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Abstract:

• Datasets with a heavy-tailed histogram tend to have a large number of outliers, which provide
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have different characteristics. Then, the choice of a threshold that separates these two parts is
important. We propose a novel approach based on the Empirical Likelihood method to estimate
this threshold. Because the transition between the bulk and tail parts cannot be fully disjointed in
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1. INTRODUCTION

Datasets with a heavy-tailed histogram tend to have a large number of outliers that

provide important information. In many fields, datasets are characterized by this feature,

such as Psychology (Barabási, 2005; Malmgren et al., 2008), Economics (Rossi-Hansberg and

Wright, 2007; Giesen and Sudekum, 2010), Finance (Mandelbrot, 1963; Gabaix et al., 2003;

Gabaix, 2009), Statistics (Richardson, 1948; Clauset andWoodard, 2013; Cirillo and N., 2016)

and Hydrology (Anderson and Meerschaert, 1998; Katz et al., 2002; Bernardara et al., 2007),

to name a few. One important challenge for analyzing datasets with this feature is that the

behaviours of the bulk part and tail part are different. For example, it is generally accepted

that Pareto distributions are useful when describing the distributions of high incomes, which

are represented in the tail parts of income datasets. However, Pareto distributions perform

poorly over the whole range of incomes (Reed, 2003). Pareto distributions have infinite

variance when the shape parameter is smaller than two, and the usual least square method

cannot be used directly when datasets have infinite variance (Kanter and Steiger, 1974).

Thus, the properties of one part of the dataset can affect the choice of method and mislead

the analysis of the other part or the overall pattern, leading to a question about which part of

the dataset should be dropped to study non-extreme events or be used to predict rare events.

We loosely use the word “threshold” to denote the solution.

We might borrow approaches from Extreme Value Theory (EVT) to estimate the

threshold. In EVT, a tail parameter k, which is the number of upper observations used

to estimate the tail part of the dataset, is a possible threshold. It is possible to choose k by

detecting the change of slope in the mean excess plot (Embrechts et al., 1997) or the first

“stable” region of the hillplot which is based on the hill estimator (Hill, 1975 and Drees et al.,

2000). However, the most critical issue of these graphical diagnostics is that the results are

subjective. A glance ahead to Figure 1 will indicate why this is so. To avoid these problems,

completely programmed estimators that can automatically choose the k are widely stud-

ied (Caeiro and Gomes, 2016). Hall and Welsh (1985) derived a formula by minimizing the

asymptotic mean squared error (AMSE) of the Hill estimator to find the optimal k. However,

it requires extra knowledge of an unknown second-order parameter. The estimation of the

second-order parameters has been studied in several papers, like Gomes and Pestana (2007)

and Caeiro and Gomes (2014). Bootstrap methods based on the minimization of the AMSE

criterion are also developed due to the need to know the prior knowledge of the second order

parameter (Hall, 1990; Draisma et al., 1999; Danielsson et al., 2001; Gomes and Oliveira,

2001; Gomes et al., 2012). However, the goal of these AMSE minimization approaches is

to find an optimal k that balances the bias and variance of the tail index estimator which

focuses on the tail part. They are not designed to estimate the transition region between the

bulk and tail parts.

Besides these, some papers compared the empirical distribution of data above a thresh-

old k with the fitted generalized Pareto distribution (GPD) by using some goodness-of-fit

tests (Northrop and Coleman, 2014; Bader et al., 2018; Schneider et al., 2021), others mini-

mized the distance between the L-moments of the datasets and the fitted GPD (Silva Lomba

and Fraga Alves, 2020) or a standard Exponential distribution (Kiran and V., 2021). But,

they aim to find a k such that the empirical distribution of data above the k certainly fits the

GDP. Moreover, Papastathopoulos and Tawn (2013) introduced extensions of the GPD with
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a discussion about the suitable selection of k. However, its ultimate goal is to improve the

estimation of the tail index. Additionally, Behrens et al. (2004) had used Bayesian methods

to analyze extreme events and discuss the uncertainty of k. Lee et al. (2015) investigated

Bayesian measures of surprise to determine suitable k for extreme value models. But, their

primary goal is also not to study the transition region or threshold selection. Some works

in EVT are even interested in describing the dataset bypassing the threshold selection. For

example, Naveau et al. (2016) proposed an extended GPD to jointly model low, moderate,

and extreme observations without the need for threshold selection. de Carvalho et al. (2022)

proposed a Bayesian regression model for the conditional left and right tail of a possibly

heavy-tailed response excluding the requirement for threshold selection.

In EVT, k is reasonable as long as the tail part gives enough information to estimate

the tail index, so the bulk part is ignored and a fixed k is acceptable. But, the threshold is

a fixed number only if the bulk part and tail part can be fully separated, which is much less

likely to happen. Otherwise, we cannot find a fixed number threshold, because the transition

between the two parts is gradual. Although extreme value mixture models, which combine

a model of the bulk distribution with an extreme value tail model, treat k as a parameter

and use the information from the bulk part, the major purpose of these models is also not to

study the threshold. Moreover, these models might lack of robustness of the bulk and tail fits

to each other and are the computational complexity and implementation difficult (Scarrott

and MacDonald, 2012).

To study the transition, we propose an approach based on the Empirical Likelihood

(EL) method. In the transition region, the likelihood of a variable falling in the tail part

increases with the value of the variable, whereas the likelihood of a variable falling in the

bulk part increases as the value of the variable decreases. Naturally, the threshold can be

viewed as a random variable K with a density function representing the likelihood of possible

values of K that separate the bulk and tail parts.

EL, as a non-parametric method (Owen, 1988; Owen, 1990; Imbens (2002)) is a good

candidate for analyzing datasets with a heavy-tailed histogram, since these datasets are

usually not amenable to a known distribution. It has been applied in heavy-tailed distribution

to construct confidence intervals for the tail index Lu and Peng (2002), the mean Peng (2004)

and high quantiles Peng and Qi (2006). Additionally, Einmahl and Segers (2009) proposed

an estimator for the spectral measure of an extreme-value distribution based on EL. A review

of EL in extreme-value statistics is referred to Qi (2008), while a comprehensive review of EL

is referred to Lazar (2021).

EL assigns weights to each observation of the sample dataset without parametric as-

sumptions through an empirical likelihood ratio function under certain constraints. By im-

posing the right restrictions, we expect these weights to shed light on the transition region

and indicate where the heaviness of a distribution starts. In addition, we view the heaviness

as a relative concept. Many concepts only make sense when relative to a benchmark. For ex-

ample, what height is considered tall? The answer to this question is very subjective without

a benchmark. Also, the choice of benchmark should align with the specific characteristics

and goals of the research. Therefore, our approach allows researchers to choose benchmarks

based on their specific research questions. For example, in environmental science, the choice

of benchmark may depend on the type of pollutant or environmental variable being stud-

ied. In finance, different benchmarks might be used to assess or compare tail risk in various
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financial products or asset classes.

The rest of the paper is structured as follows. Section 2 describes the methodology

proposed. Section 3 reports and analyzes the simulation results. Section 4 presents an

application of our method to an empirical dataset. Section 5 concludes the study.

2. EL-BASED ALGORITHM

We model the transition between the bulk and tail parts through the following empirical

likelihood ratio function,

max
w1,...,wn

{
n∏

i=1

wi

∣∣∣∣∣
n∑

i=1

wim(Xi, θ) = 0, wi ≥ 0,

n∑
i=1

wi = 1

}
,

where m(X, θ) is a set of appropriately chosen restrictions that link the dataset of interest to

the benchmark, X1, . . . , Xn ∈ R are independent random variables with distribution F , and

wi’s are the imputed weights attached to Xi’s. wi can be found by the Lagrange multiplier

method, which gives the weight function

wi = n−1 (1 + λm(Xi, θ))
−1 ,

where λ is the Lagrange multiplier. Now, we should provide the intuition behind our method:

by aligning the “center” and “spread” of the benchmark and dataset of interest, the weights

implied by the pre-specified constraints m(X, θ) disclose the relative rareness of realizations

with similar values.

As variance measure the “spread” of the distribution, the variance constraint is used in

this paper. This algorithm does not require F itself to have µ and/or σ because the sample

mean and variance, which are well-defined, can serve as the same device. Other constraints

related to the “spread” of the datasets also work. For example, we can replace the “variance

restriction” with restrictions in terms of a combination of low and high quantiles, which

always exist.

Next, the choice of the benchmark should be based on researchers’ interests and sample

datasets. As an exposition, we pick the benchmark to be an Exponential random variable

and we only focus on the right tail. To align the benchmark and dataset of interest, we let the

median of the benchmark sample equals to the median of the dataset. Then, the threshold

is assumed to be bigger than the median of the dataset.

Once we have the benchmark sample, we compare the weights of dataset and bench-

mark. To make them comparable, we focus the sign of λ in the weight function of the dataset

equals to the sign of λ in the weight function of the benchmark sample. Our method can be

summarized as follows:

a) From a random sample of F , we obtain its estimated mean (µ̂) and variance (σ̂2).

b) Under the “variance restriction”, the empirical likelihood ratio function becomes

max
w1,...,wn

{
n∏

i=1

wi

∣∣∣∣∣
n∑

i=1

wi (Xi − µ̂)2 = σ̂2, wi ≥ 0,

n∑
i=1

wi = 1

}
,
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and the weight function for Xi’s are

(2.1) wi = n−1
(
1 + λ

[
(Xi − µ̂)2 − σ̂2

])−1
,

where the Lagrange multiplier λ can be found by numerical search. Denote the weights

of Xi’s by
{
wXi

}n

i=1
.

c) Simulate a random sample Y1, . . . , Yn from an Exponential distribution with mean being

Q̂/ ln 2, where Q̂ is the sample median of Xi’s.

d) Calculate weights of Yi’s by substituting Yi’s, its true mean, Q̂/ ln 2 and true variance,

(Q̂/ ln 2)2, into the left side of equation (2.1), denoted as
{
wYi

}n

i=1
.

e) Sort
{
wXi

}n

i=1
and

{
wYi

}n

i=1
in ascending order, respectively. Denote the sorted weights

as
{
wX
(i)

}n

i=1
and

{
wY
(i)

}n

i=1
.

f) Find the set of crossing points Ic between
{
wX
(i)

}n

i=1
and

{
wY
(i)

}n

i=1
by collecting the

index numbers j such that the sign of wX
(j)−wY

(j) differs from the sign of wX
(j+1)−wY

(j+1),

for j = 1, . . . , n− 1.

g) Select the minimum value kc of Ic that is bigger than n/2.

h) Repeat (c)-(g) m times.

This procedure gives {kc1, . . . , kcm} that is the set of all possible values of the threshold

K which models the transition region, denoted as R(K). In many studies, researchers would

prefer a simplified version of K, e.g., a representative number, denoted by τ , from K. There

are many possible choices for τ and in the current paper, τ is defined to be the average of K.

Further inference is now feasible because τ has variance attached to it.

3. SIMULATION STUDIES

We focus on the heaviness of two types of distributions: Pareto distribution and mixed

distribution, which is a linear combination of Pareto and Normal distributions. A Pareto

distribution is defined by its scale and shape parameters. Here, we fix the scale parameter to

be 1 and will only change the value of the shape parameter.

We consider four cases, each with 10000 observations. Of the first two, one involves

Pareto distribution where the mean and variance exist (shape = 6) and the other focuses

on truncated Pareto distribution. The truncated Pareto distribution is a truncated version

of the Pareto distribution, which is truncated at 0.99 quantile of the Pareto distribution

with shape = 1.5. We denote them as Pareto(6) and Pareto(1.5), respectively. For a Pareto

distribution, the tail index is the inverse of the value of the shape parameter. Thus, the tail

index is around 0.1667 for Pareto(6) and around 0.667 for Pareto(1.5). The other two cases

are mixed distributions: 90% of a Pareto(6) or Pareto(1.5) and 10% of a Normal random

variable. Using Pareto(6) as an example, since we are interested in the right tail, we let

the 40th and 45th percentile values of the Normal distribution equal the same percentiles of
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the Pareto(6) so that the shape of the right part of the mixed distribution is not distorted.

We denote this mixed distribution as Mixed(6). Similarly, Mixed(1.5) for the other mixed

distribution.

Figure 1: The top panel shows the hillplot for all k and the bottom panel
limits the range of k.

Figure 1 provides an example of a Pareto(1.5) hillplot to explain why graphical methods

can be subjective. Three intervals, [420, 550], [700, 950] and [2200, 3000], are indicated in the

bottom panel of Figure 1 with different types of lines. All of these three intervals can be

selected as the first “stable” region under different standards. Thus, the result computed

from the first “stable” region is not objective. With substantial expertise, it is possible to

choose an acceptable unique solution. For example, the minimum value of the largest intervals

[2200, 3000] can be selected. However, it requires expert experience and is time-consuming

when there are many datasets.

The results for the four cases can be found in the first four rows of Table 1. To make

the value of τ easier to interpret, we present it in percentage format. For example, τ is

86.1% for Pareto(6), meaning that the heaviness starts at the top 13.9% of Pareto(6). The

difference between the values of τ for Pareto and mixed distributions is very small (less than

0.31%), since the heaviness is only driven by the Pareto component. As a side result, the

table also presents the estimated tail-index, γ̂, by using τ as the tail parameter in Hill’s

tail-index estimator. Given the true value of the tail index, we calculate the mean squared

error (MSE) of γ̂. The last column of Table 1 shows that the MSE for all cases is fairly small.

Though it is not our goal in this paper to propose another tail parameter estimator, which is

one of the focal points in EVT, our approach can be viewed as an addition to that literature.

Next, we set Pareto(6) instead of an Exponential distribution as the benchmark for

Pareto(1.5). In Table 1, the value of τ is 84.97% when the target is Pareto(1.5) and bench-

mark is an Exponential distribution, whereas the value of τ is 86.67% when the benchmark is

Pareto(6). The tail of Pareto(6) is heavier than the tail of Exponential distribution, therefore,

the heaviness starts at a higher quantile. Then, the γ̂ for Pareto(1.5) is calculated by set-

ting the tail parameter in Hill’s tail-index estimator be 84.97% and be 86.67%, respectively.
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Target distribution Benchmark τ γ̂ MSE

Pareto(6) Exponential 86.10% 0.1694 0.00002
Mixed(6) Exponential 86.24% 0.1562 0.00018
Pareto(1.5) Exponential 84.97% 0.5477 0.01428
Mixed(1.5) Exponential 85.28% 0.5185 0.02205
Pareto(1.5) Pareto(6) 86.67% 0.4865 0.03258
Beta(2,5) Exponential 81.20% 0.0603 0.00436

Table 1: Simulation results

More interestingly, when the benchmark is an Exponential distribution, the estimated shape

parameter is 1.826, which implies that the distribution has an infinite variance; whereas, the

estimated shape parameter is 2.055, meaning that the distribution has a finite variance when

the benchmark is Pareto(6).

Note that if we force Pareto(1.5) to be the benchmark and Pareto(6) be the distribu-

tion of interest, we get 86.67% back. The “role reversal” property of our algorithm insures

relative heaviness. In addition, the tail index of the target distribution and benchmark are

both allowed to be non-positive. For example, we can force a Beta distribution with two

shape parameters (2, 5) which has a negative tail index, denoted by Beta(2,5), be the target

distribution and an Exponential distribution which has a zero tail index be the benchmark.

Then, it gives the threshold K of the Exponential distribution with benchmark Beta(2,5) by

the “role reversal” property, since the tail of the Exponential distribution is heavy relative

to a Beta distribution. The results are shown in the last row of Table 1. The value of τ is

81.20% and γ̂ is 0.0603 which is close to 0. Note that the γ̂ in this case is the estimated

tail-index of the Exponential distribution and is calculated by using the Moment tail-index

estimator proposed by Dekkers et al. (1989), since the Hill estimator only works for γ > 0.

Target distribution Benchmark τ γ̂ MSE

Pareto(6) Exponential 66.68% 0.1678 0.00001
Mixed(6) Exponential 67.61% 0.1529 0.00018
Pareto(1.5) Exponential 72.04% 0.5899 0.26473
Mixed(1.5) Exponential 71.18% 0.5496 0.26474
Pareto(1.5) Pareto(6) 79.39 % 0.5711 0.00926
Beta(2,5) Exponential 71.05% 0.0822 0.00724

Table 2: Simulation results for the multiple restriction

The choice of restriction of the EL ratio function is also based on the specific research

questions and will affect the result. We add a median restriction to the empirical likelihood

ratio function and the results for all cases by using the median and variance restriction can

be found in Table 2. Again, the difference between the values of τ for Pareto and mixed

distributions is very small. The values of τ by using the median and variance restriction are

all smaller than the values of τ by using only variance restriction, since a median restriction

is not sensitive to the presence of outliers.

Although τ and k are two different concepts, we still present the value of k in Table 3.

Two approaches, denoted as DAMSE and GC, presented in Caeiro and Gomes (2016) are
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considered. DAMSE selects k by minimizing the AMSE of Hill estimator, that is,

k := argmin
k

AMSE(γ̂(k)).

Then, DAMSE suggests the estimator

k̂ :=

⌊(
(1− ρ̂)2n−2ρ̂

−2ρ̂β̂2

)1/(1−2ρ̂)
⌋
,

where ⌊x⌋ denote the integer part of x, β̂ and ρ̂ are the estimated second-order parameters.

The ρ–estimators and β–estimators refer to Fraga Alves et al. (2003) and Gomes and Martins

(2002), respectively. GC selects k by minimizing AMSE of an auxiliary statistic, which is

written as

Tk,n := γ̂([k/2])− γ̂(k), k = 2, ..., n− 1.

The observed values of Tk,n are obtained by the double bootstrap procedure. More detail

refers to Gomes et al. (2012). From Table 3, we find that DAMSE and GC perform best for

Pareto(6) which is a standard Pareto distribution with finite variance, because DAMSE and

GC depend on the AMSE minimization of the Hill estimator.

Target distribution Method k̂ γ̂

Pareto(6) DAMSE 81.32% 0.1660
Mixed(6) DAMSE 50.84% 0.1525
Pareto(1.5) DAMSE 98.38% 0.2756
Mixed(1.5) DAMSE 96.92% 0.3634
Pareto(6) GC 90.26% 0.1659
Mixed(6) GC 25.30% 0.1528
Pareto(1.5) GC 94.85% 0.4343
Mixed(1.5) GC 78.07% 0.5557

Table 3: Threshold selection by approaches from EVT

4. AN EMPIRICAL EXAMPLE

We apply our approach to a U.S. household asset value dataset, which draws from the

2018 Survey of Income and Program Participation (SIPP) and contains 743,753 observations.

The SIPP, sponsored by the U.S. Census Bureau, collects information of households’ economic

status, such as assets and liabilities. Table 4 presents descriptive statistics of the household-

level total asset values. The top panel of Figure 2 shows a histogram of the complete dataset

and the bottom panel presents the values up to 6 million to make the histogram’s trends

easier to see.

Minimum Mean Maximum Skewness Kurtosis

1 690,824 142,631,700 21 897

Table 4: Summary Statistics of SIPP Total Asset Values

From the table and histograms, we see that total asset values tend to have a large

number of outliers and its kurtosis is fairly large; that is, the dataset is heavy-tailed. Figure 3
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Figure 2: Histograms of household-level total asset values

shows the log-log plot of household-level total asset values. The horizontal axis is the log

value of household-level total asset values and the vertical axis is the log value of its survival

probability. The tail part of the log-log plot is almost a straight line, which suggests that

this portion of the dataset is a member of the Pareto distribution family.

Figure 3: The log-log plot of household-level total asset values with K, τ ,
kdotted and kdashed.

Min. 1st Qu. τ Median 3rd Qu. Max.

50.04% 75.65% 75.66% 76.28% 76.57% 97.65%

Table 5: Summary Statistics of K

Again, we set Exponential distribution to be the benchmark and align the median.

The summary statistics of K are reported in Table 5 with m = 1000 and Figure 4 is the

corresponding hillplot. Two intervals, [2700, 4200] and [5500, 7000], are chosen as the “first”
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possible stable region, where one is between dotted lines, and the other is between two dashed

lines. The two intervals are [99.44%, 99.64%] and [99.06%, 99.26%] in terms of percentiles.

Any numbers in those two intervals are admissible choices of the threshold for EVT method.

If we denote the middle points by kdotted = 99.54% and kdashed = 99.16% and together with

τ = 75.56% and R(K) = [50.04%, 97.65%], five vertical lines (dotted, dashed, solid and two

longdash) are added to the aforementioned log-log plot, as shown in the Figure 3. In addition,

the k is 99.50% by using DAMSE and is 97.52% by using GC.

An encouraging finding is that the solid line and longdash lines, which represent τ

and K are close to the turning point, beyond which Pareto distribution becomes a good

approximation.

Figure 4: The top panel shows the hillplot of the complete SIPP total
assets and the bottom panel limits its range.

5. CONCLUSION

We propose a novel approach based on EL to characterize the transition between the

bulk and tail parts of a dataset. There are many desirable features attached to this method. It

remains to show the convergence rate and limiting distribution of τ (or some other important

statistics of K). We defer those topics to future research projects.
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