
REVSTAT – Statistical Journal
Volume 0, Number 0, Month 0000, 000-000
https://doi.org/00.00000/revstat.v00i0.000

Comparative Study on Probability Density Estimators of Sam-
ple Maximum and Data Transformation

Authors: Taku Moriyama �
– School of Data Science, Yokohama City University,

Yokohama, Japan
moriyama.tak.lu@yokohama-cu.ac.jp

– Department of Management of Social Systems and Civil Engineering, Tottori University,
Tottori, Japan

Received: Month 0000 Revised: Month 0000 Accepted: Month 0000

Abstract:

• Comparative studies on estimators of the probability density function of sample maximum are
conducted. This study presents a plug-in type of and a new block-maxima-based kernel density
estimators as the alternatives of the parametric estimator fitting to the approximate generalized
extreme value density function. Asymptotic properties of the density estimators are investigated,
which shows that the optimal convergence rates depend on the extreme value index of the distri-
bution. Furthermore, this study investigates the density estimators with data log-transformation.
It is demonstrated that the log-transformation makes the estimators numerically stable in finite
sample case. Finally, two illustrative examples are provided.

Keywords:

• Extreme value; data transformation; kernel-type estimator; mean squared error; nonparametric
estimation; sample maximum.

AMS Subject Classification:

• 62G32, 62G07, 60G70.

� Corresponding author

https://doi.org/00.00000/revstat.v00i0.000
https://orcid.org/0000-0002-9513-0718
mailto:moriyama.tak.lu@yokohama-cu.ac.jp


2 Taku Moriyama

1. INTRODUCTION

Let X1, X2, · · · , Xn be independent and identically distributed random variables with
a continuous distribution function F , where the density function f exists. This study considers
nonparametric density estimation of sample maximum of futurem observationXn+1, Xn+2, · · · , Xn+m.
The sample maximum density (SMD) f(m) := mfFm−1 of the appropriately normalized ran-
dom variables possibly converges to GEV. This study first surveys the accuracy of the es-
timator fitted to the density of the generalized extreme distribution (GEV). The accuracy
of the fitting estimator fundamentally depends on the approximation to GEV, and the ap-
proximation accuracy can be very poor depending the case. Figure 1 shows an image of
the convergence of a bimodal SMD the GEV, where the original density is a mixing density
of two t-distributions. The fitting to the GEV with small m is neither bimodal nor good
approximation to SMD (True).

Figure 1: Convergence of SMD of a mixing density of two t-distributions
to the GEV.
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Nonparametric density estimator can capture properties of the underlying distribution
(e.g. multi-modality and skewness). We consider some nonparametric approaches for SMD
estimation in this study. Nonparametric density estimation itself is useful for visualization,
estimating modes, detecting multi-modality, and so on. Beirlant and Devroye (1999) [3] gave
the lower bounds of the total variation and the supremum norm in a nonparametric setting.
Using the same settings as Moriyama (2021) [19] investigating sample maximum distribution
estimation (SMD) specified below, this study obtains the asymptotic mean squared error
(MSE) of the estimators at the point x under the supposition m → ∞, (m/n) → 0 and
x→ ∞ as n→ ∞. We investigate the properties of SMD estimators and conduct comparative
studies. A comparison study on extreme quantile estimators are conducted by Banfi et al.
(2022) [2], and the numerical accuracy of some estimators are reported.

Explicit forms are required in order to compare the asymptotic errors of different esti-
mators, so the tail of F needs to be specified. As shown later, parameters up to the so-called
second order have an effect on the first order error of the extreme-based SMD estimator. Let
F belong to the Hall class (i)α > 0, β ≥ 2−1, A > 0, B 6= 0 and

xα+β{1− F (x)−Ax−α(1 +Bx−β)} → 0 as x→ ∞

(see Hall and Welsh 1984 [12]), the Weibull class (ii) κ > 0, C > 0 and

exp(Cxκ){1− F (x)− exp(−Cxκ)} → 0 as x→ ∞,
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or the bounded class (iii) µ < −2, σ ≤ −2−1, D > 0, E 6= 0, x∗ ∈ R and

(x∗ − x)µ+σ{1− F (x)− (x∗ − x)−µ(D + E(x∗ − x)−σ)} → 0 as x ↑ x∗.

(e.g., Stupfler 2016 [23]). These three classes of distributions are widely utilized as repre-
sentatives of the distributions belonging to the domain of attractions of the extreme value
distribution (see Beirlant et al. 2004 [4]; Segers 2005 [20]).

This study proposes a plug-in type of kernel estimator for SMD defined as f̂(m) :=

mf̂F̂m−1, where f̂ and F̂ are the kernel density and kernel distribution estimators of f and
F , respectively. Another candidate for the SMD estimator in this study is the new block-
maxima-based (BM-based) kernel estimator f̄(m). This BM-based estimator is the kernel
density estimator of SMD itself, which is a function of the block maxima. As seen from the
definition, the nonparametric estimators are consistent for wide class of distributions as long
as m is fixed. The nonparametric estimators are thus a promising candidate for the SMD, at
least for relatively small m.

The aim of this study is to investigate the difference between the ‘parametric’ and
nonparametric approaches in SMD estimation, where the parametric’ estimator (PE) is the
estimator fitted to GEV. Sections 2, 3, and 4 of this paper describe the asymptotic properties
of the fitting estimator, the plug-in kernel SMD estimator f̂(m) and the BM-based kernel SMD
estimator f̄(m), respectively. We then prove that the optimal convergence rates of the two

nonparametric estimators are different and that the plug-in estimator f̂(m) outperforms the
BM-based estimator as long as the condition of achieving the optimal convergence rate is
satisfied. In Section 5, we compare the numerical accuracies of PE and the plug-in estimator.
It is demonstrated that the extreme value index severely affects both the theoretical and
numerical performances in this study.

The density estimators with data log-transformation are discussed in Section 6, where
the log-transformation changes the non-negative extreme indices of the distributions to zero.
Section 7 provides these numerical properties, and we see that the log-transformation makes
the estimators numerically much stable. Two illustrative examples of application are provided
in Section 8. The proofs are given in the Supplementary file.

2. Parametric density estimation of sample maximum

It follows from the Fisher-Tippett-Gnedenko theorem that

Fm(x)−Gγ

(
x− bm
am

)
→ 0 as m→ ∞ for 1 +

x− bm
am

> 0,

where Gγ is the generalized extreme value distribution,

γ :=


α−1 for (i)

0 for (ii)

µ−1 for (iii),

am :=


γ(Am)γ for (i)

κ−1C−1/κ(lnm)−θ for (ii)

−γ(Dm)γ for (iii),

bm :=


(Am)γ for (i)

(C−1lnm)1/κ for (ii)

x∗ − (Dm)γ for (iii),
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and θ := 1− (1/κ). The setting in this study follows that the extreme value index γ > −1/2.
This study employs the maximum likelihood based on the BM method in the parameter
γm := (γ, am, bm) estimation, where the block size is k and ∃N ∈ N s.t. n = N × k. k can be
different from m but needs to satisfy the following assumptions.

Assumption 2.1. One of (Mn ∨Kn) → 0, (Mn ∧Kn) → ∞, or ∃δ > 0 s.t. Mn → δ
and Kn → δ holds, where

Mn :=


Amx−α for (i)

m exp(−Cxκ) for (ii)

Dm(x∗ − x)−µ for (iii),

Kn :=


Akx−α for (i)

kκ exp(−κC1/κ(ln k)θx) for (ii)

Dk(x∗ − x)−µ for (iii).

Mn and Kn have the following meanings f(m)(x) ∼ αx−1Mn exp(−Mn) and gγk
(x) ∼

αx−1Kn exp(−Kn) respectively. Assumption 2.1 means the block size k is asymptotically same
as m. The following proposition on the convergence of a bias term of the fitting estimator PE
requires the assumption.

Proposition 2.1. Under Assumption 2.1,

τ̃n := f(m)(x)− gγk
(x) → 0,

where

gγk
(x) :=

1

ak
gγ

(
x− bk
ak

)
,

gγ(x) :=

{
{1 + γx}−(1/γ)−1 exp(−{1 + γx}−1/γ), 1 + γx > 0, for (i), (iii)

exp(−x) exp(− exp(−x)), x ∈ R, for (ii).

Set the MLE γ̂k. The following Assumptions 2.2 and 2.3 ensures the convergence of
γ̂k−γk and gγ̂k

(x)−gγk
(x); however, we note that both Assumptions 2.1 and 2.2 do not hold

for the Weibull class.

Assumption 2.2. ∃λ ∈ R s.t. λn → λ, where

λn :=


km−2β for (i)

k(lnm)−2 for (ii)

km2σ for (iii).

Regarding the MSE of PE gγ̂k
(x), the following theorem holds.

Theorem 2.1. Under Assumptions 2.1 and 2.2,

E[(f(m)(x)− gγ̂k
(x))2] ∼ (τ̃n −N−1/2k−γλnη̃

T
n I

−1
0 b)2 +N−1k−2γ(η̃T

n I
−1
0 η̃n),

where η̃n := (s̃n, t̃n, ũn)
T,

s̃n := K1+γ
n exp(−Kn) {(1−Kn)(1−Kγ

n + γ lnKn) + γ (1−Kγ
n)} ,

t̃n := K1+γ
n exp(−Kn)(Kn − 1)

(
Kγ

n − 1

γ

)
,

ũn := K1+γ
n exp(−Kn)K

γ
n(1 + γ −Kn).
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b and the Fisher information matrix I0 are given in Dombry and Ferreira (2019) [11]. Fur-
thermore,

N1/2kγ(η̃T
n I

−1
0 η̃n)

−1/2{f(m)(x)− gγ̂k
(x)− (τ̃n −N−1/2k−γλnη̃

T
n I

−1
0 b)}

converges in distribution to the standard normal distribution, if the MSE converges to zero.

The symbol ∼ means pn ∼ qn ⇐⇒ pn/qn = 1 + o(1). This paper utilizes the same
symbols as Moriyama (2021) [19] for clarity. We add a tilde to the symbols but are actually
different. The following corollary on the convergence rate follows from Theorem 2.1. Propo-
sition 2.1 and Theorem 2.1 are proved in the Supplementary file, and Corollary 2.1 is a direct
consequence of Theorem 2.1.

Corollary 2.1. Under the assumptions of Theorem 2.1, (f(m)(x)−gγ̂k
(x)) converges

with the rate the larger of f(m)(x)− gγk
(x) and

N−1/2k−γK1+γ
n exp(−Kn)

×


λn(K

γ
n + lnKn) + lnKn for (Mn ∨Kn) → 0

λn + 1 for Mn → δ, Kn → δ

λnKn(K
γ
n + lnKn) +K1+γ

n for (Mn ∧Kn) → ∞.

The difference of the SMD estimator and the GEV is decomposed into the three bias
terms λn, gγm(x) − gγk

(x) and f(m)(x) − gγm(x). λn corresponds to the asymptotic bias of
γ̂k, which depends on the second order parameter. The bias gγm(x)− gγk

(x) comes from the
asymptotic difference between m and k. Although a large k yields a large variance of γ̂k,
the precise approximation of gγm(x) to f(m)(x) (i.e., τ̃n) requires a large m. As the extreme
value index tends to be zero, i.e., γ → 0, the convergence rate of the approximation of gγm(x)
to f(m)(x) becomes slow. In the Weibull cases, the rate is slower than any polynomial. To
sum up, the convergence rate is sensitive to k through m and the first order parameter γ.
The convergence rates of the whole of PE in some example cases are given later in Table 1 in
Section 5.

3. Nonparametric plug-in type of SMD estimation

Applying the plug-in rule, we obtain the following kernel-type nonparametric estimator
(NE1):

f̂(m)(x;h1, h2) := mf̂(x;h1)F̂
m−1(x;h2),

where f̂ and F̂ are the kernel estimators given by

f̂(x;h1) =
1

nh1

n∑
i=1

w

(
x−Xi

h1

)
, F̂ (x;h2) =

1

n

n∑
i=1

W

(
x−Xi

h2

)
.

Assumption 3.1. w is a symmetric and bounded density function, W is the cumu-
lative distribution function, and hj is bandwidth that satisfies hj → 0 for j = 1, 2. For the
bounded class (iii), the support of w be bounded and hj(x

∗ − x)−1 → 0 for j = 1, 2 (it is
necessary to avoid the so-called boundary bias problem).
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Assumption 3.2. f is twice continuously differentiable at x.

The Hall class and the Weibull class satisfy Assumption 3.2, which requires µ ≤ −2 or
both µ = −1 and σ ≤ −1 of the bounded class.

Assumption 3.3.∫
z2w(z)dz <∞,

∫
w2(z)dz <∞,

∫
zW (z)w(z)dz <∞.

Using the asymptotic normalities of the estimators, we have the following theorem.

Theorem 3.1. Given Assumptions 3.1–3.3, then

E[(f(m)(x)− f̂(m)(x;h1, h2))
2] ∼ b2n,1 + vn,1,

where

bn,1 :=
h21
2

exp(−Mn)M
1+3γ
n m−3γψn

∫
z2w(z)dz +

h22
2

exp(−Mn)Mnmξnf(x)

∫
z2w(z)dz,

vn,1 :=
m2

nh1
exp(−2Mn)f(x)

∫
w2(z)dz +

m3

n
exp(−2Mn)Mnf

2(x),

ψn :=


α(α+ 1)(α+ 2)A−3γ for (i)

κ3C3x3κ−3 for (ii)

−µ(µ+ 1)(µ+ 2)D−3γ for (iii),

ξn :=


α(α+ 1)x−2 for (i)

κ2C2x2κ−2 for (ii)

µ(µ+ 1)(x∗ − x)−2 for (iii),

ωn :=


A−1αxα−1 for (i)

κCxκ−1 exp(Cxκ) for (ii)

−D−1µ(x∗ − x)µ−1 for (iii).

Furthermore, v
−1/2
n,1 {f(m)(x)− f̂(m)(x;h1, h2)+ bn,1} converges in distribution to the standard

normal distribution, if the MSE converges to zero.

The proof of Theorem 3.1 is provided in the Supplementary file, which shows there
exists pm,n(x) and qm,n(x) s.t. f(m)(x)− f̂(m)(x;h1, h2) is asymptotically given by

pm,n(x)(f(x)− f̂(x;h1)) + qm,n(x)(F (x)− F̂ (x;h2)).

Hence, asymptotically optimal bandwidths of NE1 are those of f̂(x;h1) and F̂ (x;h2).

Corollary 3.1. An asymptotically optimal value of (h1, h2) is given by(
M−2−6γ

n m2+6γψ−2
n f(x)n−1

(∫
z2w(z)dz

)−2 ∫
w2(z)dz

)1/5

,
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(
2ξ−2

n ωnn
−1

(∫
z2w(z)dz

)−2 ∫
zW (z)w(z)dz

)1/3

,

which are asymptotically identical to those of f̂(x;h1) and F̂ (x;h2) if both of the optimal
values converge 0. Under the assumption of Theorem 3.1, f(m)(x) − f̂(m)(x;h1, h2) with the
optimal bandwidths is asymptotically non-degenerate normal with the following asymptotic
mean:

ν1 exp(−Mn)M
(1+3γ)/5
n m(4−3γ)/5ψ1/5

n f2/5(x)n−2/5 + ν2 exp(−Mn)Mnmξ
−1/3
n f(x)ω2/3

n n−2/3,

where

ν1 :=
1

2

(∫
z2w(z)dz

)1/5(∫
w2(z)dz

)2/5

,

ν2 :=

(
2

∫
z2w(z)dz

)−1/3(∫
zW (z)w(z)dz

)2/3

.

Corollary 3.2. The asymptotically optimal bandwidths for Mn = O(1) are of the
order (m

n

)1/5
×

{
mγ for (i), (ii)

{C−1 lnm}−θ for (ii),

and (m
n

)1/3
×

{
mγ for (i), (iii)

{C−1 lnm}−θ for (ii).

f̂(m)(x;h1, h2) for Mn = O(1) with the optimal bandwidths has the following asymptotic bias
of the order: {(m

n

)2/5
+
(m
n

)2/3}
×

{
m−γ for (i), (iii)

(lnm)θ for (ii).

Corollary 3.2 states that the requirement for the bounded class hj(x
∗ − x)−1 → 0 for

j = 1, 2 means m = o(n) for Mn = O(1). Corollary 3.2 is directly obtained from Theorem 3.1
and Corollary 3.1.

Ideally, the density estimator itself should be a density function. NE1 satisfies non-
negativity but its integral does not equal those if the bandwidth values are different, i.e.
h1 6= h2. Under the assumption of h1 = h2 we cannot obtain the algebraic solution.

The nonparametric density estimator presented in the next section has only one hyper-
parameter and always satisfies the requirement that the integral equals one.

4. Nonparametric block-maxima-based estimation of SMD

Suppose that the block size is m and ∃n̄ ∈ N s.t. n = n̄ × m. We present here a
BM-based kernel-type of nonparametric estimator (NE2),

f̄(m)(x;h) =
1

n̄h

n̄∑
i=1

w

(
x− Yi
h

)
,
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where Yj := max{Xm(j−1)+1, Xm(j−1)+2, · · · , Xmj} (j = 1, · · · , n̄).

Assumption 4.1. The kernel function w is a symmetric and bounded density func-
tion. h is a bandwidth that satisfies h → 0. The support of w be bounded and that
h(x∗ − x)−1 → 0 for (iii) (it is necessary to avoid the so-called boundary bias problem).

The following theorem on the asymptotic normality of the naive nonparametric density
estimator holds.

Theorem 4.1. Given Assumptions 3.2, 3.3 and 4.1, if xκ−1h→ 0,

E[(f(m)(x)− f̄(m)(x;h))
2] ∼ b2n,2 + vn,2,

where

bn,2 :=
mh2

2
f(x) exp(−Mn)ϕn

∫
z2w (z) dz,

vn,2 :=(n̄h)−1f(m)(x)

∫
w2(z)dz,

ϕn :=

{
m2 for (i), (iii)

(κC)2x2(κ−1) − 2mκCxκ−1 +m2 for (ii).

Furthermore, v
−1/2
n,2 {f(m)(x) − f̄(m)(x;h) + bn,2} converges in distribution to the standard

normal distribution, if the MSE converges to zero.

Corollary 4.1. The asymptotically optimal value of h is given by(
n−1{f(x)}−1ϕ−2

n

(∫
z2w(z)dz

)−2 ∫
w2(z)dz

)1/5

if both of the optimal values converge 0. Under the assumption of Theorem 4.1, f(m)(x) −
f̄(m)(x;h) with the optimal bandwidths is asymptotically non-degenerate normal with the
following asymptotic mean:

ν1n
−2/5m{f(x)}3/5ϕ1/5n .

Corollary 4.2. The asymptotically optimal bandwidth for Mn = O(1) is of the
order

n−1/5m−3/5 ×

{
mγ/5 for (i), (iii)

(lnm)−1/5 for (ii).

Under the assumption of Theorem 4.1, f̄(m)(x;h) has the asymptotic bias of the order(
m2

n

)2/5
{
m−(3/5)γ for (i), (iii)

(lnm)−(3/5)γ for (ii).

Corollary 4.2 states that the requirement for the bounded class h(x∗−x)−1 → 0 means
m = o(n−1/(3+4γ)) for Mn = O(1).

Theorem 4.1 is proved in the Supplementary file. Corollaries 4.1 and 4.2 are the direct
consequences.
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5. Comparative study on SMD estimators

In this section, we compare the performances of three estimators: PE, NE1, and NE2.
The first comparison is theoretical and the second is numerical. Mn ≡ Kn ≡ δ > 0 is assumed
throughout this section. Each of the MSEs of NE1 and NE2 with their respective optimal
bandwidths converge on the order of m−2γ(m/n)4/5 andm−(6/5)γ(m2/n)4/5, respectively. The
following theorem is immediately evident from Corollaries 3.2 and 4.2.

Theorem 5.1. Suppose that each of the optimal bandwidths converge to zero. Then,
the convergence rate of NE1 f̂(m)(x;h1, h2) with the optimal bandwidth is faster than NE2
f̄(m)(x;h) with the optimal bandwidth for γ > −1.

The MSE of PE converges with the rate m−2γ × (N−1m2−4β +m−2γβ +m−2 + N−1)
for the Hall class. For the Weibull class, PE does not satisfy both Assumptions 2.1 and 2.2
with any block size k and is inconsistent. For the bounded class, the convergence rate is
m−2γ × (N−1m2+4σ +m−2γσ +m−2 +N−1). Assumption 2.3 requires γ > −3/2, γ > −1/2,
and γ > −1/6 for m = n1/4, m = n1/2, and m = n3/4, respectively.

The parameters of the distributions and the convergence rates of MSE of the estimators
without terms slower than any polynomial are summarized in Table 1, where the hyphen
indicates that the distribution breaks the assumption of the theorem. All the target values
f(m)(x) tend toward zero with the exception of the bounded class with µ = −1 while Fm(x) →
exp(−δ) > 0 in every case. The convergence rates divided by the order of f(m)(x) are given
in Table 2 (e.g. (f(m)(x))

−2 ×E[(f(m)(x)− gγ̂k
(x))2] for PE). The hyphen in Table 2 changed

from a value in Table 1 means that the density estimator becomes inconsistent by dividing
f(m)(x). All the convergence rates of NE2 are slower than or the same as those of NE1 in
Table 2, as Theorem 5.1 stated.

Comparing NE1 with PE, we see that the rates of PE become especially slow and that
NE1 becomes better as γ gets small. For m = n1/4, all the rates of NE1 are faster than PE,
but the differences become small as m gets large, which basically coincides with the results of
the SMD estimation reported in Moriyama (2021) [19]. For m = n3/4, where the convergence
rates of the parametric estimator and the nonparametric estimator of SMD are almost the
same and n−1/4, the convergence rates of the PE and NE1 of SMD are almost always different.
Which one is better depends on γ.

We next investigate the numerical properties of the estimators. NE1 seems theoretically
better in many cases, but in the theoretically comparative study, the convergence rate of the
bandwidth estimator is not taken into account. In this numerical study, we also examine the
effect of bandwidth selection. By simulating the mean integrated squared error (MISE) of PE
gγ̂k

,

L−1
m

∫ Qm(0.9)

Qm(0.1)

(
gγ̂k

(x)− f(m)(x)
)2

dx,

and that of f̂(m), we investigated the numerical accuracy in small-sample cases, where Lm :=
Qm(0.9)−Qm(0.1) and Qm(q) denotes the qth quantile of the SMD. Tables 3–4 show the mean
values and the standard deviation (sd) of the obtained MISE values after 1000 simulations.
The underlying distributions F were Pareto distributions, T distributions, Burr distributions,
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Fréchet distributions, Weibull distributions, and inverse Burr distributions. The forecast
periods were m = n1/4, m = n1/2, and m = n3/4. All kernel functions were Epanechnikov for
the bounded class and Gaussian for the other classes.

Both of the bandwidths h1 and h2 were estimated by the cross-validation approach or
the plug-in approach, respectively denoted as ‘CV’ and ‘PI’ in the tables. CV means the
unbiased cross-validation estimator (e.g., Silverman 1986 [22]) and Bowman et al (1998) [7]’s
cross-validation estimator. Sheather and Jones (1991) [21]’s method and Altman and Leger
(1995) [1]’s method were utilized as the plug-in approaches. The sample sizes were (n =)28

in Table 3 and (n =)212 in Table 4 .

Comparing CV with PI, we can see that CV performs significantly better for 1 ≤ γ ≤ 2
while PI is much better for γ ≥ 4. In the other cases, the bandwidth estimators are numerically
comparable. Comparing NE1 with PE, we find that the MISE values of PE were smaller in
most of the cases with m = n1/4 and that PE worked numerically better than what we
expected on the whole. For γ ≒ 0, those of NE1 were smaller as m got large. However,
NE1 was not necessary better than PE in finite sample case, which is slightly different from
the results of cumulative distribution estimation (see Moriyama 2021 [19]). For the light-
tailed distributions with γ < 0, the MISE values of NE1 were comparable with those of PE,
although so-called boundary bias in NE1 for bounded distributions with γ ≥ −1 was observed.
Due to this boundary bias, the results for the distributions with large extreme indices (e.g.,
γ ≥ −1/3) were different from the SMD estimation results reported by Moriyama (2021) [19].
Comparing the cases (n =)212 with (n =)28, we can see that PE substantially reduces the
MISE values, which are smaller than those of NE1.
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Table 1: Polynomial convergence rates of MSE of the estimators.

Pareto m = n1/4 m = n1/2 m = n3/4

ℓ α β PE NE1 NE2 PE NE1 NE2 PE NE1 NE2
1/2 1/2 1 −1/2 – −1 −1 – −6/5 −3/2 – −7/5
1 1 1 −1/2 – −7/10 −1 – −3/5 −3/2 – −1/2
3 3 1 −1/3 −23/30 −1/2 −2/3 – −1/5 −3/4 – –
10 10 1 −1/10 −13/20 −43/100 −1/5 −1/2 −3/50 −3/10 – –

T m = n1/4 m = n1/2 m = n3/4

ℓ α β PE NE1 NE2 PE NE1 NE2 PE NE1 NE2
1/2 1/2 2 −3/2 – −1 −5/2 – −6/5 −13/4 – −7/5
1 1 2 −1/2 – −7/10 −3/2 – −3/5 −7/4 – −1/2
3 3 2 −1/3 −23/30 −1/2 −2/3 – −1/5 −3/4 – –
10 10 2 −1/10 −13/20 −43/100 −1/5 −1/2 −3/50 −3/10 – –

Burr m = n1/4 m = n1/2 m = n3/4

c, ℓ α β PE NE1 NE2 PE NE1 NE2 PE NE1 NE2
1/2, 1/2 1/4 1/2 −5/2 – −8/5 −9/2 – −12/5 −25/4 – −16/5
1, 1/2 1/2 1 −1/2 – −1 −1 – −6/5 −3/2 – −7/5
3, 1/2 3/2 3 −2/3 – −3/5 −7/6 – −2/5 −5/4 – −1/5
1/2, 1 1/2 1/2 −3/2 – −1 −3/2 – −6/5 −13/4 – −7/5
1, 1 1 1 −1/2 – −7/10 −1 – −3/5 −3/2 – −1/2
3, 1 3 3 −1/3 −23/30 −1/2 −2/3 – −1/5 −3/4 – –

1/2, 3 3/2 1/2 −1/2 – −3/5 −1 – −2/5 −5/4 – −1/5
1, 3 3 1 −1/3 −23/30 −1/2 −2/3 – −1/5 −3/4 – –
3, 3 9 3 −1/9 −59/90 −13/30 −2/9 −23/45 −1/15 −1/3 – –

Fréchet m = n1/4 m = n1/2 m = n3/4

γ α β PE NE1 NE2 PE NE1 NE2 PE NE1 NE2
5 1/5 1/5 – – −19/10 – – – – – –
2 1/2 1/2 −3/2 – −1 −3/2 – −6/5 −13/4 – −7/5
1 1 1 −1/2 – −7/10 −1 – −3/5 −3/2 – −1/2

1/2 2 1 −1/2 −17/20 −11/20 −1 – −3/10 −1 – −1/20
1/4 4 1 −1/4 −29/40 −19/40 −1/2 – −3/20 −5/8 – –

Weibull m = n1/4 m = n1/2 m = n3/4

κ γ ρ PE NE1 NE2 PE NE1 NE2 PE NE1 NE2
1/2 0 0 – −3/5 −2/5 – −2/5 – – −1/5 –
1 0 0 – −3/5 −2/5 – −2/5 – – −1/5 –
3 0 0 – −3/5 −2/5 – −2/5 – – −1/5 –
10 0 0 – −3/5 −2/5 – −2/5 – – −1/5 –

inv.Burr m = n1/4 m = n1/2 m = n3/4

c, ℓ µ σ PE NE1 NE2 PE NE1 NE2 PE NE1 NE2
3, 2 −6 −2 −1/12 −31/60 −7/20 −1/6 −7/30 – – – –
1, 2 −2 −2 – −7/20 −1/4 – – – – – –

1/2, 2 −1 −2 – −1/10 −1/10 – – – – – –
3, 1 −3 −1 – −13/30 −3/10 – −1/15 – – – –
1, 1 −1 −1 – −1/10 −1/10 – – – – – –

1/2, 1 −1/2 −1 – – – – – – – – –
3, 1/3 −1 −1/3 – – – – – – – – –
1, 1/3 −1/3 −1/3 – – – – – – – – –

1/2, 1/3 −1/6 −1/3 – – – – – – – – –
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Table 2: Normalized polynomial convergence rates of MSE of the estima-
tors.

Pareto m = n1/4 m = n1/2 m = n3/4

ℓ α β PE NE1 NE2 PE NE1 NE2 PE NE1 NE2
1/2 1/2 1 – – – – – – – – –
1 1 1 – – −1/5 – – – – – –
3 3 1 −1/6 −3/5 −1/3 −1/3 – – −1/4 – –
10 10 1 −1/20 −3/5 −19/50 −1/10 −2/5 – −3/20 – –

T m = n1/4 m = n1/2 m = n3/4

ℓ α β PE NE1 NE2 PE NE1 NE2 PE NE1 NE2
1/2 1/2 2 −1/2 – – −1/2 – – −1/4 – –
1 1 1 – – −1/5 −1/2 – – −1/4 – –
3 3 1 −1/6 −3/5 −1/3 −1/3 – – −1/4 – –
10 10 1 −1/20 −3/5 −19/50 −1/10 −2/5 – −3/20 – –

Burr m = n1/4 m = n1/2 m = n3/4

c, ℓ α β PE NE1 NE2 PE NE1 NE2 PE NE1 NE2
1/2, 1/2 1/4 1/2 −1/2 – – −1/2 – – −1/4 – –
1, 1/2 1/2 1 – – – – – – – – –
3, 1/2 3/2 3 −1/3 – −4/15 −1/2 – – −1/4 – –
1/2, 1 1/2 1/2 −1/2 – – – – – −1/4 – –
1, 1 1 1 – – −1/5 – – – – – –
3, 1 3 3 −1/6 −3/5 −1/3 −1/3 – – −1/4 – –

1/2, 3 3/2 1/2 −1/6 – −4/15 −1/3 – – −1/4 – –
1, 3 3 1 −1/6 −3/5 −1/3 −1/3 – – −1/4 – –
3, 3 9 3 −1/18 −3/5 −17/45 −1/9 −2/5 – −1/6 – –

Fréchet m = n1/4 m = n1/2 m = n3/4

γ α β PE NE1 NE2 PE NE1 NE2 PE NE1 NE2
5 1/5 1/5 – – – – – – – – –
2 1/2 1/2 −1/2 – – – – – −1/4 – –
1 1 1 – – −1/5 – – – – – –

1/2 2 1 −1/4 −3/5 −3/10 −1/2 – – −1/4 – –
1/4 4 1 −1/8 −3/5 −7/20 −1/4 – – −1/4 – –

Weibull m = n1/4 m = n1/2 m = n3/4

κ γ ρ PE NE1 NE2 PE NE1 NE2 PE NE1 NE2
1/2 0 0 – −3/5 −2/5 – −2/5 – – −1/5 –
1 0 0 – −3/5 −2/5 – −2/5 – – −1/5 –
3 0 0 – −3/5 −2/5 – −2/5 – – −1/5 –
10 0 0 – −3/5 −2/5 – −2/5 – – −1/5 –

inv.Burr m = n1/4 m = n1/2 m = n3/4

c, ℓ µ σ PE NE1 NE2 PE NE1 NE2 PE NE1 NE2
3, 2 −6 −2 −1/6 −3/5 −13/30 −1/3 −2/5 – – −1/5 –
1, 2 −2 −2 – −3/5 −1/2 – −2/5 – – −1/5 –

1/2, 2 −1 −2 – −3/5 −3/5 – −2/5 – – −1/5 –
3, 1 −3 −1 −1/6 −3/5 −7/15 −1/6 −2/5 – – −1/5 –
1, 1 −1 −1 – −3/5 −3/5 – −2/5 – – −1/5 –

1/2, 1 −1/2 −1 – – – – – – – – –
3, 1/3 −1 −1/3 – – – – – – – – –
1, 1/3 −1/3 −1/3 – – – – – – – – –

1/2, 1/3 −1/6 −1/3 – – – – – – – – –
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6. SMD estimation with data transformation

Ever since the Rosenblatt-Parzen kernel density estimator was invented, nonparametric
density estimation has attracted the attention of both researchers and practitioners. Many
researchers have tried to improve the accuracy of nonparametric density estimators. Most of
them are on the choice of the bandwidth that significantly affects on the MSE. As in case
of SMD estimation the kernel function does not change the convergence rates (as long as
the sufficiently high-order moment exists); however, it is known that the choice possibly has
effect on the numerical accuracy in finite sample case especially when the tail of the underlying
distribution is heavy (e.g. Hall 1987 [13]; Maiboroda and Markovich 2004 [15]; Markovich
2007 [16]). Hall (1987) [13] proved that the KL divergence of the kernel density estimator
and the performance of the likelihood cross-validation (for the bandwidth selection) depend
on both the tails of the kernel and the underlying distribution.

Markovich (2018) [17] proposed the Weibull kernel to fit the tail part of the underlying
distribution. Wang et al. (2020) [26] reported cross validation approaches in heavy tailed
density estimation do not work well and proposed modified kernel functions. A reasonable
kernel has a data-driven tail, that is the extreme value index of the kernel is fitted to that of
the underlying distribution. The piecing-together approach (Markovich 2007 [16]; MacDonald
et al. 2011 [14]), which fits the generalized Pareto distribution to the tail of the distribution,
is related to the tail selection of the kernel.

Following the reviewer’s comments, additional numerical experiments on the effect of
kernel selection was conducted in this study. It was demonstrated that for heavy tailed
distributions NE1 with equally heavy tailed kernel generally outperforms that of the Gaussian
kernel used in Section 5. We omit the details; however, the experimental results imply that
the numerical accuracy does not depend only on the level of heaviness (i.e. the extreme index)
of the kernel. The experiments also clarified that the kernel being same as the underlying
distribution is not necessarily best choice. More detailed studies on the choice of the kernel
in SMD estimation may be important, but we postpone it to future work. This study aims at
improving the nonparametric estimators without specifying the heaviness of the underlying
distribution F .

Section 5 demonstrates that both of the theoretical and numerical accuracies of the
nonparametric estimators of SMD heavily depends on the extreme value index γ := γX of
the underlying distribution (we don’t add the subscript but note that γ is the extreme value
index of F throughout the paper). When γ ≒ 0, NE functions well. However, the scaled
MISE of NE explodes for large |γ|. Following these results, we consider the transformed
nonparametric density estimation (see e.g. Wand et al. 1991 [27]; Marron and Ruppert
1994 [18]; Charpentier and Flachaire 2015 [9]; Béranger et al. 2019 [5]). Maiboroda and
Markovich (2004) [15], Buch-Larsen et al. (2005) [8], Bolancé et al. (2015) [6], Béranger et
al. (2019) [5] and Tokdar (2022) [24] intend to apply data transformation in order to change
the distribution’s tail to the same as that of the kernel.

By applying a data transformation X 7→ φ(X) to SMD estimation, the plug-in type
nonparametric estimator with data transformation (TNE1):

f̂φ(m)(x;h1, h2) := mf̂φ(x;h1)(F̂
φ)m−1(x;h2),
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where f̂φ and F̂φ are the kernel estimators given by

f̂φ(x;h1) :=
φ′(x)

nh1

n∑
i=1

w

(
φ(x)− φ(Xi)

h1

)
,

F̂φ(x;h2) :=
1

n

n∑
i=1

W

(
φ(x)− φ(Xi)

h2

)
.

The BM-based kernel-type of nonparametric estimator with data transformation (TNE2) is

f̄φ(m)(x;h) :=
φ′(x)

n̄h

n̄∑
i=1

w

(
φ(x)− φ(Yi)

h

)
.

This study considers the log-transformation φ = ln, which is considered as a special
version of the Box-Cox transformation. Then, the log-transformation X 7→ ln(X) changes
positive extreme value indices to zero as follows.

Corollary 6.1 (Wadsworth et al. 2010 [25]). If F belongs to the Hall class, the ex-
treme value index of the distribution of ln(X) is zero. If F belongs to the Weibull class or
the bounded class, the extreme value index is same as γ.

This is seen from the Hall class of distributions becoming the Weibull class of distribu-
tions as follows

P[lnX > x] ∼ A exp(−αx) +AB exp(−α− βx),

which corresponds to the Weibull class with C = α and κ = 1.

As seen in Section 5, the nonparametric estimators NE1 and NE2 are numerically stable
and work well for the Weibull class even when m is relatively large. Theoretically, the MSE
is given by the following theorem.

Theorem 6.1. Given Assumptions 3.1–3.3, then

E[(f(m)(x)− f̂ ln(m)(x;h1, h2))
2] ∼ b2n,3 + vn,3,

where

bn,3 :=
h21
2

exp(−Mn)M
1+3γ
n m−3γx2ψ′

n

∫
z2w(z)dz +

h22
2

exp(−Mn)Mnmξ
′
nx

2f(x)

∫
z2w(z)dz,

vn,3 :=
m2

nh1
exp(−2Mn)x

−1f(x)

∫
w2(z)dz +

m3

n
exp(−2Mn)Mnf

2(x),

ψ′
n :=


α{1− 3(α+ 1) + (α+ 1)(α+ 2)}A−3γ for (i)

κ3C3x3κ−3 for (ii)

−µ{1− 3(µ+ 1) + (µ+ 1)(µ+ 2)}D−3γ for (iii),

ξ′n :=


α2x−2 for (i)

κ2C2x2κ−2 for (ii)

µ2(x∗ − x)−2 for (iii).

Furthermore, v
−1/2
n,3 {f(m)(x)− f̂ ln(m)(x;h1, h2)+ bn,3} converges in distribution to the standard

normal distribution, if the MSE converges to zero.



Study on density estimators of sample maximum 17

Similarly as Corollary 3.1, asymptotically optimal bandwidths of TNE1 are those of
f̂ ln(x;h1) and F̂

ln(x;h2).

Corollary 6.2. An asymptotically optimal value of (h1, h2) is given by

x−1

(
M−2−6γ

n m2+6γψ′−2
n f(x)n−1

(∫
z2w(z)dz

)−2 ∫
w2(z)dz

)1/5

,

x−1

(
2ξ′−2

n ωnn
−1

(∫
z2w(z)dz

)−2 ∫
zW (z)w(z)dz

)1/3

,

which are asymptotically identical to those of f̂ ln(x;h1) and F̂
ln(x;h2) if both of the optimal

values converge 0. Under the assumption of Theorem 6.1, f(m)(x) − f̂ ln(m)(x;h1, h2) with the
optimal bandwidths is asymptotically non-degenerate normal with the following asymptotic
mean:

ν1 exp(−Mn)M
(1+3γ)/5
n m(4−3γ)/5ψ′1/5

n f2/5(x)n−2/5 + ν2 exp(−Mn)Mnmξ
′−1/3
n f(x)ω2/3

n n−2/3,

whose order is same as that of NE1 f̂(m).

Corollary 6.3. The asymptotically optimal bandwidths for Mn = O(1) are of the
order (m

n

)1/5
×

{
1 for (i), (ii)

{C−1 lnm}−1 for (ii),

and (m
n

)1/3
×

{
1 for (i), (iii)

{C−1 lnm}−1 for (ii).

The convergence rate of TNE1 f̂ ln(m) is same as that of the non-transformed f̂(m). How-
ever, the order of the optimal bandwidth is different. The condition hj → 0 for j = 1, 2
is equivalent to m = o(n) when Mn = O(1), which is less restrictive for γ > 0. The proof
of Theorem 6.1 is provided in the Supplementary file. Corollaries 6.2 and 6.3 are directly
obtained from Theorem 6.1.

Theorem 6.2. Given Assumptions 3.2, 3.3 and 4.1, if xκ−1h→ 0,

E[(f(m)(x)− f̄ ln(m)(x;h))
2] ∼ x4b2n,2 + x−1vn,2.

Furthermore, x1/2v
−1/2
n,2 {f(m)(x)−f̄ ln(m)(x;h)+x

2bn,2} converges in distribution to the standard
normal distribution, if the MSE converges to zero.

Corollary 6.4. The asymptotically optimal value of h is given by

x−1

(
n−1{f(x)}−1ϕ−2

n

(∫
z2w(z)dz

)−2 ∫
w2(z)dz

)1/5
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if both of the optimal values converge 0. Under the assumption of Theorem 4.1, f(m)(x) −
f̄ ln(m)(x;h) with the optimal bandwidths is asymptotically non-degenerate normal with the
following asymptotic mean:

ν1n
−2/5m{f(x)}3/5ϕ1/5n ,

which is exactly same as that of NE2 f̄(m)(x;h).

Corollary 6.5. The asymptotically optimal bandwidth for Mn = O(1) is of the
order

n−1/5m−3/5 ×

{
m−4γ/5 for (i), (iii)

(lnm)−1/5 for (ii).

Corollary 6.5 shows that the optimal convergence rate of TNE2 f̄ ln(m) is same as f̄(m).
The asymptotically optimal bandwidth is different from that of NE2. h → 0 in Assumption
4.1 is less restrictive for γ > 0 same as TNE1. Theorem 6.2 is proved in the Supplementary
file. Corollaries 6.4 and 6.5 are the direct consequences.

Corollary 6.1 states the extreme value index of ln(X) do not need to be estimated
as long as γ (the index of F ) is non-negative. Motivated by the facts, applying the back
transformation we can consider the following transformed type of PE (TPE)

g̃lnγ̂k
(lnx) :=

1

âlnk x
exp

(
−
lnx− b̂lnk

âlnk

)
exp

(
− exp

(
−
lnx− b̂lnk

âlnk

))

for distributions with γ ≥ 0, where âlnk and b̂lnk are the estimators of the normalizing constants
of max{ln(Xi)}ni=1. Specifically, alnk = b−1

k ak and blnk = ln bk (Wadsworth et al. 2010 [25]).
However, the distributions with γ = 0 never satisfy all the assumptions of PE at the same
time as described in Section 5.

For distributions with γ < 0 pointwise estimation by PE at a point x ∼ (x∗ − z
−1/µ
n )

changes that of by the following type of estimator

glnγ̂k
(lnx) :=

1

âlnk x
gγ̂ln

k

(
lnx− b̂lnk

âlnk

)

at the point ln x ∼ (lnx∗ − z
−1/µ
n ) by the transformation, which means the asymptotics of

do not change since the extreme value index is same as γ. γ̂lnk is the estimator based on
{ln(Xi)}ni=1 of the extreme value index of {ln(X)}, that is same as γ in this case.

The above means TPE is only applicable for the bounded class under the assumption of
negativity of γ, but the log-transformation does not improve theoretical accuracy. In short,
there are no theoretical reasons to employ TPE instead of PE in any case.

7. Numerical study on transformed SMD estimators

This section surveys the numerical performances of the estimators TPE and TNE1.
SupposeMn ≡ δ > 0. Then, Corollary 6.5 states that the asymptotic convergence rates of the
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transformed nonparametric estimator TNE1 correspond to those of TNE1 (shown in Table 1
and Table 2). On the other hand, TPE for the distributions with γ ≥ 0 cannot be consistent.

The scaled MISE values were simulated in Pareto, T, Burr, Fréchet, Weibull, and inverse
Burr cases. To apply the log-transformation the distributions are truncated to the range
(0,∞) or (0, lnx∗). Other technical details are same as Section 5. In Table 5 the MISE
value in bold means being smaller than that of the MISE value in Table 3. That means the
log-transformation improves the estimator.

Table 5 shows the log-transformation improves the estimators in many cases on the
whole. The exceptions are mainly TPE and the cases where m is relatively small. Though
the MSE values increase in the cases, the increments are relatively not large. For heavy-tailed
data the log-transformation especially improves the accuracy of the estimators. To sum up,
the log-transformation makes TNE1 numerically stable and much more accurate.
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8. Illustrative examples

In this section, we give two illustrative examples of applying SMD estimation. The
solid and dashed lines in Figures 2 and 3 respectively show the probability density functions
estimated by the nonparametric approach with cross-validated bandwidth (NE1) and by the
fitting to the GEV (PE). Figure 2 shows the Potomac River peak stream flow (cfs) data for
water years 1901–2000 (Oct–Sep) at Point of Rocks, Maryland. Figure 3 shows the latest
n = 2100 losses in Danish fire insurance over one million Danish kroner (DKK) collected from
1980 to 1990. The datasets are available in the extRemes and evir packages in the R software
environment, respectively. The range of the horizontal axis in Figure 2 is 0–480000, where
480000 is the maximal value observed in 1936. The minimum value was 27800 observed
in 1969. The range in Figure 3 is 0–(263.25×1.5), where 263.25 is the maximum and the
minimum is 1.

Figure 2: The estimated probability (×106) density functions of Annual
peak flow (×10−5) data of the Potomac River at Point of Rocks,
MD, USA, 1895–2000 by the log-transformed approach (solid
line), the naive kernel approach (dotted line) and by the fitting
to the GEV (dashed line).

! = 1 ! = 5 ! = 10 ! = 20

Figure 3: The estimated probability density functions of 2156 Danish data
consisting of losses over one million Danish kroner (DKK) by the
log-transformed approach (solid line), the naive kernel approach
(dotted line) and by the fitting to the GEV (dashed line).

𝑚 = 1 𝑚 = 30 𝑚 = 100 𝑚 = 200

Figures 2 and 3 suggest the existence of multimodality. Moriyama (2021) [19] reported
that, when comparing the estimated probabilities by the nonparametric approach and by the
fitting to the GEV, the estimated risk is not one-sided. This may stems partly from the
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multimodality of the estimated density function. Note that the nonparametrically estimated
density is sensitive to bandwidth. Many studies support the heavy-tailness in the Danish
datasets, and so the statistical evidence of multimodality is not strong. Since the mixture of
distributions that belong to the maximum domain of attractions converges to a unimodal GEV
(see Bolancé et al. 2015 [6]), there are two possible reasons for the multimodality. One is the
slowness of the convergence of the limitation to the GEV. The other is that the underlying
distribution does not belong to the maximum domain of attractions. Future work should
examine how to construct a method for testing the properties of underlying distributions
including multimodality.
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