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1. Introduction

In biomedical studies, predicting a patient’s survival time, T , given a co-
variate, X, related to the time (sex, cholesterol, age...) is a problem of interest.
For patients that are in hospital, some event of interest is the time when they
leave hospital ward or when they leave Intensive Care Unit (ICU), if they were ad-
mited to it. In those cases, the survival times are length-of-stay times in hospital,
T , ward or ICU. In this scenario, the aim is to estimate the distribution function
of T conditional to X = x, that is, F (t|x) = P (T ≤ t|X = x) or, equivalently,
to estimate the conditional survival function S(t|x) = 1− F (t|x). In many such
situations, the variable T is subject to right random censoring. Right censoring
occurs when a proportion of survival times are unknown because the study ends
before all individuals have experienced the event of interest.

The most commonly used nonparametric estimator of F (t|x) under cen-
soring was introduced by Beran (1981) [3]. This estimator turns out to be the
Kaplan-Meier estimator in absence of covariates (see Kaplan and Meier (1958)
[17]). Asymptotic properties of this estimator have been widely studied in the
literature: see Dabrowska (1989) [8], González-Manteiga and Cadarso-Suárez
(1994) [14], Van Keilegom and Veraverbeke (1996) [27] and Iglesias-Pérez and
González-Manteiga (1999) [15]. Another nonparametric estimator of the condi-
tional distribution function with censored data was proposed by Van Keilegom
and Akritas (1999) [25] and Van Keilegom et al. (2001) [26]. This estimator
presents a better behaviour than Beran’s estimator when estimating the distri-
bution function in the right tail with heavy censoring. In Gannoun et al. (2005)
[12] and Gannoun et al. (2007) [11] an alternative estimator based on the local
linear method proposed in Cai (2003) [6] is studied. All these nonparametric
distribution estimators are based on a covariate smoothing. In a recent paper by
Peláez et al. (2022) [24] a general estimator of S(t|x) based on a double smooth-
ing both in the covariate and in the time variable is proposed. The idea presented
there can be applied to any nonparametric estimator of the conditional survival
function. In [24], simulation studies show how well this estimator performs when
the objective is to estimate S(t|x) for a fixed value of the covariate, x, and t
covering the interval IT ⊂ R+. Asymptotic expressions for the bias and variance
of the estimators were also proved in [24], but there is no available method to
choose the smoothing parameters involved.

Previous work has shown that bootstrap techniques shed light in this con-
text. In Efron (1981) [9], bootstrap for right censored data is firstly proposed and
asymptotic theory was established by Akritas (1986) [1] and Lo and Singh (1986)
[20]. Bootstrap for nonparametric regression with right censored observations at
fixed covariate values is studied in Van Keilegom and Veraverbeke (1997) [28]. A
bootstrap approach for the nonparametric censored regression setup is studied in
Li and Datta (2001) [19]. In Geerdens et al (2017) [13] a local cross-validation
bandwidth selector is proposed.
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The goal of this work is to define a resampling technique to approximate the
smoothing parameters involved in Beran’s survival estimator and the smoothed
Beran’s survival estimator. Our proposal is based on combining the smoothed
bootstrap with a weighted bootstrap for covariates. This approach follows the
ideas of [19] for the conditional distribution function and Peláez et al. (2022) [23]
for the probability of default function. Pointwise theoretical confidence intervals
derived from asymptotic theory for Beran’s survival estimator and the smoothed
Beran’s survival estimator (see [15] and [24], respectively) are not computable in
practice. Therefore, the bootstrap is also useful to compute confidence intervals
and regions.

The remainder of this paper is organized as follows. In Section 2, bootstrap
selectors for the bandwidths of Beran’s and the smoothed Beran’s estimators are
proposed. In Section 3 a simulation study shows the behaviour of the survival
estimators with bootstrap bandwidths. The issue of obtaining confidence regions
for the conditional survival function, S(t|x), for a fixed value of x ∈ I ⊆ R and
t covering some interval IT ⊆ R+, is addressed using Beran’s and the smoothed
Beran’s estimators in Section 4. A simulation study on the proposed bootstrap
methods for the calculation of confidence regions is shown in Section 5. These
methods are used in Section 6 to construct nonparametric estimations of length-
of-stay in hospital ward and ICU for COVID-19 patients in Galicia, Spain, during
the first weeks of the breakdown.

2. Bandwidth selection for Beran’s and the smoothed Beran’s esti-
mators

Let {(Xi, Zi, δi)}ni=1 be a simple random sample of (X,Z, δ) with X being
the covariate, Z = min{T,C} the observed variable and δ = I(T ≤ C) the
uncensoring indicator, with T ≥ 0 and C ≥ 0 represent the life and censoring
times. The distribution function of T is denoted by F (t) and the survival function
by S(t) = 1−F (t). The functions F (t|x) = P (T ≤ t|x) and S(t|x) = P (T > t|x)
are the distribution and survival functions of T evaluated at t conditional to
X = x. The conditional distribution function of Z is denoted by H(t|x) and
the conditional distribution function of C is denoted by G(t|x). The random
variables T and C are conditionally independent given X = x.

In this section, methods for the automatic selection of the bandwidths for
Beran’s estimator and the smoothed Beran’s estimator of the conditional survival
function are proposed.
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2.1. Beran’s estimator

In Beran (1981) [3], the generalisation of the product-limit estimator for
the conditional survival function is proposed and given by

(2.1) Ŝh(t|x) =

n∏
i=1

(
1−

I(Zi ≤ t, δi = 1)wh,i(x)

1−
∑n

j=1 I(Zj < Zi)wh,j(x)

)

where wh,i(x) =
K
(
(x−Xi)/h

)∑n
j=1K

(
(x−Xj)/h

) with i = 1, ..., n, K(u) is a kernel function

and h = hn is the bandwidth that indicates the degree of smoothing introduced
into the estimator through the covariate.

In Peláez et al. (2022) [23], an algorithm for bootstrap resampling based on
Beran’s estimator is proposed to obtain resamples (X∗

i , Z
∗
i , δ

∗
i )

n
i=1 of the sample

(Xi, Zi, δi)
n
i=1. This resampling method is used to approximate the smoothing

bandwidth required to estimate the probability of default, a certain curve of
interest in credit risk contexts (see the works of Peláez et al. (2021) [22] and
Peláez et al. (2021) [21]). The detailed algorithm for bootstrap resampling based
on Beran’s estimator and explanations on its construction can be found in [23]. In
this paper, we consider this resampling algorithm to approximate the bootstrap
bandwidth for Beran’s estimator of the conditional survival curve.

In order to estimate the conditional survival function, S(t|x), for a fixed
x ∈ I and t covering the interval IT ⊂ R, our benchmark is the bandwidth
hMISE ∈ I1, that minimizes the mean integrated squared error given by

(2.2) MISEx(h) = E

(∫
IT

(
Ŝh(t|x)− S(t|x)

)2
dt

)
.

Consider the bootstrap resample (X∗
i , Z

∗
i , δ

∗
i )

n
i=1 generated by the resampling

techniqued from Peláez et al. (2022) [23]. The bootstrap approximation of the
function MISEx(h) is given by

MISE∗
x(h) = E∗

(∫
IT

(
Ŝ∗
h(t|x)− Ŝr(t|x)

)2
dt

)
where Ŝr(t|x) is the estimation of the theoretical survival function with pilot
bandwidth, r, using the sample

{
(Xi, Zi, δi)

}n
i=1

and Ŝ∗
h(t|x) is the bootstrap esti-

mation of S(t|x) with bandwidth h, using the bootstrap resample
{
(X∗

i , Z
∗
i , δ

∗
i )
}n
i=1

.

The resampling distribution of Ŝ∗
h(t|x) cannot be computed in a closed

form, so the Monte Carlo method is used. It is based on obtaining B bootstrap
resamples and estimating Ŝ∗

h(t|x) for each of them. Thus, the distribution of

Ŝ∗
h(t|x) is approximated by the empirical one of Ŝ∗,1

h (t|x), . . . , Ŝ∗,B
h (t|x), obtained

from B bootstrap resamples and the Monte Carlo approximation of the bootstrap
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MISE is given by

(2.3) MISE∗
x(h) ≃

1

B

B∑
k=1

(∫
IT

(
Ŝ∗,k
h (t|x)− Ŝr(t|x)

)2
dt

)
.

Likewise, the integral is approximated by a Riemann sum.

Algorithm for bootstrap bandwidth selection for Beran’s estimator

Let x ∈ I be a fixed value of the covariate and r ∈ I1:

1. Compute Ŝr(t|x) from the original sample {(Xi, Zi, δi)}ni=1 for some values
of t in a grid of IT .

2. Obtain B bootstrap resamples of the form {(X∗,k
i , Z∗,k

i , δ∗,ki )}ni=1 with k =
1, ..., B using the bootstrap based on Beran’s estimator with pilot band-
width r ∈ I1 and calculate Ŝ∗,k

h (t|x) for each of them, for the same values
of t in the grid of IT .

3. Approximate MISE∗
x(h) according to (2.3).

4. Repeat Steps 1–3 for values of h in a grid of I1.

5. Select the value of h that provides the smallest MISE∗
x(h) as the bootstrap

bandwidth h∗.

Concerning the auxiliary bandwidth, r ∈ I1, preliminary analyses suggests
the following choice as a suitable pilot bandwidth in this context:

(2.4) r = c

(
QX(0.975)−QX(0.025)

)
2

( n∑
i=1

δi

)−1/3

where QX(u) is the u quantile of the sample
{
Xi

}n
i=1

. Equation (2.4) consid-
ers the variability of the covariate, QX(0.975)−QX(0.025), and the uncensored
sample size,

∑n
i=1 δi. The exponent of this sample size, −1/3, is typically ap-

propriate in selection of the optimal bandwidth for estimating the distribution
function (see Azzalini (1981) [2] and Jones (1990) [16]). This expression was
derived after several attempts in the simulation studies. These analyses show
that choosing c < 1 increases the estimation error of Beran’s estimator since
the bootstrap method provides excessively small bandwidths. In general, c ≥ 1
is considered, with the choice c = 3/2 being appropriate. In cases where the
function E(T |X = x) is found to be highly variable with respect to x, smaller
bandwidths may be considered and our proposal there is c = 1.

Note that the proposed algorithm is also valid to obtain a bootstrap approx-
imation of the optimal bandwidth for the estimation of S(t|x) for fixed values of
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t ∈ IT and x ∈ I by replacing MISE∗
x(h) by MSE∗

t,x(h), which is the bootstrap
analogue of

MSEt,x(h) = E

((
Ŝh(t|x)− S(t|x)

)2)
.

2.2. The smoothed Beran’s estimator

Nonparametric estimators of the conditional survival function such as Be-
ran’s estimator defined in (2.1) are smoothed just on the covariate X. However,
time variable smoothing of the conditional survival estimators has been found
to be useful for the graphical representation, as well as to reduce the estimation
error. This smoothing in both the covariate and the time variable was previously
used in Földes et al. (1981) [10] and Leconte et al. (2002) [18]. Recently, the
smoothed Beran’s estimator of the conditional survival function was proposed
and studied in Peláez et al. (2022) [24]. Simulation studies have shown that
this doubly smoothed estimator performs better than classical survival estima-
tors smoothed only in the covariate. The smoothed Beran’s survival estimator is
defined by

(2.5) S̃h,g(t|x) = 1−
n∑

i=1

s(i)K
(
t− Z(i)

g

)

where s(i) = Ŝh(Z(i−1)|x) − Ŝh(Z(i)|x) with Z(i) the i-th element of the sorted

sample of Z, Ŝh(t|x) is Beran’s estimator given in (2.1), K(t) is the distribu-
tion function of a kernel K, K(t) =

∫ t
−∞K(u)du, and g = gn is the smoothing

parameter for the time variable.

Asymptotic expressions for the bias and variance of this estimator are just
too complex to calculate plug-in bandwidths (see [24]). Moreover, no method
is available for choosing the smoothing parameters involved in this estimator.
Therefore, this paper proposes a bootstrap selector for the two-dimensional band-
widths (h, g).

In Peláez et al. (2022) [23] a weighted bootstrap with covariates combined
with a smoothed bootstrap is proposed to obtain resamples (X∗

i , Z
∗
i , δ

∗
i )

n
i=1 of

the sample (Xi, Zi, δi)
n
i=1. This resampling method is used to approximate the

smoothing bandwidths needed to estimate the probability of default curve. In
this paper, we consider this resampling algorithm to approximate the bootstrap
bandwidths for the smoothed Beran’s estimator of the conditional survival func-
tion. The detailed algorithm for bootstrap resampling based on the smoothed
Beran’s estimator and explanations on its construction can be found in [23].

Under this resampling plan, the bootstrap conditional distribution function
of T ∗|X∗ is the smoothed Beran’s estimator, F̃r,s(t|X∗

i ). Similarly, the bootstrap

conditional distribution function of C∗|X∗ is G̃r,s(t|X∗
i ).



Bootstrap bandwidth Selection for Smoothed Beran’s Estimator 7

The optimal bivariate bandwidth, (hMISE , gMISE) ∈ I1 × I2 is defined as
the pair of bandwidths that minimizes the mean integrated squared error given
by

(2.6) MISEx(h, g) = E

(∫
IT

(
S̃h,g(t|x)− S(t|x)

)2
dt

)
.

The bootstrap version of MISEx(h, g) is given by

MISE∗
x(h, g) = E∗

(∫
IT

(
S̃∗
h,g(t|x)− S̃r,s(t|x)

)2
dt

)
,

where S̃r,s(t|x) is the smoothed Beran’s survival estimation with pilot band-

widths (r, s) ∈ I1 × I2 using the sample
{
(Xi, Zi, δi)

}n
i=1

and S̃∗
h,g(t|x) is the

bootstrap estimation of S(t|x) with bandwidths (h, g), using the bootstrap re-
sample

{
(X∗

i , Z
∗
i , δ

∗
i )
}n
i=1

. Since the resampling distribution of S̃∗
h,g(t|x) cannot

be computed in a closed form, the Monte Carlo method is used. The bootstrap
bandwidth selection algorithm is defined as follows.

Algorithm for bootstrap bandwidth selection for the smoothed Beran’s estimator

Let x be a fixed value of the covariate and (r, s) ∈ I1 × I2:

1. Compute S̃r,s(t|x) from the original sample {(Xi, Zi, δi)}ni=1, for some values
of t in a grid of IT .

2. Obtain B bootstrap resamples of the form {(X∗,k
i , Z∗,k

i , δ∗,ki )}ni=1 with k =
1, ..., B using the bootstrap based on the smoothed Beran’s estimator and
calculate S̃∗,k

h,g(t|x) for each of them, for the same values of t in the grid of
IT .

3. Approximate MISE∗
x(h, g) according to

(2.7) MISE∗
x(h, g) ≃

1

B

B∑
k=1

(∫
IT

(
S̃∗,k
h,g(t|x)− S̃r,s(t|x)

)2
dt

)
.

4. Repeat Steps 1–3 for pairs of values (h, g) in a grid of I1 × I2.

5. Obtain the pair (h, g) that provides the smallest MISE∗
x(h, g) as the boot-

strap bandwidth (h∗, g∗).

The auxiliary bandwidth r ∈ I1 is chosen as in (2.4). The pilot bandwidth
s ∈ I2 for the time variable smoothing is chosen using the following formula

(2.8) s =
3

4

(
QZ(0.975)−QZ(0.025)

)( n∑
i=1

δi

)−1/7
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where QZ(u) is the u quantile of the sample
{
Zi

}n
i=1

. This expression was de-
rived after several attempts in the simulation studies. It takes into account the
variability of the observed time variable, QZ(0.975)−QZ(0.025), and the sample
size of the uncensored population,

∑n
i=1 δi. The exponent of this sample size,

−1/7, is heuristically deduced from the asymptotic expression of the MISE of the
survival estimators proved in Peláez et al. (2022) [24].

3. Simulation study for bandwidth selection

A simulation study is conducted in order to show the behaviour of the boot-
strap bandwidth selectors for Beran’s and smoothed Beran’s estimators proposed
in Section 2. Two models are considered, one based on Weibull distributions for
life and censoring times and the other on exponential distributions. The data
generation models were previously used in Peláez et al. (2022) [23] in order to
analyse the associated default probability curves. In this paper they are used to
discuss the bandwidth selection algorithms presented above.

Model 1 considers a U(0, 1) distribution for X. The time to occurrence of
the event conditional to the covariate, T |X=x, follows a Weibull distribution with
parameters 2 and A(x)−1/2 and A(x) = 1 + 5x. The censoring time conditional
to the covariate, C|X=x, follows a Weibull distribution with parameters 2 and
B(x)−1/2 and B(x) = 10 + d1x + 20x2. In this case, the conditional survival
function and the censoring conditional probability are given by:

S(t|x) = e−A(x)t2 ,

P (δ = 0|X = x) =
B(x)

A(x) +B(x)
.

Having set the covariate value, x = 0.6, the values of d1 are chosen so that the
censoring conditional probability is 0.2 and 0.5. These values are d1 = −27 and
d1 = −22, respectively. The conditional survival function for this model is esti-
mated in a time grid of size nT , 0 < t1 < · · · < tnT , where tnT = F−1(0.95|x) =
0.8654 for the covariate value x = 0.6. Therefore, in this case IT = (0, 0.8654).

Model 2 considers a U(0, 1) distribution for X. The time to occurrence of
the event conditional to the covariate, T |X=x, follows an exponential distribution
with parameter Γ(x) = 2+58x−160x2+107x3. The censoring time conditional to
the covariate, C|X=x, follows an exponential distribution with parameter ∆(x) =
10 + c1x + 20x2. In this scenario, the conditional survival function and the
censoring conditional probability are the following:

S(t|x) = e−Γ(x)t,

P (δ = 0|X = x) =
∆(x)

Γ(x) + ∆(x)
.

Having set the covariate value, x = 0.8, the values of c1 are chosen so that the
censoring conditional probability is 0.2 and 0.5. These values are c1 = −113/4
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and c1 = −55/2, respectively. The conditional survival function is estimated in
a time grid of size nT , 0 < t1 < · · · < tnT , where tnT = F−1(0.95|x) = 3.8211 for
the covariate value x = 0.8. Therefore, in this case IT = (0, 3.8211).

It can be proved that Model 1 is close to a proportional hazards model,
while Model 2 moves away from this parametric model with the aim of widely
considering different simulation scenarios. Although in both models the distribu-
tion of the covariate is chosen to be uniform, it was previously verified that the
distribution of X has no effect on the behaviour of the analysed methods. The
boundary effect is corrected using the reflexion principle (see Billingsley (1968)
[4]) and the truncated Gaussian kernel with a truncation range (−50, 50) is used.
The size of the lifetime grid is nT = 100. The sample size is n = 400. Regarding
the auxiliary bandwidths, Model 1 uses c = 3/2, while Model 2 considers c = 1.
The reason for this choice is that the distribution of the time variable in Model
2 varies much more with respect to x, thus requiring smaller bandwidths.

3.1. Simulation study for Beran’s estimator

In this subsection, the behaviour of the bootstrap bandwidth selector for
Beran’s estimator is analysed. For each model, the estimation error function
MISEx(h) is approximated via Monte Carlo using 300 simulated samples. The
bandwidth that minimises MISEx(h) is obtained and denoted by hMISE . The
values of hMISE and MISEx(hMISE) are used as a benchmark.

In the simulation study, N = 300 simulated samples are used to evaluate
the performance of the bootstrap bandwidth selector. For each sample, B = 500
bootstrap resamples are generated to approximate the bootstrap MISE function,
MISE∗

x(h), and obtain the bootstrap bandwidth associated to each simulated
sample, h∗j , j = 1, 2, . . . , N . The mean value of the N bootstrap bandwidths and
their standard deviation are defined as follows

h∗ =
1

N

N∑
j=1

h∗j , sd
(
h∗
)
=

√√√√ 1

N

N∑
j=1

(
h∗j − h∗

)2
.

In order to minimise the error function MISE without increasing CPU
time more than necessary, a limited-memory algorithm for solving large nonlinear
optimization problems is used, L-BFGS-B. It was proposed by Byrd et al. (2005)
[5] for solving optimization problems subject to simple bounds on the variables
in which information on the Hessian matrix is difficult to obtain. Results of
numerical studies about this method are shown in [5]. It is available at the stats
package from the Comprehensive R Archive Network (CRAN). It uses Fortran
77 subroutines See Zhu et al. (1997) [30].

A relative measure of the difference between the bootstrap bandwidth and
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the optimal one, is considered

H∗
j =

h∗j − hMISE

hMISE
,

with j = 1, . . . , N . The mean of the absolute value of these relative deviations,
H∗ = 1

N

∑N
j=1 |H∗

j |, is a good measure of how close the bootstrap bandwidth is
to the optimal one.

For each sample, the estimation error of Beran’s estimator with the corre-
sponding bootstrap bandwidth,

MISEx(h
∗
j ) = E

(∫
IT

(
Ŝh∗

j
(t|x)− S(t|x)

)2
dt

)
,

and its square root, RMISEx(h
∗
j ), are approximated via Monte Carlo using 300

simulated samples. The mean of these estimation errors given by

RMISEx(h∗) =
1

N

N∑
j=1

RMISEx(h
∗
j )

is used as a measure of the estimation error made by the bootstrap bandwidth,
when compared with the estimation error made by the MISE bandwidth.

As a relative measure of the difference between the estimation errors using
the bootstrap and the MISE bandwidths, the following ratios are defined:

R∗
j =

RMISEx(h
∗
j )−RMISEx(hMISE)

RMISEx(hMISE)

satisfying R∗
j ≥ 0 for all j = 1, . . . , N . The mean of the R∗

j values with j =

1, . . . , N is denoted by R∗ = 1
N

∑N
j=1R

∗
j . Small values (close to zero) of H∗ and

R∗ indicate good behavior of the bootstrap bandwidth.

Figure 1 shows the MISE function and the bootstrap MISE approximations
for Models 1 and 2. Values of the bootstrap bandwidths, estimation errors and
relative measures for Models 1 and 2 are included in Table 1. The results show
a good performance of the proposed bootstrap selector, especially, in Model 1.
Table 1 shows that using bootstrap bandwidth selection increases just around
4% to 6% the RMISE error with respect to the optimal bandwidths for Model
1. For Model 2, the increase in the RMISE error caused by bootstrap bandwidth
selection is around 11% to 15%.
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Figure 1: MISEx(h) function (black line) approximated via Monte Carlo and
MISE∗

x(h) functions (gray lines) for N = 300 samples when P (δ = 0|x) = 0.5 in
Model 1 (left) and Model 2 (right).

Model 1 Model 2

P (δ = 0|X = x) 0.2 0.5 0.2 0.5

hMISE 0.23939 0.21212 0.04515 0.05687
RMISEx(hMISE) 0.02411 0.03652 0.11612 0.15576

h∗ (sd) 0.23815 (0.093) 0.21897 (0.082) 0.06718 (0.007) 0.08082 (0.011)

H∗ 0.29033 0.26199 0.48794 0.42119

RMISEx(h∗) 0.02548 0.03809 0.13391 0.17242

R∗ 0.05762 0.04373 0.15316 0.10698

Table 1: MISE and average bootstrap bandwidths and estimation errors of Be-
ran’s survival estimator in each level of conditional censoring probability for Mod-
els 1 and 2. Numbers within brackets are standar deviations.

3.2. Simulation study for the smoothed Beran’s estimator

In this section, a simulation study on the bootstrap bandwidth selector for
the smoothed Beran’s estimator in (2.5) is carried out. The resampling technique
and Monte Carlo approximation of the MISE presented in Section 2.2 are used.
Models 1 and 2 are considered.

For each model, the error function MISEx(h, g) is approximated via Monte
Carlo from 300 simulated samples and the bivariate bandwidth that minimises
MISEx(h, g) is obtained and denoted by (hMISE , gMISE). The values of (hMISE , gMISE)
and MISEx(hMISE , gMISE) are used as a benchmark.

In the study, N = 300 samples are simulated to evaluate the performance
of the bootstrap bandwidth selector. For each simulated sample, the correspond-
ing bootstrap bandwidths are approximated from B = 500 resamples, obtaining
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(h∗j , g
∗
j ) with j = 1, . . . , N . The mean value of the N bootstrap bandwidths and

their standard deviation are the following:

(h∗, g∗) =

(
1

N

N∑
j=1

h∗j ,
1

N

N∑
j=1

g∗j

)
,

sd
(
h∗
)
=

√√√√ 1

N

N∑
j=1

(
h∗j − h∗

)2
, sd

(
g∗
)
=

√√√√ 1

N

N∑
j=1

(
g∗j − g∗

)2
.

A limited-memory algorithm for solving large nonlinear optimization problems,
L-BFGS-B, is used to minimise the error function MISE, as explained in Section
3.1.

In order to measure the distance of the bootstrap two-dimensional band-
width of the j-th sample, (h∗j , g

∗
j ), from the corresponding MISE bandwidth,

(hMISE , gMISE), the two-dimensional vector was consider:

D∗
j =

(
h∗j − hMISE

hMISE
,
g∗j − gMISE

gMISE

)
and its Euclidean norm denoted by H∗

j = ∥D∗
j∥2 with j = 1, . . . , N . The mean

value, H∗ = 1
N

∑N
j=1H

∗
j is a measure of how close the bootstrap bandwidths are

to the MISE one.

For each sample, the estimation error of the smoothed Beran’s estimator
with the corresponding bootstrap bandwidth,

MISEx(h
∗
j , g

∗
j ) = E

(∫
IT

(
S̃h∗

j ,g
∗
j
(t|x)− S(t|x)

)2
dt

)
,

and its square root, RMISEx(h
∗
j , g

∗
j ), are approximated via Monte Carlo using

300 simulated samples. The mean of these estimation errors given by

RMISEx(h∗, g∗) =
1

N

N∑
j=1

RMISEx

(
h∗j , g

∗
j

)
is used as a measure of the estimation error made by the bootstrap two-dimensional
bandwidth in the model.

The ratio

R∗
j =

RMISEx(h
∗
j , g

∗
j )−RMISEx(hMISE , gMISE)

RMISEx(hMISE , gMISE)

is defined as a relative measure of the difference between the error of the estimator
with bootstrap bandwidth and MISE bandwidth. The mean of the positive values
R∗

j with j = 1, . . . , N is denoted by R∗ = 1
N

∑N
j=1R

∗
j . Values of the bootstrap

bivariate bandwidths, estimation errors and relative measures for Models 1 and
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2 are included in Table 2. Table 2 shows that using bootstrap bandwidth selec-
tion increases around 17% to 20% the RMISE error with respect to the optimal
bandwidths for Model 1. For Model 2, the RMISE errors when using bootstrap
bandwidth selection can be around the double of the optimal ones.

Model 1 Model 2

P (δ = 0|X = x) 0.2 0.5 0.2 0.5

hMISE 0.23469 0.20408 0.11122 0.23979
gMISE 0.05143 0.08102 0.91530 1.13878

RMISEx(hMISE , gMISE) 0.02158 0.03024 0.05594 0.06938

h∗ (sd) 0.24172 (0.086) 0.22600 (0.085) 0.31289 (0.132) 0.36221 (0.142)
g∗ (sd) 0.09701 (0.017) 0.11474 (0.022) 0.85749 (0.117) 0.86538 (0.112)

H∗ 0.94544 0.54256 1.82913 0.73757

RMISEx(h∗, g∗) 0.02769 0.03851 0.11035 0.12633

R∗ 0.20027 0.17301 1.01971 0.84987

Table 2: MISE and average bootstrap bandwidths and estimation errors of the
smoothed Beran’s survival estimator in each level of censoring conditional prob-
ability for Models 1 and 2. Numbers within brackets are standar deviations.

Figure 2 shows the MISEx(h, g) fuction of the smoothed Beran’s estimator
and its bootstrap approximation for one sample of Models 1 when the conditional
probability of censoring is 0.5. It is approximated over a meshgrid of 50×50 values
of (h, g). Note that both MISEx(h, g) and MISE∗

x(h, g) curves for each fixed h
value are quite similar in the region close to the minimum value of MISE∗

x(h, g).
Thus, the influence of the covariate smoothing parameter, h, is weak when esti-
mating the survival function using values of the bandwidth g close to the optimal
one. The conclusions are similar for Model 2, not included here.

Figure 2: MISEx(h, g) function (left) and MISE∗
x(h, g) function (right) for one

sample from Model 1 when P (δ = 0|x) = 0.5.

The proposed methods require a high computational cost. Some evidence
of this is provided in following paragraphs.
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Note that the CPU time of the resampling is the same both when using
Beran’s estimator and when using the smoothed Beran’s estimator. This is due
to the fact that the resampling is identical in both cases, except for the pertur-
bation on the life and censoring time variables, which is insignificant in terms
of computation time. Regarding the selection of the bootstrap bandwidths, the
difference between the two methods lies in the function to be minimised, since
it will be unidimensional in the case of Beran’s estimator, but two-dimensional
in the case of the smoothed Beran’s estimator. Since the optimisation of the
error function was conducted using a computationally efficient method with no
significant differences in the computation times of each scenario, the resulting
computation times for both Beran’s and the smoothed Beran’s estimators are
similar. Moreover, the computation time is linear in the number of resamples, B.

Table 3 shows the CPU time required to approximate the bootstrap band-
width for Beran’s estimator by B = 100 resamples from one simulated sample
of different sizes. Obtaining the appropriate bootstrap bandwidths to estimate
the conditional survival function by 500 resamples from a sample of size 1000
requires 2.5 hours, while a sample of size 3000 requires 2 days. These times seem
to increase quadratically as the sample size grows.

n 400 1000 2000 3000 6000 12000

Time 4.537 26.453 174.665 531.589 6715.870 27347.460

Table 3: Computation times (in minutes) of the bandwidth selector of Beran’s
estimator for N = 1 sample of size n and B = 100 bootstrap resamples.

4. Confidence regions using Beran’s and the smoothed Beran’s esti-
mators

Let x ∈ I be a fixed value of the covariate and consider S(t|x) the condi-
tional survival curve with t ∈ IT . The curve S(t|x) belongs to the function space
F(IT ) whose elements are real-valued functions with domain IT . From the sam-
ple {(Xi, Zi, δi), i = 1, ..., n}, Beran’s estimation of S(t|x), Ŝh(t|x), is obtained
and a confidence region of S(t|x) at 1− α confidence level associated to Beran’s
estimator can be constructed. A similar construction is done for the smoothed
Beran’s estimator. This confidence region of S(t|x) is a random subset of IT ×R
denoted by Rα that satisfies

P
(
(t, S(t|x)) ∈ Rα,∀t ∈ IT

)
= 1− α.

In this section we propose two different methods to obtain confidence regions of
the S(t|x) curve based on resampling techniques. Both Beran’s estimator and
the smoothed Beran’s estimator can be used with these two methods.
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4.1. Method 1 for confidence regions

First, Beran’s estimator of the conditional survival function, Ŝh(t|x), given
in (2.1) is used. This method follows the ideas of Cao et al. (2010) [7] to obtain
prediction regions. It is based on finding the value of λα ∈ R+ such that

P
(
|Ŝh(t|x)− S(t|x)| < λασ(t|x), ∀t ∈ IT

)
= 1− α

with σ2(t) = V ar
(
Ŝh(t|x)

)
. Thus, the theoretical confidence region is defined by

R1
α =

{
(t, y) : t ∈ IT , y ∈

(
Ŝh(t|x)− λασ(t|x), Ŝh(t|x) + λασ(t|x)

)}
.

Since λα and σ(t|x) are unknown, they are approximated by means of the
bootstrap method. The bootstrap confidence region is defined as follows:

R1∗
α =

{
(t, y) : t ∈ IT , y ∈

(
Ŝ∗
h(t|x)− λ∗

ασ
∗(t|x), Ŝ∗

h(t|x) + λ∗
ασ

∗(t|x)
)}

.

where Ŝ∗
h(t|x) is the bootstrap estimation of S(t|x) with bandwidth h and λ∗

α and
σ∗(t|x) are the bootstrap analogue of λα and σ(t|x). The confidence region R1∗

α

should satisfy

(4.1) p(λ∗
α) = P ∗((t, Ŝr(t|x)) ∈ R1∗

α , ∀t ∈ IT
)
= 1− α.

From the original sample
{
(Xi, Zi, δi)

}n
i=1

, Beran’s estimator of S(t|x) is

obtained with appropriate bandwidth h, Ŝh(t|x). The algorithm to obtain the
bootstrap confidence region for S(t|x) at confidence level 1 − α associated to
Ŝh(t|x) is explained below. The Monte Carlo method is used to approximate
σ∗(t|x), and an iterative method is used to approximate the value of λ∗

α so that
the confidence region has a confidence level approximately equal to 1− α.

1. Compute Beran’s estimator Ŝr(t|x) from the original sample
{
(Xi, Zi, δi)

}n
i=1

and pilot bandwidth r ∈ I1.

2. Generate B bootstrap resamples of the form
{
(X∗,k

i , Z∗,k
i , δ∗,ki )

}n
i=1

for k =
1, . . . , B by means of the resampling algorithm for Beran’s estimator pre-
sented in Subsection 2.1 and pilot bandwidth r.

3. For k = 1, . . . , B, compute Ŝ∗,k
h (t|x) with the k-th bootstrap resample and

bandwidth h, obtaining
{
Ŝ∗,k
h (t|x)

}B
k=1

.

4. Approximate the standard deviation of Ŝ∗
h(t|x) by

σ∗(t|x) =

(
1

B

B∑
k=1

(
Ŝ∗,k
h (t|x)− 1

B

B∑
l=1

Ŝ∗,l
h (t|x)

)2
)1/2

, t ∈ IT .
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5. Use an iterative method to obtain an approximation of the value λ∗
α defined

in (4.1).

6. The confidence region is given by

R̂1
α =

{
(t, y) : t ∈ IT , y ∈

(
Ŝh(t|x)− λ∗

ασ
∗(t|x), Ŝh(t|x) + λ∗

ασ
∗(t|x)

)}
.

Iterative method to approximate λ∗
α

The iterative method to approximate the value of λ∗
α ∈ R+, so that the

confidence region R∗
α has a confidence level approximately equal to 1 − α, is

explained below. This algorithm allows to quickly and efficiently approximate
the parameter λ∗

α.

Let
{
Ŝ∗,k
h (t|x)

}B
k=1

be the Beran’s estimations of the survival function with

bandwidth h over a set of B bootstrap resamples of
{
(Xi, Zi, δi)

}n
i=1

. Define the
Monte Carlo approximation of p(λ) in (4.1), for any λ ∈ R+, as follows:
(4.2)

p̂(λ) ≃ 1

B

B∑
k=1

I
(
Ŝr(t|x) ∈

(
Ŝ∗,k
h (t|x)− λσ∗(t|x), Ŝ∗,k

h (t|x) + λσ∗(t|x)
)
, ∀t ∈ IT

)
.

Let λL, λH ∈ R+ be such that p̂(λL) ≤ 1 − α ≤ p̂(λH) and let ζ > 0 be a
tolerance, for example, ζ = 10−4.

1. Obtain λM =
λL + λH

2
and compute Monte Carlo approximations of p̂(λL),

p̂(λM ) and p̂(λH) according to (4.2).

2. If p̂(λM ) = 1− α or p̂(λH)− p̂(λL) < ζ, then λ∗
α = λM . Otherwise,

(a) If 1− α < p̂(λM ), then λH = λM and return to Step 1.

(b) If p̂(λM ) < 1− α, then λL = λM and return to Step 1.

This method to obtain confidence regions for the curve S(t|x) for fixed
x ∈ I and t covering IT based on Beran’s estimator can be adapted to obtain
confidence regions using the smoothed Beran’s estimator. Simply replace Beran’s
estimator, Ŝh(t|x), by the smoothed Beran’s estimator, S̃h,g(t|x), given in (2.5)
where necessary, and obtain the analogous bootstrap approximations of λα and
σ(t|x):

1. Compute the smoothed Beran’s estimator S̃r,s(t|x) from the original sample{
(Xi, Zi, δi)

}n
i=1

and pilot bandwidths r ∈ I1 and s ∈ I2.
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2. Generate B bootstrap resamples of the form
{
(X∗,k

i , Z∗,k
i , δ∗,ki )

}n
i=1

for k =
1, . . . , B by means of the resampling algorithm for the smoothed Beran’s
estimator presented in Subsection 2.2 and pilot bandwidths r and s.

3. For k = 1, . . . , B, compute S̃∗,k
h,g(t|x) with the k-th bootstrap resample and

bandwidths h and g, obtaining
{
S̃∗,k
h,g(t|x)

}B
k=1

.

4. Approximate the standard deviation of S̃∗
h,g(t|x) by

σ∗(t|x) =

(
1

B

B∑
k=1

(
S̃∗,k
h,g(t|x)−

1

B

B∑
l=1

S̃∗,l
h,g(t|x)

)2
)1/2

, t ∈ IT .

5. Use an iterative method to obtain an approximation of the value λ∗
α defined

in (4.1).

6. The confidence region is given by

R̃1
α =

{
(t, y) : t ∈ IT , y ∈

(
S̃h,g(t|x)− λ∗

ασ
∗(t|x), S̃h,g(t|x) + λ∗

ασ
∗(t|x)

)}
.

The pilot bandwidths defined in (2.4) and (2.8) are used for the confidence
region algorithm based on both Beran’s and the smoothed Beran’s estimators.

4.2. Method 2 for confidence regions

An alternative procedure to obtain a confidence region for S(t|x), with fixed
x ∈ I and t covering the interval IT , is based on considering that the curve S(t|x)
belongs to the functional space Lp(IT ) defined using the p-norm for functional
vector spaces, ∥ · ∥p. The confidence region for S(t|x) computed at the 1 − α

confidence level is a ball around Ŝh(t|x) of radius ρα, where ρα is such that

P
(
∥Ŝh(t|x)− S(t|x)∥p < ρα

)
= 1− α.

This idea was presented in Zhun and Politis (2017) [31] to obtain prediction
regions in functional autoregression models. Since S(t|x) is unknown, the dis-
tribution of Q = ∥Ŝh(t|x) − S(t|x)∥p is not available and the value of ρα can
not be calculated. Therefore, a bootstrap approximation is given by Q∗ =
∥Ŝ∗

h(t|x)− Ŝr(t|x)∥p. The bootstrap confidence region is a ball in Lp(IT ) around

Ŝh(t|x) of radius ρ∗α, where ρ∗α is such that

P ∗(∥Ŝ∗
h(t|x)− Ŝr(t|x)∥p < ρ∗α

)
= 1− α.

and r ∈ I1 is an auxiliary bandwidth.

From the original sample
{
(Xi, Zi, δi)

}n
i=1

, Beran’s estimator of S(t|x) is

obtained with appropriate bandwidth h, Ŝh(t|x). The algorithm to obtain the
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bootstrap confidence region for S(t|x) at confidence level 1 − α associated to
Ŝh(t|x) is explained below. The Monte Carlo method is used to approximate
the radius ρα, so that the confidence region has a confidence level approximately
equal to 1− α.

1. Compute Beran’s estimator Ŝr(t|x) with the original sample {(Xi, Zi, δi)}ni=1

and pilot bandwidth r ∈ Ih.

2. Generate B bootstrap resamples
{
(X∗k

i , Z∗k
i , δ∗ki )

}n
i=1

, for k = 1, ..., B, by
means of the resampling algorithm for Beran’s estimator presented in Sub-
section 2.1 and pilot bandwidth r.

3. For k = 1, ..., B, compute Ŝ∗k
h (t|x) with the k-th bootstrap resample and

bandwidth r and obtain

Q∗
k = ∥Ŝ∗k

h (t|x)− Ŝr(t|x)∥p

4. Sort the valuesQ∗
1, ..., Q

∗
B by obtainingQ∗

(1), ..., Q
∗
(B) and select ρ∗α = Q∗

([B(1−α)]).

5. The confidence region is the ball in Lp(IT ) around Ŝh(t|x) with radius ρ∗α.

Regarding the norm to be used, the usual norms of the function spaces
L1 and L2 allow us to mathematically define the confidence region and to check
whether or not a given curve belongs to this region. The disadvantage of these
function spaces is that they do not allow a graphical representation of the confi-
dence region.

Choosing the function space L∞ and its associated norm, ∥ · ∥∞, then the
statistic used to obtain the confidence region is defined as follows

Q = ∥Ŝh(t|x)− S(t|x)∥∞ = sup
t∈IT

|Ŝh(t|x)− S(t|x)|

and the confidence region is

R2
α =

{
(t, y) : t ∈ IT , y ∈

(
Ŝh(t|x)− ρα, Ŝh(t|x) + ρα

)}
.

whose graphical representation may be useful. The disadvantage of this choice of
the space is that the confidence region Rα has the same radius ρα at all points t ∈
IT , so it does not capture the variability of the estimator, σ2(t) = V ar(Ŝh(t|x)).

This method can be adapted to obtain confidence regions using the smoothed
Beran’s estimator. Simply replace Beran’s survival estimator Ŝh(t|x) by the
smoothed Beran’s estimator S̃h,g(t|x) given in (2.5) where necessary. The confi-
dence region for S(t|x) based on the smoothed Beran’s estimator at 1 − α con-
fidence level is a ball in Lp(IT ) around S̃h,g(t|x) of radius ρα, where ρα is such
that

P (Q < ρ1−α) = 1− α
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with
Q = ∥S̃h,g(t|x)− S(t|x)∥p.

A similar procedure to the one shown in the previous paragraphs for Beran’s
estimator allows us to obtain the bootstrap approximation of ρα.

The pilot bandwidths defined in (2.4) and (2.8) are used for the confidence
region algorithm based on both Beran’s and the smoothed Beran’s estimators.

If the aim were the point estimation of S(t|x), the algorithms proposed in
this section can be easily adapted to obtain confidence intervals for S(t|x) for
fixed x ∈ I and t ∈ IT .

5. Simulation study for confidence regions

A simulation study is carried out to analyse the performance of the boot-
strap confidence regions obtained by means of the two methods proposed in Sec-
tion 4 and based on both Beran’s and the smoothed Beran’s estimator.

Models 1 and 2 are considered and the simulation setup is the one intro-
duced in Section 3. The number of simulated samples of each model is N = 300
and B = 500 bootstrap resamples are obtained for each sample. The sample size
is n = 400. The confidence level is 1 − α with α = 0.05. When Beran’s esti-
mator is considered, the optimal bandwidth that minimises the mean integrated
squared error is used (h = hMISE from Table 1). Similarly, the two-dimensional
bandwidth that minimises the MISE is considered when using the smoothed Be-
ran’s estimator ((h, g) = (hMISE , gMISE) from Table 2). These bandwidths are
unknown in practice, but they allow a fair comparison of the methods in the sim-
ulation study. Regarding the pilot bandwidth defined in (2.4), Model 1 considers
c = 3/2, while Model 2 considers c = 1, as explained in Section 2.

Denote the lower and upper bounds of the confidence region by l(t, x) and
u(t, x), respectively. It may happen that the lower bound of the confidence region
is less than 0 or the upper bound is greater than one for some points (t0, x0).
When this happens, we set l(t0, x0) = 0 or u(t0, x0) = 1, as appropriate.

It is clear that S(t|x) = 1 when t = 0 and S(t|x) is not necessarily 1 when
t = 0 + ε with any ε > 0. However, due to the lack of information provided
by the data at times close to zero, it is the case that the estimation of S(t|x) is
1 for the smallest values of the time grid in most of the samples of the study.
As a consequence, using Method 1, l(t, x) = 1 = u(t, x) for such small values
of t and the confidence region does not contain the true survival curve, so the
coverage decreases. The proposed solution is to artificially increase the width of
the confidence region at the first points of the grid: for those values of t such
that l(t, x) = 1 = u(t, x), we make l(t, x) = l(t′, x) where t′ ∈ {t1, . . . , tn} is the
first grid point such that l(t0, x) < 1. This is a problem that method 2 does not
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present, since the width of the confidence region is constant at all points of the
time grid and the variability of the conditional survival estimations in the right
tail of the time distribution causes this width to increase.

A confidence region performs well if its coverage is close to the nominal
one, in this case 1 − α = 0.95, and has a small area or average width. The
following values measure the performance of the confidence region and allow for
the comparison of results.

Coverage is the percentage of bootstrap regions that contain the whole
theoretical survival curve and it is defined as follows

1

N

N∑
j=1

I
{
S(tk|x) ∈

(
l(tk, x), u(tk, x)

)
, ∀k = 1, ..., nT

}
.

The mean pointwise coverage is the mean of the proportion of time grid values for
which the confidence region contains the theoretical conditional survival curve.
It is given by

1

N

N∑
j=1

(
1

nT

nT∑
k=1

I
{
S(tk|x) ∈

(
l(tk, x), u(tk, x)

)})
.

The average width of the bootstrap confidence region is defined by

1

N

N∑
j=1

(
1

nT

nT∑
k=1

(
u(tk, x)− l(tk, x)

))
.

Winkler score is also used to compare the behaviour of the methods. See
Winkler (1972) [29]. For classical confidence or prediction intervals, it is defined
as the length of the interval plus a penalty if the theoretical value is outside the
interval. Thus, it combines width and coverage. For values that fall within the
interval, the Winkler score is simply the length of the interval. So low scores
are associated with narrow intervals. When the theoretical value falls outside
the interval, the penalty is proportional to how far the observation is from the
interval. The formula of the Winkler score (WS) as a function of the time and
covariate variables is as follows:

WS(t, x) = u(t, x)− l(t, x) +
2

α
(l(t, x)− S(t|x))I

(
S(t|x) < l(t, x)

)
+
2

α
(S(t|x)− u(t, x))I

(
S(t|x) > u(t, x)

)
.

Since we are working with confidence regions for fixed x ∈ I and t varying over
the interval IT , the integrated Winkle score is proposed as a criteria for the
comparison of the confidence regions. It is defined by

IWS(x) =

∫
IT

WS(t, x)dt.
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and the lower the value of IWS, the better the performance of the confidence
region.

The results obtained are shown in Tables 4 and 5. The high values of
pointwise coverage in all scenarios are remarkable. Furthermore, these coverage
percentages are preserved when using double smoothing, while the average width
of the confidence regions is decreased. This is reflected in the IWS, which presents
much larger values in the Beran’s estimator-based confidence regions.

Method 1 has lower mean coverage, but equal pointwise coverage and
smaller width than Method 2 in Model 1. In Model 2, the coverages of the
two methods are similar, with Method 1 providing confidence regions of smaller
width. The coverage indicates the percentage of times the theoretical curve is
completely contained in the confidence band. This coverage decreases as soon as
the curve goes outside the region at a single point on the time grid. This, that
only a few points go out of the region, is what mainly happens here.

In some of the scenarios, the mean coverage of Method 1 is remarkably
low. For example, the average coverage of the confidence region based on the
Beran’s estimator for Model 1 is 40%. This value indicates that only in 60 out of
100 trials does the confidence region obtained by the proposed method entirely
contain the theoretical curve. However, in the same scenario, the average point
coverage is 96%, so the survival curve is within the confidence region at 96 out
of 100 grid points, which is a considerably high value of the pointwise coverage.

In conclusion, the two proposed methods for the confidence regions have
reasonable behaviours, both presenting very high pointwise coverages. Method
1 provides confidence regions of variable width at the cost of slightly decreas-
ing the average coverage. Method 2 has higher coverage percentages but also a
larger width, which is also constant everywhere. The results obtained using the
smoothed Beran’s estimator in either method are promising.

Model 1 Beran SBeran

P (δ = 0 | X = 0.6) 0.2 0.5 0.2 0.5

Method Meth 1 Meth 2 Meth 1 Meth 2 Meth 1 Meth 2 Meth 1 Meth 2

Width 0.16264 0.21677 0.21664 0.35643 0.15759 0.16426 0.17985 0.21985

Coverage (%) 39.33 97.67 40.33 97.00 97.67 97.33 58.67 98.67

Pointwise
coverage(%)

96.45 99.93 95.85 99.82 98.71 99.44 96.57 99.67

IWS 0.15076 0.17167 0.21480 0.26943 0.13759 0.13550 0.16372 0.17469

Table 4: Coverage, average width and IWS of the 95% confidence regions by
means Methods 1 and 2 and Beran’s and the smoothed Beran’s estimators using
N = 300 simulated samples from Model 1.



22 Rebeca Peláez and Ricardo Cao and Juan Vilar

Model 2 Beran SBeran

P (δ = 0 | X = 0.8) 0.2 0.5 0.2 0.5

Method Meth 1 Meth 2 Meth 1 Meth 2 Meth 1 Meth 2 Meth 1 Meth 2

Width 0.34203 0.34511 0.42486 0.41146 0.24070 0.19981 0.37740 0.27440

Coverage (%) 85.33 89.00 66.67 83.33 88.67 93.67 96.00 99.67

Pointwise
coverage(%)

97.56 99.32 92.90 98.91 98.24 98.94 98.67 99.94

IWS 1.37220 1.18335 2.06192 1.38213 0.93535 0.77965 1.45099 0.92742

Table 5: Coverage, average width and IWS of the 95% confidence regions by
means Methods 1 and 2 and Beran’s and the smoothed Beran’s estimators using
N = 300 simulated samples from Model 2.

This analysis is also illustrated in following figures. Figure 3 shows the
confidence regions for the conditional survival function obtained by Method 1 for
one sample from Models 1 and 2. The confidence regions obtained by Method 2
are shown in Figure 4. The higher variability of the Beran’s estimations in the
resamples with respect to the smoothed Beran’s estimations leads to much wider
confidence regions. When using Method 1, this only affects the width of the
confidence region at the right tail of the time distribution. When using Method
2, this variability causes the confidence region to have a larger width for all points
on the time grid.

Figure 3: Theoretical S(t|x) (red solid line), estimation with MISE bandwidths
(black dashed line) and 95% confidence region (black dotted lines) by means
of Beran’s estimator (left) and the smoothed Beran’s estimator (right) for one
sample from Model 1 (top) and Model 2 (bottom) when P (δ = 0|x) = 0.5 using
Method 1.
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Figure 4: Theoretical S(t|x) (red solid line), estimation with MISE bandwidths
(black dashed line) and 95% confidence region (black dotted lines) by means
of Beran’s estimator (left) and the smoothed Beran’s estimator (right) for one
sample from Model 1 (top) and Model 2 (bottom) when P (δ = 0|x) = 0.5 using
Method 2.

The computation times required to compute the confidence regions based
on both methods are similar. In fact, the times are comparable to those shown
in Section 3, since the really slow part of all these procedures is obtaining the
bootstrap resamples.

6. Estimation of the conditional survival function for length-of-stay
of hospital ward and ICU for COVID-19 patients

The usefulness of the automatic bootstrap selector of the bandwidths of
Beran’s and the smoothed Beran’s estimator is illustrated in this section. The
survival function of the time that COVID-19 patients remain hospitalised in ward
or the Intensive Care Unit (ICU) is estimated by means of Beran’s and the
smoothed Beran’s estimators. A dataset of n = 2484 patients from SERGAS
(Galician health service) with dates of admission and discharge (if applicable),
age, sex and previous diseases of COVID-19 patients in Galicia (Spain) has been
used. The data corresponds to patients suffering from COVID-19 being admitted
in the public hospital system in Galicia since the beginnng of the pandemic until
May 11th 2020.
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The event of interest is the patient leaving ward, so the time variable which
is subject to right random censoring is the length-of-stay in hospital ward. An
informative covariate of the survival time is the age of the patient. Other factors
like sex or previous diaseases are used to disaggregate interesting subpopulations.
There are certain risk factors for COVID-19 that could affect hospitalisation and
recovery times. Two of these are obesity and COPD. COPD (chronic obstructive
pulmonary disease) is a chronic inflammatory lung disease that causes obstructed
airflow from the lungs. The following subsections consider whether or not patients
have obesity or COPD in order to analyse their influence on the hospitalisation
times.

6.1. Length-of-stay in hospital ward

The time until a COVID-19 positive patient leaves the ward is first consid-
ered. A patient leaves the ward because he/she is discharged, admitted to the
ICU or dies. When none of these three circumstances is observed for a patient
before the end of the study, the censoring time is observed. The total number
of hospitalised patients followed up is 2453 and the censoring percentage of this
dataset is 8.85%.

Table 6 shows summary statistics of the hospitalisation time in ward and
the age of COVID-19 patients disaggregating the censored and uncensored groups.
Figure 5 shows the histogram and the kernel density estimation of the time in
ward and the age for all patients.

min. 1stQ. median mean 3thQ. max.

Censored data Time 1.00 5.00 15.00 18.22 28.00 105.00
Age 4.00 69.00 80.00 76.04 87.00 100.00

Uncensored data Time 1.00 6.00 10.00 13.02 16.00 75.00
Age 0.00 60.00 72.00 69.61 82.00 106.00

Table 6: Summary statistics for length-of-stay in ward (Z) and age (X) for the
uncensored group (patients who left ward) and the censored group (patients in
ward).
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Figure 5: Histogram and kernel density estimation for time in ward (left) and
age (right).

The bootstrap algorithm shown in Subsection 2.2 is used here to compute
the bootstrap bandwidths for estimating the survival function of the time in ward
of the Galician COVID-19 patients. Due to the good results that the smoothed
Beran’s estimator showed in the previous simulations, this is the estimator mainly
used in this section. Some interesting confidence regions based on the smoothed
Beran’s estimator are also obtained. Method 1, which was proposed in Subsection
4.1 and provides confidence regions of varying width, is used.

The bootstrap estimation is obtained in a grid of time t1 < · · · < tnT with

tnT = Q̂(0.95) and nT = 100. The pilot bandwidth for the covariate used in the
bootstrap algorithm is the one defined in (2.4) with c = 3/2. The pilot bandwidth
for the time variable is the one defined in (2.8). Three age profiles are considered:
40, 60 and 80 years old. In some cases, because of sample limitations, only 60
and 80 year old profiles will be considered.

The bandwidth that minimises the Monte Carlo approximation of the boot-
strap MISE for Beran’s estimator, MISE∗

x(h
∗), and the two-dimensional band-

width that minimises the Monte Carlo approximation of the bootstrap MISE
for the smoothed Beran’s estimator, MISE∗

x(h
∗, g∗), are shown in Table 7. For

x = 80, the RMISE∗
x(h, g) function is decreasing in h, so the bandwidth selec-

tor for the smoothed Beran’s estimator proposes the upper end of the interval
considered for this smoothing parameter as the bootstrap bandwidth.
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Beran SBeran

x h∗ h∗2 g∗2
40 4.765306 5.507370 1.266695
60 4.571429 5.548651 0.784956
80 13.387760 30.000000 2.348188

Table 7: Bootstrap bandwidth for Beran’s estimation and the smoothed Beran’s
estimation of the conditional survival function of the time in ward for some dif-
ferent values of age.

Figure 6 shows the boostrap estimations of the survival function by means
of Beran’s and the smoothed Beran’s estimator. The differences between the two
estimates lie in the reduction of the roughness of the smoothed Beran estimation.
The true survival curve is not expected to exhibit the jumps caused by the classi-
cal Beran’s estimator. On the contrary, the smoothed Beran estimator returns a
smooth curve that, therefore, behaves more similarly to the true survival curve.
For this reason, the remainder of this real data analysis is conducted with the
smoothed Beran’s estimator.

Figure 6 states that only 15% of the 40 year old patients spend more than
15 days in ward. Meanwhile, 40% of COVID-19 positive patient of 60 or 80 years
old spend more than 15 days in ward and only 20% of these patients spend more
than 25 days in ward. Figure 7 shows the estimation of the conditional survival
function of the time in ward of 60-year-old patients and the bootstrap confidence
region with 95% confidence level obtained by Method 1. The average width of
the confidence region is 0.1227.

Figure 6: Estimation of S(t|x) for time in ward with Beran’s estimator (left)
and the smoothed Beran’s estimator (right) using the bootstrap bandwidths for
x = 40 (dotted line), x = 60 (dashed line) and x = 80 (solid line).
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Figure 7: Estimation of S(t|x) with bootstrap bandwidths for time in ward and
bootstrap confidence region by means of Method 1 based on the smoothed Beran’s
estimator for x = 60.

Length-of-stays were also analysed by classifying individuals into two gen-
der populations. The main conclusions are shown in the following paragraphs.

Figure 8 shows that the differences in length-of-stay between ages when
restricted to the men subpopulation are slight. In contrast, the distribution of
the time in ward seems to be remarkably different for women of different ages.
About 20% of women aged 60-80 spend more than 20 days in ward. Meanwhile,
only 10% of 40-year-old women spend more than 20 days in ward. Furthermore,
this plots show that young women have shorter length-of-stays than young men.
On the contrary, differences between male and female populations are insignificant
at older ages.

Figure 8: Estimation of S(t|x) for time in ward with the smoothed Beran’s es-
timator using the bootstrap bandwidths in the men subpopulation (left) and in
the women subpopulation (right) for x = 40 (dotted line), x = 60 (dashed line)
and x = 80 (solid line).
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Figure 9 shows the estimation of the conditional survival function of the
time in ward of 60-year-old men and 60-year-old women and the corresponding
bootstrap confidence regions with 95% confidence level. The average width of the
confidence region for the men subpopulation is 0.1224 and for the women subpop-
ulation is 0.1272. The confidence regions for both men and women subpopulations
confirm the observed differences in the length-of-stay in ward between them.

Figure 9: Estimation of S(t|x) with bootstrap bandwidths for time in ward and
bootstrap confidence region by means of Method 1 based on the smoothed Be-
ran’s estimator for x = 60 in the men (red lines) and the women (black lines)
subpopulations.

Now, it is considered whether or not patients have COPD. The possible
effect of this risk factor on length-of-stays is discussed below. The age profiles
considered here are 60 and 80 years because the proportion of young patients in
the sample diagnosed with COPD is low.

Figure 10 shows the survival fucntion of the length-of-stays of 60-year-old
and 80-year-old patients according to whether or not they have COPD. The
length-of-stays of COPD patients is slightly higher than in non-COPD patients.
The difference is most pronounced in 60-year-old patients.
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Figure 10: Estimation of S(t|x) for time in ward with the smoothed Beran’s
estimator using the bootstrap bandwidth with x = 60 (left) and x = 80 (right)
in the COPD (dashed lines) and non-COPD (dotted lines) subpopulations.

Another risk factor for COVID-19 disease is obesity, so its possible effect
on the length-of-stay in hospital ward is studied.

Figure 11 shows that the effect of age on length-of-stay is greatly attenuated
by obesity. That is, in the case of obesity, the hospitalisation time is similar for
all considered ages. Figure 12 shows that hospitalisation times are somewhat
longer in 40-year-old patients with obesity than in 40-year-old patients without
obesity. In contrast, at older ages, the effect of this risk factor is not appreciable:
hospitalisation times in ward do not differ between patients with and without
obesity in their 80s.

Figure 11: Estimation of S(t|x) for time in ward with Beran’s estimator using the
bootstrap bandwidth in the obesity patients subpopulation (left) and non-obesity
patients subpopulation (right) for x = 40 (dotted line), x = 60 (dashed line) and
x = 80 (solid line).
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Figure 12: Estimation of S(t|x) for time in ward with Beran’s estimator using
the bootstrap bandwidth with x = 40 (left) and x = 80 (right) in the obesity
(dashed lines) and non-obesity (dotted lines) subpopulations.

6.2. Length-of-stay in ICU

The time until leaving the Intensive Care Unit could also be studied. A
COVID-19 positive patient leaves the ICU because he/she is discharged (from the
ICU) or dies and his/her time until the event of interest is known. In other case,
the censoring time is observed. The total number of patients in the ICU who
were followed up is 288 and the censoring percentage of this dataset is 14.58%.

The smoothed Beran’s estimator is used for estimating the survival function
of the time in ICU of the Galician COVID-19 patients with bootstrap bandwidths
obtained by the automatic selector proposed in Subsection 2.2. Some interesting
confidence regions based on the smoothed Beran’s estimator are also obtained.
The bootstrap estimation is obtained in a grid of time t1 < · · · < tnT with

tnT = Q̂(0.95) and nT = 100. The pilot bandwidth for the covariate used in the
bootstrap algorithm is the one defined in (2.4) with c = 3/2. The pilot bandwidth
for the time variable was defined in (2.8).

An analysis of the effect of the age and the factors sex, diagnosis of COPD
and obesity, parallel to the one carried out for time in ward, was conducted for
time in the ICU. The conclusions of this study for ICU time do not differ from
those obtained for ward time. Hospitalisation times in the ICU follow a similar
pattern to that observed for length-of-stay in the ward. Although this pattern
is attenuated in ICU hospitalisations due to the higher severity of all patients
considered. Some relevant remarks are mentioned below.

Figure 13 shows the survival function of time in the ICU estimated for
several ages by means of the smoothed Beran’s estimator and the bootstrap
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confidence region for the conditional survival function of 60-year-old patient with
95% confidence level obtained by Method 1. It can be seen, in contrast to the time
in ward, that age has little effect on time in the ICU, except in hospitalisations
of more than 20 days where slight differences can be seen with time in ICU being
shorter in younger age groups.

Although age has no global impact on the ICU time, it does have a mild
effect when we consider the male and female populations independently. An
example of this can be seen in the following plot. Figure 14 shows the estimation
of the conditional survival function of the time in the ICU of 60-year-old men and
60-year-old women and the corresponding bootstrap confidence regions with 95%
confidence level obtained by Method 1 based on the smoothed Beran’s estimator.

On the other hand, a similar analysis not included here shows that both
risk factors, COPD and obesity, have a negative effect on patients’ length-of-stay.
In both cases this effect is attenuated by age.

Figure 13: Estimation of S(t|x) for time in ICU with the smoothed Beran’s
estimator (left) using the bootstrap bandwidths for x = 40 (dotted line), x = 60
(dashed line) and x = 80 (solid line) and the bootstrap confidence region by
means of Method 1 for x = 60 (right).
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Figure 14: Estimation of S(t|x) with bootstrap bandwidths for time in the ICU
and bootstrap confidence region by means of Method 1 based on the smoothed
Beran’s estimator for x = 60 in the men (red lines) and the women (black lines)
subpopulations.

7. Discussion

The study of the conditional survival function of the variable length-of-
stay in hospital ward or ICU for COVID-19 patients admitted in the public
hospital system in Galicia since the beginnng of the pandemic until May 11th
2020, carried out in this paper allowed some interesting conclusions to be drawn.
There are significant differences in hospitalisation times in ward of COVID-19
patients related to their age. These differences are more accentuated in women.
Although age has no global impact on the length-of-stay, it does have an effect in
the female population. Moreover, young women have shorter length-of-stays than
young men. There are differences in length-of-stay in both hospital ward and ICU
between patients with or without COPD. The hospitalisation lengths are longer
in patients with COPD, although the differences become less significant at older
ages. At younger ages, length-of-stays are significantly longer in patients with
obesity. However, the effect of this risk factor is not appreciable at older ages.

The bootstrap selectors of the smoothing parameters provide the possibility
to perform this statistical analysis about the length-of-stay of COVID-19 patients,
since they allow to obtain reasonable approximations, according to the mean
integrated squared error, of the optimal bandwidths involved in Beran’s estimator
and the doubly smoothed Beran’s estimator, which are unknown in practice.
Bootstrap-based confidence regions are also informative outputs in this type of
analysis.

The proposed methods require a high computational cost. Obtaining the
appropriate bootstrap bandwidths to estimate the conditional survival function
or computing a confidence region by 500 resamples from a sample of size 1000
requires 3.5 hours, while a sample of size 3000 requires five days. Moreover,
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these times seem to increase quadratically as the sample size grows. For this
reason, for considerably large sample sizes, the problem of selecting the smoothing
parameters could be addressed by using subsample procedures.

The inclusion of new covariates could be relevant in contexts such as the
one analysed in this paper. The methods presented in this paper are easily
generalisable to 2 or 3 covariates. Further generalisation would lead to the curse
of dimensionality. Semi-parametric or full parametric models could be a solution
to this problem. An approach that has previously proven to provide good results
is the Single-Index method. An example of use in a similar context (estimation
of the conditional survival function) is Cao et al. (2010) [7].

Future work will include the implementation of an R package including the
developed software. It will be publicly available on the Comprehensive R Archive
Network (CRAN).
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34 Rebeca Peláez and Ricardo Cao and Juan Vilar

[6] Cai, Z. (2003). Weighted local linear approach to censored nonparametric
regression, In “Recent Advances and Trends in Nonparametric Statistics”
(M.G. Akritas and D.N. Politis, Eds.), Elsevier, Amsterdam, 217–231.

[7] Cao, R.; Francisco-Fernández, M. and Quinto, E.J. (2010). A
random effect multiplicative heteroscedastic model for bacterial growth,
BMC Bioinformatics, 11, 77.

[8] Dabrowska, D.M. (1989). Uniform consistency of the kernel conditional
Kaplan-Meier estimate, The Annals of Statistics, 17, 3, 1157–1167.

[9] Efron, B. (1981). Censored data and the bootstrap, Journal of American
Statistical Association, 76, 374, 312–319.
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