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Abstract:

• The E-value is the minimum strength of association that a potential confounder needs
to have with either the exposure or the outcome, if it were to alone explain an ob-
served association between the two. Originally defined in terms of the risk ratio
(relative risk), this short note explores the E-value formulae where one or several of
the three relationships is measured using the odds ratio instead. A rigorous but ele-
gant alternative is presented to the square root approximation that has been proposed
earlier as a convenient but wrong way to combine odds ratios and E-values.
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1. INTRODUCTION

This work concerns two measures of association between binary random
variables X and Y , the risk ratio (relative risk) and the odds ratio, respectively
defined as

RRXY =
P(Y |X)

P(Y |X)
, ORXY =

P(Y |X)P(Y |X)

P(Y |X)P(Y |X)
.

Let X and Y be independent conditional on a third binary random variable Z,
which is not negatively associated with either X or Y :

(1.1) (X ⊥⊥ Y ) |Z ,

{
RRXZ ≥ 1 ,

RRZY ≥ 1 .

The second assumption is not restrictive as we can replace a variable with its
opposite if necessary, and that consequently RRXY ≥ 1 as well. In terms of
graphical causal models (1.1) means that Z d-separates X and Y , which is the
case for example when X and Y have no direct causal relationship, Z is their
common cause or a mediator (but not a common consequence), and no other
variables play a role.

The classical Cornfield inequalities by Cornfield [1] and Schlesselman [6]
now state that

min{RRXZ ,RRZY } ≥ RRXY .

The causal interpretation is as follows: if and observed association between X
and Y was entirely due to a confounder or a mediator Z, then both the risk ratio
between X and Z and between Z and Y must be at least as big as the risk
ratio between X and Y . The first development beyond the classical Cornfield
inequalities was by Lee and Wang [4], who instead of the minimum bounded
a quantity called confouding rate ratio to assess sensitivity to stratification. A
different but natural perspective is to swap the minimum into a maximum. Now
either the risk ratio between X and Z or between Z and Y must be at least
the so-called E-value RRXY +

√
RRXY (RRXY − 1), as formalized in the following

theorem of VanderWeele and Ding.

Theorem 1.1 (VanderWeele & Ding [8]). Assuming (1.1),

max{RRXZ ,RRZY } ≥ RRXY +
√
RRXY (RRXY − 1) .

VanderWeele and Ding also suggest [8] that it should become a convention
in all observational science to report the E-value or some comparable form of
sensitivity analysis. Another E-value formula, although not dubbed as such, has
been published in the form of the following theorem by Lee.
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Theorem 1.2 (Lee [3]). Assuming (1.1),

max{ORXZ ,RRZY } ≥ Ω+
√
(Ω + 1)(Ω− 1) ,

where Ω = 1 + 2(RRXY − 1).

This time one of the three relationships is measured by the odds ratio in-
stead of the risk ratio. On that same note, if we want to bound max{RRXZ ,ORZY }
or max{ORXZ ,ORZY } with a function of RRXY we can still use Theorems 1.1 and
1.2, respectively, because RRZY ≤ ORZY . The bounds are optimal.

Above two out of the three relationships were allowed to be measured by
the odds ratio instead of the risk ratio, while RRXY remained fixed. The purpose
of this short note is to explore the cases where the association between X and Y
is quantified with ORXY . The odds ratio arises naturally in the context of logistic
regression or case-control design, and sensitivity analysis results tailored for odds
ratio should be preferred over unnecessary conversions to risk ratios. In a recent
paper [5], the author published an odds ratio analogue

min{ORXZ ,ORZY } ≥ ORXY

of the classical Cornfield inequalities and completed the collection of joint bound-
ing formulae of the type (4.1) and (4.2) by Ding and VanderWeele [2] and Lee
[3], respectively. Such joint bounding formulae are easily inverted into E-value
formulae. Suppose t ≤ f(r, s), where t, r and s are the relevant risk- or odds ra-
tios in question. Provided that f is increasing with respect to both r and s in the
domain r > 1, s > 1, we can bound t ≤ f(max(r, s),max(r, s)) = F (max(r, s))
and then solve max(r, s) ≥ F−1(t). The author however failed to seize the oppor-
tunity to supplement the joint bounding formulae in [5] with the corresponding
E-value formulae—this omission is fixed in Section 2. However, some E-value
formulae remain impossible, such as bounding of max{RRXZ ,RRZY } with a func-
tion of ORXY , because not all combinations of risk ratios and odds ratios allow a
joint bounding formula [5]. In this instance VanderWeele recommends [8] approx-
imating ORXY with either RRXY or RR2

XY [7] depending on whether the outcome
Y is rare or common, respectively. Section 3 proposes a rigorous but elegant
alternative to the approximation, in terms of a non-zero parameter α controlling
the least and largest of the four elements in the probability mass function of Y
given X (incidentally also quantifying how much error the square approxima-
tion would introduce). Finally, section 4 takes a new look at the joint bounding
formulae missing from the author’s previous work due to them not existing in
general form [5], and presents restricted versions of them that use the parameter
α. The results of section 3 could also be derived from these new joint bounding
formulae of section 4 using the inversion procedure described above.
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2. E-VALUE FORMULAE FOR THE ODDS RATIO

Theorem 2.1. Assuming (1.1),

max{ORXZ ,ORZY } ≥ Ω+
√
(Ω + 1)(Ω− 1) ,

where Ω = 1 + 2(ORXY − 1).

Proof: The statement is similar to that of Theorem 1.2 but we present
a proof nevertheless. Under assumption (1.1) the joint bounding formula

ORXY ≤
( √

ORXZORZY + 1√
ORXZ +

√
ORZY

)2

holds by another theorem of the author [5]. Denote M = max{ORXZ ,ORZY }.
Define and differentiate

f(r) =

(
rs+ 1

r + s

)2

, fr(r) =
2(rs+ 1)(s2 − 1)

(r + s)3
> 0 ,

where s > 1. We therefore get

(2.1) ORXY ≤
(
M + 1

2
√
M

)2

⇔ ORXY − 1 ≤ (
√
M −

√
ORXY )

2 .

By the odds ratio versions [5] of the Cornfield inequalities we have M ≥ ORXY ,
and thereby also |

√
M−

√
ORXY | =

√
M−

√
ORXY . Taking a square root of both

sides of (2.1) and solving for
√
M yields

√
M ≥

√
ORXY +

√
ORXY − 1 ,

from which the claim follows by squaring.

Theorem 2.2. Assuming (1.1),

max{RRXZ ,ORZY } ≥ Ω+
√
(Ω + 1)(Ω− 1) ,

where Ω = 1 + (ORXY − 1)/2

Proof: Under assumption (1.1) the joint bounding formula

ORXY ≤ 1 + (RRXZ − 1)ORZY

RRXZ

= 1 +
(RRXZ − 1)(ORZY − 1)

RRXZ

holds by another theorem of the author [5]. Denote M = max{RRXZ ,ORZY }.
Define and differentiate

f(r, s) =
1 + (r − 1)s

r
, fr(r, s) =

s(r − 1)

r2
> 0 , fs(r, s) =

r − 1

r
> 0 ,
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where r > 1. Now

(2.2) ORXY ≤ M2 −M + 1

M
⇔ (Ω + 1)(Ω− 1) ≤ (M − Ω)2 .

If it was true that M < Ω, then

2M − 1 < 2Ω− 1 = ORXY ≤ M2 −M + 1

M
⇔ M2 < 1 ,

which is a contradiction. Therefore |M −Ω| = M −Ω, and the theorem is proved
by taking a square root and adding Ω to both sides of (2.2).

Due to the symmetry of the odds ratio, Theorem 2.2 can also be used to
bound max{ORXZ ,RRY Z}.

3. E-VALUE FORMULAE UNDER AN EXTRA ASSUMPTION

As pointed out earlier [5], ORXY cannot be bounded from above by a
joint function of RRXZ and RRZY , or of ORXZ and RRZY . Consequently, nei-
ther max{RRXZ ,RRZY } nor max{ORXZ ,RRZY } can be bounded from below by a
function of ORXY—joint bounding will be returned to in Section 4. Both the risk
ratio and the odds ratio are nevertheless common measures of association, and
the desire to do sensitivity analysis doesn’t vanish when relationship between X
and Y is quantified by the odds ratio. At this point we’re aware of the option
to use Theorem 2.1, but if one still prefers to measure the associations between
X and Z and between Z and Y using the risk ratio, some auxiliary parameter is
needed. Assume that the conditional probabilities of Y or Y given X or X are
not close to zero or one, or precisely for some α > 0

(3.1)

{
min{P(Y |X),P(Y |X),P(Y |X),P(Y |X)} ≥ α ,

max{P(Y |X),P(Y |X),P(Y |X),P(Y |X)} ≤ 1− α .

Now we can bound the odds ratio with the risk ratio by scaling the portion
exceeding one using the parameter α, and as corollaries derive the required E-
value formulae.

Lemma 3.1. Assuming (3.1),

ORXY ≤ 1 +
RRXY − 1

α
.

Proof: Denote P(Y |X) = r so that

P(Y |X) = RRXY r , 0 < r <
1

RRXY

.
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By definition

ORXY =
P(Y |X)P(Y |X)

P(Y |X)P(Y |X)
=

RRXY (1− r)

1− RRXY r
= f(r) ,

and differentiating gives

fr(r) =
RRXY (RRXY − 1)

(1− RRXY r)2
> 0 .

As r approaches 1/RRXY , the value f(r) tends to infinity, but with the boundaries
(3.1) P(Y |X) = 1− RRXY r actually hits α first at the point r = (1− α)/RRXY .
This happens before P(Y |X) = 1− r hits α at r = 1− α. Under (3.1), the odds
ratio is therefore bounded from above by f((1− α)/RRXY ).

Theorem 3.1. Assuming (1.1) and (3.1),

max{RRXZ ,RRZY } ≥ Ω+
√

Ω(Ω− 1) ,

where Ω = 1 + α(ORXY − 1).

Proof: Assuming (3.1), RRXY ≥ Ω by Lemma 3.1. Assuming (1.1), we
can just plug this to the E-value formula of VanderWeele & Ding in Theorem
1.1.

Theorem 3.2. Assuming (1.1) and (3.1),

max{ORXZ ,RRZY } ≥ Ω+
√
(Ω + 1)(Ω− 1) ,

where Ω = 1 + 2α(ORXY − 1).

Proof: Assuming (3.1), RRXY ≥ Ω by Lemma 3.1. Assuming (1.1), we
can just plug this to the E-value formula of Lee in Theorem 1.2.

VanderWeele and Ding have earlier suggested [8] that for rare outcomes
the original E-value formula of Theorem 1.1 is applicable for the odds ratio as
well, and that for common outcomes it becomes applicable after approximating√
ORXY ≈ RRXY [7]. The rare–common distinction concerning the outcome Y is

somewhat misleading as the error factor introduced by the approximation can be
arbitrarily large even if the prevalence of Y is one half, and in fact approximation
was mathematically motivated using the assumption (3.1) instead. VanderWeele
implicitly derives [7] the upper bound for the introduced error as

(3.2) ORXY ≤ RR2
XY

4α(1− α)
,
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Figure 1: Visualization of different lower bounds of max{RRXZ ,RRZY }.
The solid line is Theorem 3.1. The dashed line is the cur-
rently recommended [8] raw square root approximation; plug-
ging

√
ORXY in place of RRXY in Theorem 1.1. It has the draw-

back that it’s not actually a bound, and as can be observed the
error introduced by approximation can be big. The dotted line
corrects the square root approximation using inequality (3.2);
it’s rigorous but weaker than the solid line bound given by The-
orem 3.1.

and so it would be more appropriate to plug in
√

4α(1− α)ORXY to Theorem
1.1 than the raw square root approximation. Compared to this strictly correct
version of the square root approximation Theorem 3.1 gives a stronger statement,
and the new E-value formula can be seen as quite naturally scaling the portion
exceeding one. The comparison is visualized in the figure above.

4. JOINT BOUNDING FORMULAE UNDER AN EXTRA AS-
SUMPTION

The last two theorems are joint bounding formulae that only became possi-
ble under the newly introduced assumption (3.1), included here for completeness
sake.

Theorem 4.1. Assuming (1.1) and (3.1),

ORXY ≤ 1 +
(RRXZ − 1)(RRZY − 1)

α(RRXZ +RRZY − 1)
.

Proof: Assuming (1.1),

(4.1) RRXY ≤ RRXZRRZY

RRXZ +RRZY − 1
= 1 +

(RRXZ − 1)(RRZY − 1)

RRXZ +RRZY − 1
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by a theorem of Ding and VanderWeele [2]; the second form is obtained with
simple algebraic manipulation. Assuming (3.1), we can plug (4.1) into the bound
of Lemma 3.1 and simplify.

Theorem 4.2. Assuming (1.1) and (3.1),

ORXY ≤ 1 +
(ORXZ − 1)(RRZY − 1)

α(
√
ORXZ +

√
RRZY )2

.

Proof: Assuming (1.1),

(4.2) RRXY ≤
( √

ORXZRRZY + 1√
ORXZ +

√
RRZY

)2

= 1 +
(RRXZ − 1)(RRZY − 1)

(
√
ORXZ +

√
RRZY )2

by a theorem of Lee [3]; again the second form is but algebraic manipulation.
Assuming (3.1), we can plug (4.2) into the bound of Lemma 3.1 and simplify.

It’s easy if somewhat laborious to use the law of total probability and
differential calculus in the same manner as employed in [5] to show that the
bounds in Theorems 4.1 and 4.2 are sharp given the bounds (3.1). Likewise,
using Theorems 4.1 and 4.2 as a staring point instead of Lemma 3.1 wouldn’t
improve the bounds in Theorems 3.1 and 3.2.
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