),

where Nn×p denotes the matrix normal distribution.

Proposition 2.2. (Proposition 2.2.1, Van Perlo-ten Kleij (2004)) IfX = [X1, . . . , Xn]
T

is an n×p random matrix such that X1, . . . , Xn are independently and identically distributed

as Np(0,Σ), then

X ∼ Nn×p(0, In ⊗ Σ).

Proposition 2.3. (Proposition 2.2.3, Van Perlo-ten Kleij (2004)) IfX ∼ Nn×p(M,Ω),

A is an m× n matrix, and B is a p× h matrix, then

AXB ∼ Nm×h(AMB, (A⊗BT )Ω(AT ⊗B)).

Proposition 2.3 immediately yields the following corollary.

Corollary 2.1. If X ∼ Nn×p(0, In ⊗ Σ) with Σ ≻ 0, then

XΣ− 1
2 ∼ Nn×p(0, In ⊗ Ip).

Definition 2.2. (Definition 8.1, Eaton (2007), Definition 2.3.1, Van Perlo-ten Kleij

(2004)) If X = [X1, . . . , Xn]
T is an n × p random matrix with X ∼ Nn×p(0, In ⊗ Σ), then

S = XTX has the Wishart distribution, denoted by W (Σ, p, n).

The Wishart distribution is the generalization of chi-square distribution (when p = 1

and Σ = 1 in Definition 2.2). It is widely applied in many models of the multivariate statistical

analysis (see Anderson (2003), Dempster (1969), Eaton (2007), Muirhead (2005)).

Proposition 2.4. (Proposition 2.3.1, Van Perlo-ten Kleij (2004)) If S ∼W (Σ, p, n)

and A is an m× p matrix, then

ASAT ∼W (AΣAT ,m, n).
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Proposition 2.4 immediately yields the following corollary.

Corollary 2.2. If S ∼W (Σ, p, n) with Σ ≻ 0, then

Σ− 1
2SΣ− 1

2 ∼W (Ip, p, n).

Definition 2.3. (Definition 5.2.3, Ravishanker and Dey (2002)) Let y1 = A1x and

y2 = A2x denote two linear functions of a random vector x ∼ Np(µ,Σ). Then the cross-

covariance matrix between y1 and y2 is given by cov(y1, y2) = A1ΣA
T
2 .

Definition 2.4. (Definition 5.2.1, Ravishanker and Dey (2002)) A random vector z

with z ∼ Np(0, Ip) if and only if its density function is

f(z) =
1

(2π)p/2
exp{−1

2
zT z}.

Proposition 2.5. Let x be a random vector with x ∼ Np(0,Σ) and Σ ≻ 0. Let A1

be an m × p matrix and A2 be an n × p matrix. If y1 = A1x and y2 = A2x, then y1 and y2
are independent if and only if A1ΣA

T
2 = 0.

Proof: The “Only if” part follows from Definition 2.3.

“If” part. Without loss of generality, we assume that Σ = Ip (this can be done by

setting y = Σ− 1
2x such that y ∼ Np(0, Ip)). Now, let z = (A1x,A2x)

T . Then the moment

generating function (MGF) of z isMz(s, t) = E[exp(sTA1x+t
TA2x)], where s = [t1, . . . , tm]T

and t = [t′1, . . . , t
′
n]

T . Thus,

Mz(s, t) = E[exp(sTA1x+ tTA2x)]

=

∫ ∞

−∞
· · ·

∫ ∞

−∞
exp(sTA1x+ tTA2x)f(x)dx

=
1

(2π)p/2

∫ ∞

−∞
· · ·

∫ ∞

−∞
exp(sTA1x+ tTA2x− 1

2
xTx)dx

=
1

(2π)p/2

∫ ∞

−∞
· · ·

∫ ∞

−∞
exp{−1

2
[(x−AT

1 s−AT
2 t)

T (x−AT
1 s−AT

2 t)]

+
1

2
(sTA1A

T
1 s+ tTA2A

T
2 t)}dx

= exp{1
2
(sTA1A

T
1 s+ tTA2A

T
2 t)}

= exp{1
2
(sTA1A

T
1 s)} exp{

1

2
(tTA2A

T
2 t)}

= MA1x(s)MA2x(t),

whereMA1x(s) is MGF of A1x andMA2x(t) is MGF of A2x. Thus, y1 and y2 are independent.
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Remark 2.1. By slightly modifying the proof in Proposition 2.5, we can prove that

the equivalence of (a) and (b) in Theorem 1.2.

It is well-known that if two random variables x and y are independent, then for any

two continuous functions f and g, f(x) and g(y) are independent too. In what follows, we

state and prove a general result for this.

First we introduce some notations.

� (Vi, ⟨·, ·⟩i) denotes an inner product space (vector space Vi and inner product ⟨·, ·⟩i)
(i = 1, 2).

� (Wi, [·, ·]i) denotes an inner product space (vector space Wi and inner product [·, ·]i)
(i = 1, 2).

� B(V) is the Borel σ-algebra of (V, ⟨·, ·⟩).

� Qi(Bi), Bi ∈ B(Vi) (i = 1, 2) is the distribution of X and Y , respectively.

� Q(B1 ×B2) is the joint distribution of (X,Y ) ∈ V1 ⊕V2 defined on B(V1 ⊕V2), where

⊕ denotes the direct sum and B1 ×B2 ∈ B(V1 ⊕ V2).

� ϕ1(v) is the characteristic functions of X defined as

ϕ1(v) = E(exp(i⟨v,X⟩1)) =
∫
V1

exp(i⟨v, x⟩1)Q1dx, v ∈ V1.

� ϕ2(w) is the characteristic functions of Y defined as

ϕ2(w) = E(exp(i⟨w, Y ⟩2)) =
∫
V2

exp(i⟨w, y⟩2)Q2dy, w ∈ V2.

� ϕ(v, w) is the characteristic function of (X,Y ) ∈ V1 ⊕ V2 defined as

ϕ(v, w)) = E(exp(i⟨v,X⟩1 + i⟨w, Y ⟩2))

=

∫
V1⊕V2

exp(i⟨v, x⟩1 + i⟨w, y⟩2)Qdx dy, v ∈ V1, w ∈ V2,

Recall a result from Eaton (2007).

Proposition 2.6. (Proposition 2.9, Eaton (2007)) Let random vectorsX ∈ (V1, ⟨·, ·⟩1)
and Y ∈ (V2, ⟨·, ·⟩2). Then the following are equivalent:

(a) X and Y are independent.

(b) Q(B1 ×B2) = Q1(B1)Q2(B2) for all B1 ∈ B(V1) and B2 ∈ B(V2).

(c) ϕ(v, w) = ϕ1(v)ϕ2(w) for all v ∈ V1 and w ∈ V2.

Proposition 2.6 immediately yields the following proposition.
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Proposition 2.7. Suppose that functions g : V1 7→ W1 and h : V2 7→ W2 are

continuous. If random vectors X ∈ (V1, ⟨·, ·⟩1) and Y ∈ (V2, ⟨·, ·⟩2) are independent, then

g(X) ∈ (W1, [·, ·]1) and h(Y ) ∈ (W2, [·, ·]2) are independent.

Proof: Letting ψ(v, w) be the characteristic function of (g(X), h(Y )) ∈ W1 ⊕ W2,

ψ1(v) be the characteristic function of g(X), and ψ2(w) be the characteristic function of

h(Y )), then for v ∈ W1 and w ∈ W2.

ψ(v, w) = E(exp(i[v, g(X)]1 + i[w, h(Y )]2))

=

∫
V1⊕V2

exp(i[v, g(x)]1 + i[w, h(y)]2)Qdx dy

=

∫
V1

∫
V2

exp(i[v, g(x)]1) exp(i[w, h(y)]2)Q1dxQ2dy

=

∫
V1

exp(i[v, g(x)]1)Q1dx

∫
V2

exp(i[w, h(y)]2)Q2dy

= ψ1(v)ψ2(w).

Note that the third equality is from independence of X and Y (see Proposition 2.6). Thus,

by Proposition 2.6, g(X) and h(Y ) are independent.

3. MAIN RESULTS

3.1. The independence of linear and quadratic forms in matrix normal distribu-

tion

In this subsection, we answer “Question 1” in Introduction. First, we recall two known

results. A = AA−A and A = A(ATA)−ATA, where A− is a generalized inverse of matrix A.

Theorem 3.1. Let a random matrix X ∼ Nn×p(0, In ⊗ Σ) with Σ ≻ 0 and let A

and B be p× p symmetric real matrices. Then the following are equivalent:

(a) AΣB = 0.

(b) XA and XB are independently distributed.

(c) XA and XBXT are independently distributed.

(d) XAXT and XBXT are independently distributed.

(e) tr(AS) and tr(BS) are independently distributed, where S = XTX.

Proof: Since X ∼ Nn×p(0, In ⊗ Σ), vec(XT ) ∼ Nnp(0, In ⊗ Σ) by Definition 2.1.

Without loss of generality, we assume that Σ = Ip (this can be done by setting Y = XΣ− 1
2
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such that Y ∼ Nn×p(0, In ⊗ Ip) by Corollary 2.1 and the transformation A → Σ
1
2AΣ

1
2 ,

B → Σ
1
2BΣ

1
2 ).

(a) ⇒ (b): From Proposition 2.1,

vec(AXT ) = (In ⊗A) vec(XT ) and vec(BXT ) = (In ⊗B) vec(XT ).

Thus,

(In ⊗A)(In ⊗ Ip)(In ⊗B)T = (In ⊗A)(In ⊗ Ip)(In ⊗B) = (In ⊗AB) = 0.

Hence, from Proposition 2.5, vec(AXT ) and vec(BXT ) are independent. Since there exist

linear (isomorphism) functions f and g such that f(vec(AXT )) := AXT and g(vec(BXT )) :=

BXT , AXT and BXT are independent by Proposition 2.7, and hence XA = (AXT )T and

XB = (BXT )T are independent by Proposition 2.7.

(b) ⇒ (c): From Proposition 2.7, XA is independent of

fB(XB) := XBB−(XB)T = XBB−BXT = XBXT ,

where B− is a generalized inverse of B.

(c) ⇒ (d): From Proposition 2.7, XBXT is independent of

fA(XA) := XAA−(XA)T = XAA−AXT = XAXT ,

where A− is a generalized inverse of A.

(d) ⇒ (e): From Proposition 2.7, f(XAXT ) := tr(XAXT ) = tr(AXTX) = tr(AS) is

independent of g(XBXT ) := tr(XBXT ) = tr(BXTX) = tr(BS), where S = XTX.

Since S ∼W (Ip, p, n), the implication of (e) ⇒ (a) follows from Theorem 1.1.

Remark 3.1. Hogg (Theorem 4, Hogg (1963)) proved that XAT and XBXT are

independently distributed if and only if AΣB = 0, where A is not necessary to be a square

matrix. In the next theorem (see Theorem 3.2), we give a simple proof for Hogg’s results by

using Theorem 3.1.

Theorem 3.2. Let a random matrix X ∼ Nn×p(0, In ⊗Σ) with Σ ≻ 0 and let A be

a q × p matrix and B be p× p a symmetric matrix. Then the following are equivalent:

(a) AΣB = 0.

(b) XAT and XB are independently distributed.

(c) XAT and XBXT are independently distributed.
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Proof: Since X ∼ Nn×p(0, In ⊗ Σ), vec(XT ) ∼ Nnp(0, In ⊗ Σ) by Definition 2.1.

(a) ⇒ (b): From Proposition 2.1,

vec(AXT ) = (In ⊗A) vec(XT ) and vec(BXT ) = (In ⊗B) vec(XT ).

Thus,

(In ⊗A)(In ⊗ Σ)(In ⊗B)T = (In ⊗A)(In ⊗ Σ)(In ⊗B) = (In ⊗AΣB) = 0.

Hence, from Proposition 2.5, vec(AXT ) and vec(BXT ) are independent. Repeating the

same argument as the proof of (a) ⇒ (b) in Theorem 3.1, we have that XAT and XB are

independent.

(b) ⇒ (c): From Proposition 2.7, XAT is independent of

fB(XB) = XBB−(XB)T = XBB−BXT = XBXT ,

where B− is a generalized inverse of B.

(c) ⇒ (a): Since XAT is independent of XBXT , (XAT )(XAT )T = XATAXT is

independent of XBXT by Proposition 2.7. Thus, from Theorem 3.1, (ATA)ΣB = 0. Hence,

A(ATA)−(ATA)ΣB = 0. Since A = A(ATA)−(ATA), we have AΣB = 0.

3.2. The independence of linear and quadratic forms in Wishart variates

In this subsection, we study interconnections between the independence of linear forms,

quadratic forms, trace forms in Wishart variates. In particular, we answer “Question 2” in

Introduction.

Theorem 3.3. Let S ∼W (Σ, p, n) with Σ ≻ 0 and let A and B be p× p symmetric

matrices. Then the following are equivalent:

(a) (AΣA)Σ(BΣB) = 0.

(b) AΣB = 0.

(c) PA(S) := ASA and PB(S) := BSB are independently distributed.

(d) PA(S) and tr(PB(S)) are independently distributed.

(e) tr(PA(S)) and tr(PB(S)) are independently distributed.

(f) The nonzero eigenvalues of (Σ
1
2AΣ

1
2 )2 + (Σ

1
2BΣ

1
2 )2 are just the nonzero eigenvalues of

(Σ
1
2AΣ

1
2 )2 and (Σ

1
2BΣ

1
2 )2.

(g) The nonzero eigenvalues of Σ
1
2 (A + B)Σ

1
2 are just the nonzero eigenvalues of Σ

1
2AΣ

1
2

and Σ
1
2BΣ

1
2 .

(h) P
Σ

1
2AΣ

1
2
P
Σ

1
2BΣ

1
2
= 0.
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(i) tr(AS) and tr(BS) are independently distributed.

Proof: Without loss of generality, we assume that Σ = Ip (this can be done by

setting S′ = Σ− 1
2SΣ− 1

2 such that S′ ∼ W (Ip, p, n) by Corollar 2.2 and the transformation

A→ Σ
1
2AΣ

1
2 , B → Σ

1
2BΣ

1
2 ).

(a) ⇒ (b): A2B2 = 0 ⇒ tr(A2B2) = 0. Since

tr(A2B2) = tr(A(AB)B) = tr(ABBA) = tr[(AB)(AB)T ],

we have tr[(AB)(AB)T ] = 0. Thus, AB = 0.

(b) ⇒ (c): Since S ∼ W (Ip, p, n), S = XTX with vec(XT ) ∼ Nnp(0, In ⊗ Ip) by

Definition 2.2. Thus, ASA = AXTXA. Let Y = AXT . Then from Proposition 2.1, we

have vec(Y ) = (In ⊗ A)vec(XT ). Similarly, BSB = BXTXB. Let Z = BXT . Then

vec(Z) = (In ⊗B)vec(XT ). Thus,

(In ⊗A)(In ⊗ Ip)(In ⊗B)T = (In ⊗A)(In ⊗ Ip)(In ⊗B) = (In ⊗AB) = 0.

Hence, from Proposition 2.5, vec(Y ) and vec(Z) are independent. Since there exist linear

(isomorphism) functions f and g such that f(vec(Y )) := Y and g(vec(Z)) := Z, Y and Z are

independent by Proposition 2.7. Hence,

Y Y T = AXTXA = ASA and ZZT = BXTXB = BSB

are also independently distributed by Proposition 2.7, i.e., PA(S) and PB(S) are independent.

(c) ⇒ (d): (c) implies that ASA is independent of f(BSB) := tr(BSB).

(d) ⇒ (e): (d) implies that tr(BSB) is independent of g(ASA) := tr(ASA).

(e) ⇒ (f): Since tr(ASA) = tr(SA2) and tr(BSB) = tr(SB2), from Theorem 1.1, we

have A2B2 = 0. Also, the equivalence (f) and (a) follows from Theorem 1.1. Thus, (f) holds.

The equivalence of (g) and (b) follows from Theorem 1.1.

The equivalence of (h) and (b) follows from Theorem 1.1.

The equivalence of (i) and (b) follows from Theorem 3.1.

The following theorem shows that the items (b) and (c) in Theorem 3.3 are equivalent

when A is not a square matrix.

Theorem 3.4. Let S ∼ W (Σ, p, n) with Σ ≻ 0 and let A be a q × p matrix and B

be a p× p symmetric matrix. Then PA(S) := ASAT and PB(S) := BSB are independently

distributed if and only if AΣB = 0.

Proof: Since S ∼ W (Σ, p, n), S = XTX with vec(XT ) ∼ Nnp(0, In ⊗ Σ) by Defini-

tion 2.2.
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“If part”: From ASAT = AXTXAT , we define Y = AXT . Then we have

vec(Y ) = (In ⊗A)vec(XT ).

Similarly, we can define Z = BXT . Then vec(Z) = (In ⊗B)vec(XT ). Thus,

(In ⊗A)(In ⊗ Σ)(In ⊗B)T = (In ⊗A)(In ⊗ Σ)(In ⊗B) = (In ⊗AΣB) = 0.

Hence, from Proposition 2.5, vec(Y ) and vec(Z) are independent. Since there exist linear

(isomorphism) functions f and g such that f(vec(Y )) := Y and g(vec(Z)) := Z, Y and Z are

independent by Proposition 2.7. Hence,

Y Y T = AXTXAT = ASAT and ZZT = BXTXB = BSB

are also independently distributed by Proposition 2.7, i.e., PA(S) and PB(S) are independent.

“Only if” part: Since PA(S) = ASAT and PB(S) = BSB are independent,

f(ASAT ) := AT (ASAT )A = (ATA)S(ATA) and PB(S)

are also independent. From Theorem 3.3, (ATA)ΣB = 0. Hence, A(ATA)−(ATA)ΣB = 0.

Since A = A(ATA)−(ATA), we have AΣB = 0.

Theorem 3.5. Let S ∼W (Σ, p, n) with Σ ≻ 0 and let A and B be p× p symmetric

matrices. Consider the following statements:

(a) SA and SB are independently distributed.

(b) SA and SBS are independently distributed.

(c) SAS and SBS are independently distributed.

(d) AΣB = 0.

Then we have (a) ⇒ (b) ⇒ (c).

If, in addition, A ⪰ 0 and B ⪰ 0, then (c) ⇒ (d).

Proof: (a) ⇒ (b): From Proposition 2.7, SA is independent of

fB(SB) := SBB−(SB)T = SBB−BS = SBS,

where B− is a generalized inverse of B.

(b) ⇒ (c): From Proposition 2.7, SBS is independent of

fA(SA) := SAA−(SA)T = SAA−AST = SAS,

where A− is a generalized inverse of A.
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(c)⇒ (d): Suppose that A ⪰ 0 and B ⪰ 0. Then A1/2 and B1/2 exist. From Proposition

2.7,

f(SAS) := A1/2SASA1/2 = A1/2SA1/2A1/2SA1/2

= (A1/2SA1/2)(A1/2SA1/2)

= (A1/2SA1/2)2

and

g(SBS) := B1/2SBSB1/2 = B1/2SB1/2B1/2SB1/2

= (B1/2SB1/2)(B1/2SB1/2)

= (B1/2SB1/2)2

are independent. Since S ⪰ 0, we have A1/2SA1/2 ⪰ 0 and B1/2SB1/2 ⪰ 0. Again, from

Proposition 2.7, [(A1/2SA1/2)2]1/2 = A1/2SA1/2 and [(B1/2SB1/2)2]1/2 = B1/2SB1/2 are

independent. Hence, from Theorem 3.3, A1/2ΣB1/2 = 0 ⇒ AΣB = 0.

Corollary 3.1. Let S ∼W (Σ, p, n) with Σ ≻ 0 and let A ⪰ 0 and B ⪰ 0. Consider

the following statements:

(a) PS(A) := SAS and PS(B) := SBS are independently distributed.

(b) PA(S) := ASA and PB(S) := BSB are independently distributed.

(c) tr(PA(S)) and tr(PB(S)) are independently distributed.

(d) tr(AS) and tr(BS) are independently distributed.

(e) AΣB = 0.

Then we have (a) ⇒ (b) ⇔ (c) ⇔ (d) ⇔ (e).

Proof: (a) ⇒ (b): From the proof of (c) ⇒ (d) in Theorem 3.5, we have AΣB = 0.

Thus, by Theorem 3.3, we have that PA(S) and PB(S) are independent.

The equivalence of (b)-(e) follows from Theorem 3.3.

The following example shows that Item (d) in Theorem 3.5 implies neither Item (a)

nor (c).

Example 3.1. Let

A =

[
1 0
0 0

]
, B =

[
0 0
0 1

]
, Σ =

[
1 0
0 1

]
, and X = [X1, X2, X3]

T ,

where

X1 = [x11 x12]
T , X2 = [x21 x22]

T , and X3 = [x31 x32]
T
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are independent with Xi ∼ N2(0, I2) (i = 1, 2, 3). Then vec(XT ) ∼ N6(0, I3 ⊗ I2) and

S ∼W (I2, 2, 3), where S = XTX. It is easy to verify that AB = 0,

SA =

[
x211 + x221 + x231 0

x11x12 + x21x22 + x31x32 0

]
, SB =

[
0 x11x12 + x21x22 + x31x32
0 x212 + x222 + x232

]
,

SAS =

[
(x211 + x221 + x231)

2 (x211 + x221 + x231)(x11x12 + x21x22 + x31x32)
(x211 + x221 + x231)(x11x12 + x21x22 + x31x32) (x11x12 + x21x22 + x31x32)

2

]
,

and

SBS =

[
(x11x12 + x21x22 + x31x32)

2 (x11x12 + x21x22 + x31x32)(x
2
12 + x222 + x232)

(x11x12 + x21x22 + x31x32)(x
2
12 + x222 + x232) (x212 + x222 + x232)

2

]
.

Thus, if SA and SB are independent, then vec(SA) and vec(SB) are independent by

Proposition 2.7. Now, letting z := x11x12 + x21x22 + x31x32, we have E[(z − E(z))2] > 0.

Thus, the cross-covariance matrix of vec(SA) and vec(SB)

E[(vec(SA)− E(vec(SA)))((vec(SB)− E(vec(SB)))T ] ̸= 0.

Hence, SA and SB are not independent.

Similarly, if SAS and SBS are independent, then vec(SAS) and vec(SBS) are in-

dependent by Proposition 2.7. Now letting y := (x11x12 + x21x22 + x31x32)
2, we have

E[(y − E(y))2] > 0. Thus, the cross-covariance matrix of vec(SAS) and vec(SBS)

E[(vec(SAS)− E(vec(SAS)))((vec(SBS)− E(vec(SBS)))T ] ̸= 0.

Hence, SAS and SBS are not independent.

Remark 3.2. Example 3.1 shows that the Craig-Sakamoto theorem fails in estab-

lishing the independence of two linear forms and the independence of two quadratic forms in

Wishart variates.

4. CONCLUDING REMARKS

In this paper, we have investigated interconnections between the independence of linear

forms, quadratic forms, trace forms in matrix normal distribution and Wishart distribution.

We have showed that the Craig-Sakamoto theorem still establishes the independence of both

two linear forms and two quadratic forms in matrix normal distribution, but it establishes

neither the independence of two linear forms nor the independence of two quadratic forms in

Wishart variates. An interesting future research project is to find some applications for the

theorems obtained by this paper.
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