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Authors: Mátyás Barczy �

– HUN-REN–SZTE Analysis and Applications Research Group,
Bolyai Institute, University of Szeged,
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1. INTRODUCTION

The ψ-estimators (also called Z-estimators) have been playing an impor-
tant role in statistics since the 1960’s. In what follows, let (X,X ) be a measurable
space, Θ be a Borel subset of R, and ψ : X ×Θ → R be a function which is mea-
surable in its second variable with respect to the sigma-algebra X . Let (ξn)n⩾1 be
a sequence of independent identically distributed (i.i.d.) X-valued random vari-
ables such that the distribution of ξ1 depends on an unknown parameter ϑ ∈ Θ.
For each n ⩾ 1, Huber [5, 6] among others introduced an important estimator of ϑ
based on the observations ξ1, . . . , ξn as a solution ϑ̂n,ψ(ξ1, . . . , ξn) of the equation
(with respect to the unknown parameter):

n∑
i=1

ψ(ξi, t) = 0, t ∈ Θ,

provided that such a solution exists. In the statistical literature, one calls the
random variable ϑ̂n,ψ(ξ1, . . . , ξn) a ψ-estimator of the unknown parameter ϑ ∈
Θ based on the i.i.d. observations ξ1, . . . , ξn, while other authors call it a Z-
estimator (the letter Z refers to ”zero”). In fact, ψ-estimators are special M -
estimators (where the letter M refers to ”maximum likelihood-type”) that were
also introduced by Huber [5, 6]. For a detailed exposition of M -estimators and
ψ-estimators, see, e.g., Kosorok [7, Sections 2.2.5 and 13] or van der Vaart [9,
Section 5].

Results on the comparison and the equality of ψ-estimators are quite rare
in the literature. These two problems can be formulated as follows: given ψ,φ :
X × Θ → R (with the properties described above), we are interested in finding
necessary as well as sufficient conditions for the inequality ϑ̂n,ψ ⩽ ϑ̂n,φ and for

the equality ϑ̂n,ψ = ϑ̂n,φ to be valid for all n ⩾ 1, respectively. In Barczy
and Páles [2, Section 3], we derived such conditions in case of generalized ψ-
estimators, introduced in Barczy and Páles [1] (see also Definition 1.2), which are
generalizations of ψ-estimators recalled above. In general linear models, many
authors investigated the equality of ordinary least squares estimator (OLSE) and
best linear unbiased estimator (BLUE) of the regression parameters, for a detailed
review of the literature, see Section 2 in our arXiv version [2].

In this paper, we study the comparison and equality problems for a sub-
class of generalized ψ-estimators, namely for Bajraktarević-type ψ-estimators
introduced in Barczy and Páles [1] (see also (2.2)). The statistical applications of
Bajraktarević-type ψ-estimators has not been explored yet, it can be a topic of
a future research. Here we point out an important field in practice, where these
types of estimators may be indeed useful. Mukhopadhyay et al. [8] found that
in the presence of outliers in the data, more precisely, when the data are gen-
erated by a mixture population involving a major (dominating) component and
a minor (outlying) component, the power mean (also called generalized mean)
estimates the mean of the dominating population more accurately compared to
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the usual maximum likelihood estimator. Thus the class of power means offers
an alternative way for estimating the target mean parameter without invoking
the complications of sophisticated robust techniques. Power means are special
Bajraktarević means, that can be considered as special Bajraktarević-type ψ-
estimators. This can indicate some potential of Bajraktarević-type ψ-estimators
as well in estimation of parameters for date coming from a mixture population.

By applying the general results from Section 3 of our arXiv version [2]
(recalled below as well), we solve the two problems in question. As one will see,
our results are not easy and not immediate consequences of the general theory
developed in Section 3 of [2].

In Section 2, we recall the notion of Bajraktarević-type ψ-estimators and
then we present the solution of the comparison problem for them (cf. Theorems
2.1 and 2.2). In Section 3, we characterize the equality of Bajraktarević-type ψ-
estimators (cf. Theorems 3.1 and 3.2). We note that, surprisingly, in the heart of
the proof of the equality problem for Bajraktarević-type estimators a result about
Schwarzian derivative and rational functions come into play, see Lemma 3.1.
We can also characterize the equality of quasiarithmetic-type ψ-estimators, see
Corollary 3.1. In Proposition 3.1, we derive a necessary and sufficient condition
in order that two strictly increasing functions defined on a nondegenerate open
interval be the Möbius transforms of each other. The results of the present paper
are those contained in Section 4 in our arXiv version [2].

In the rest of this section, we introduce the basic notations and concepts
that are used throughout the paper, and we recall some results from Section 3 of
our arXiv version [2] that we need to use through the proofs.

Throughout this paper, we fix the following notations: the symbols N, Z+,
Q, R, R+, R++, and R−− will stand for the sets of positive integers, non-negative
integers, rational numbers, real numbers, non-negative real numbers, positive real
numbers, and negative real numbers, respectively. For a subset S ⊆ R, the convex
hull of S (which is the smallest interval containing S) is denoted by conv(S). A
real interval will be called nondegenerate if it contains at least two distinct points.
For each n ∈ N, let us also introduce the set Λn := Rn+ \ {(0, . . . , 0)}. All the
random variables are defined on an appropriate probability space (Ω,A,P).

Throughout this paper, let X be a nonempty set, Θ be a nondegenerate
open interval of R and let Ψ(X,Θ) denote the class of real-valued functions ψ :
X × Θ → R such that, for all x ∈ X, there exist t+, t− ∈ Θ such that t+ < t−
and ψ(x, t+) > 0 > ψ(x, t−). Roughly speaking, a function ψ ∈ Ψ(X,Θ) satisfies
the following property: for all x ∈ X, the function t ∋ Θ 7→ ψ(x, t) changes sign
on the interval Θ at least once.

Definition 1.1. For a function f : Θ → R, consider the following three
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level sets

Θf>0 := {t ∈ Θ : f(t) > 0},
Θf=0 := {t ∈ Θ : f(t) = 0},
Θf<0 := {t ∈ Θ : f(t) < 0}.

We say that ϑ ∈ Θ is a point of sign change (of decreasing-type) for f if

f(t) > 0 for t < ϑ, and f(t) < 0 for t > ϑ.

Note that there can exist at most one element ϑ ∈ Θ which is a point of
sign change for f . Further, if f is continuous at a point ϑ of sign change, then
f(ϑ) = 0.

Definition 1.2. We say that a function ψ ∈ Ψ(X,Θ)

(i) possesses the property [C] (briefly, ψ is a C-function) if it is continuous
in its second variable, i.e., if, for all x ∈ X, the mapping Θ ∋ t 7→ ψ(x, t)
is continuous.

(ii) possesses the property [Tn] (briefly, ψ is a Tn-function) for some n ∈ N if
there exists a mapping ϑn,ψ : Xn → Θ such that, for all xxx = (x1, . . . , xn) ∈
Xn and t ∈ Θ,

ψxxx(t) =
n∑
i=1

ψ(xi, t)

{
> 0 if t < ϑn,ψ(xxx),

< 0 if t > ϑn,ψ(xxx),

that is, for all xxx ∈ Xn, the value ϑn,ψ(xxx) is a point of sign change for
the function ψxxx. If there is no confusion, instead of ϑn,ψ we simply write
ϑn. We may call ϑn,ψ(xxx) as a generalized ψ-estimator for some unknown
parameter in Θ based on the realization x = (x1, . . . , xn) ∈ Xn. If, for
each n ∈ N, ψ is a Tn-function, then we say that ψ possesses the property
[T ] (briefly, ψ is a T -function).

(iii) possesses the property [Zn] (briefly, ψ is a Zn-function) for some n ∈ N
if it is a Tn-function and

ψxxx(ϑn,ψ(xxx)) =

n∑
i=1

ψ(xi, ϑn,ψ(xxx)) = 0 for all xxx = (x1, . . . , xn) ∈ Xn.

If, for each n ∈ N, ψ is a Zn-function, then we say that ψ possesses the
property [Z] (briefly, ψ is a Z-function).

(iv) possesses the property [Tλλλn ] for some n ∈ N and λλλ = (λ1, . . . , λn) ∈ Λn
(briefly, ψ is a Tλλλn -function) if there exists a mapping ϑλλλn,ψ : Xn → Θ
such that, for all xxx = (x1, . . . , xn) ∈ Xn and t ∈ Θ,

ψxxx,λλλ(t) =

n∑
i=1

λiψ(xi, t)

{
> 0 if t < ϑλλλn,ψ(xxx),

< 0 if t > ϑλλλn,ψ(xxx),
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that is, for all xxx ∈ Xn, the value ϑλλλn,ψ(xxx) is a point of sign change for the

function ψxxx,λλλ. If there is no confusion, instead of ϑλλλn,ψ we simply write

ϑλλλn. We may call ϑλλλn,ψ(xxx) as a weighted generalized ψ-estimator for some
unknown parameter in Θ based on the realization x = (x1, . . . , xn) ∈ Xn

and weights (λ1, . . . , λn) ∈ Λn.

It can be seen that if ψ is continuous in its second variable and, for some
n ∈ N, it is a Tn-function, then it also a Zn-function.

Given q ∈ N and properties

[P1], . . . , [Pq] ∈
{
[C], [T ], [Z]

}
∪
{
[Tn], [Zn] : n ∈ N

}
∪
{
[Tλλλn ] : n ∈ N, λλλ ∈ Λn

}
,

the subclass of Ψ(X,Θ) consisting of elements possessing the properties [P1], . . .,
[Pq] will be denoted by Ψ[P1, . . . , Pq](X,Θ), i.e.,

Ψ[P1, . . . , Pq](X,Θ) :=

q⋂
i=1

Ψ[Pi](X,Θ).

For a function ψ ∈ Ψ[T1](X,Θ), we introduce the notation

Θψ :=
{
t ∈ Θ | ∃x, y ∈ X : ϑ1,ψ(x) < t < ϑ1,ψ(y)

}
.(1.1)

Then Θψ is open, and it coincides with the interior of the convex hull of ϑ1,ψ(X),
see Section 3 of our arXiv version [2]. Consequently, Θψ is an open (possibly
degenerate) subinterval of Θ.

Next, we recall a result about the comparison of generalized ψ-estimators
due to Barczy and Páles [2, Theorem 3.1].

Theorem 1.1. Let ψ ∈ Ψ[T,Z1](X,Θ) and φ ∈ Ψ[Z](X,Θ). Then the
following assertions are equivalent to each other:

(i) The inequality

ϑn,ψ(x1, . . . , xn) ⩽ ϑn,φ(x1, . . . , xn)(1.2)

holds for each n ∈ N and x1, . . . , xn ∈ X.

(ii) The inequality

ϑk+m,ψ(x, . . . , x︸ ︷︷ ︸
k

, y, . . . , y︸ ︷︷ ︸
m

) ⩽ ϑk+m,φ(x, . . . , x︸ ︷︷ ︸
k

, y, . . . , y︸ ︷︷ ︸
m

)

holds for each k,m ∈ N and x, y ∈ X.

(iii) For all x ∈ X, we have ϑ1,ψ(x) ⩽ ϑ1,φ(x), and the inequality

ψ(x, t)φ(y, t) ⩽ ψ(y, t)φ(x, t)

is valid for all t ∈ Θ and for all x, y ∈ X with ϑ1,φ(x) < t < ϑ1,φ(y).
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(iv) For all x ∈ X, we have ϑ1,ψ(x) ⩽ ϑ1,φ(x), and there exists a nonnegative
function p : Θφ → R+ such that

ψ(z, t) ⩽ p(t)φ(z, t), z ∈ X, t ∈ Θφ.

Under some additional regularity assumptions on ψ and φ, Barczy and
Páles [2, Theorem 3.4] derived another set of conditions that is equivalent to
(1.2). We also recall this result below.

Theorem 1.2. Let ψ,φ ∈ Ψ[C,Z](X,Θ). Assume that ϑ1,ψ = ϑ1,φ =:
ϑ1 on X, ϑ1(X) = Θ, and, for all x ∈ X, the maps

Θ ∋ t 7→ ψ(x, t) and Θ ∋ t 7→ φ(x, t)

are differentiable at ϑ1(x) with a non-vanishing derivative. Then any of the
equivalent assertions (i), (ii), (iii) and (iv) of Theorem 1.1 is equivalent to the
following one:

(v) For all x, y ∈ X, we have

− ψ(y, ϑ1(x))

∂2ψ(x, ϑ1(x))
⩽ − φ(y, ϑ1(x))

∂2φ(x, ϑ1(x))
.

Finally, we recall a result about the equality of generalized ψ-estimators
due to Barczy and Páles [2, Theorem 3.5].

Theorem 1.3. Let ψ ∈ Ψ[T,Z1](X,Θ) and φ ∈ Ψ[Z](X,Θ). Assume
that ϑ1,ψ = ϑ1,φ onX. ThenΘψ = Θφ and the following assertions are equivalent:

(i) The equality

ϑn,ψ(x1, . . . , xn) = ϑn,φ(x1, . . . , xn)

holds for each n ∈ N and x1, . . . , xn ∈ X.

(ii) The equality

ϑk+m,ψ(x, . . . , x︸ ︷︷ ︸
k

, y, . . . , y︸ ︷︷ ︸
m

) = ϑk+m,φ(x, . . . , x︸ ︷︷ ︸
k

, y, . . . , y︸ ︷︷ ︸
m

)

holds for each k,m ∈ N and x, y ∈ X.

(iii) There exists a positive function p : Θφ → (0,∞) such that

ψ(z, t) = p(t)φ(z, t), z ∈ X, t ∈ Θφ.
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2. COMPARISON OF BAJRAKTAREVIĆ-TYPE
ψ-ESTIMATORS

In this section we apply Theorems 1.1 and 1.2 for solving the compar-
ison problem of Bajraktarević-type estimators that are special generalized ψ-
estimators.

First, we recall the notions of Bajraktarević-type functions and then Ba-
jraktarević-type estimators. Let f : Θ → R be strictly increasing, p : X → R++

and F : X → conv(f(Θ)). In terms of these functions, define ψ : X ×Θ → R by

(2.1) ψ(x, t) := p(x)(F (x)− f(t)), x ∈ X, t ∈ Θ.

By Lemma 1 in Grünwald and Páles [3], there exists a uniquely determined
monotone function g : conv(f(Θ)) → Θ such that g is the left inverse of f , i.e.,

(g ◦ f)(t) = t, t ∈ Θ.

Furthermore, g is monotone in the same sense as f (i.e, f is monotone increasing),
is continuous, and the following relation holds:

(f ◦ g)(y) = y, y ∈ f(Θ).

The function g : conv(f(Θ)) → Θ is called the generalized left inverse of the
strictly increasing function f : Θ → R and is denoted by f (−1). It is clear that the
restriction of f (−1) to f(Θ) is the inverse of f in the standard sense, which is also
strictly increasing. Therefore, f (−1) is the continuous and monotone extension of
the inverse of f to the smallest interval containing the range of f , that is, to the
convex hull of f(Θ).

Recall also that, by Proposition 2.19 in Barczy and Páles [1], under the
above assumptions, ψ is a Tλ

n -function for each n ∈ N and λ ∈ Λn, and

ϑλn,ψ(x) = f (−1)

(
λ1p(x1)F (x1) + · · ·+ λnp(xn)F (xn)

λ1p(x1) + · · ·+ λnp(xn)

)
(2.2)

for each n ∈ N, x = (x1, . . . , xn) ∈ Xn and λ = (λ1, . . . , λn) ∈ Λn. In particular,
ϑ1,ψ = f (−1) ◦ F holds. The value ϑλn,ψ(x) given by (2.2) can be called as a
Bajraktarević-type ψ-estimator of some unknown parameter in Θ based on the
realization x = (x1, . . . , xn) ∈ Xn and weights (λ1, . . . , λn) ∈ Λn corresponding to
the Bajraktarević-type function given by (2.1). In particular, if p = 1 is a constant
function in (2.1), then we speak about a quasi-arithmetic-type ψ-estimator.

As a first result, we give a necessary and sufficient condition in order that
Θψ = ∅ hold, where Θψ is given by (1.1).

Lemma 2.1. Let f : Θ → R be a strictly increasing function, p : X →
R++, F : X → conv(f(Θ)), and define ψ : X × Θ → R by (2.1). Then Θψ = ∅
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holds if and only if there exists t0 ∈ Θ such that the range F (X) of F is contained
in [f(t0 − 0), f(t0 + 0)], where f(t0 − 0) and f(t0 + 0) denote the left and right
hand limits of f at t0, respectively.

Proof: First, let us suppose that there exists t0 ∈ Θ such that F (X) ⊆
Jf (t0) := [f(t0 − 0), f(t0 + 0)]. Then, using that f is strictly increasing, for all
x ∈ X and t′, t′′ ∈ Θ with t′ < t0 < t′′, we have that f(t′) < f(t0 − 0) ⩽ F (x) ⩽
f(t0 + 0) < f(t′′), and therefore, taking into account that p is positive, for all
x ∈ X, we get

p(x)(F (x)− f(t))

{
> 0 if t < t0, t ∈ Θ,

< 0 if t > t0, t ∈ Θ.

Hence, ϑ1,ψ(x) = t0 for all x ∈ X. This yields that Θψ = ∅.

To prove the converse statement, we check that if there does not exist
t0 ∈ Θ such that F (X) ⊆ Jf (t0), then Θψ ̸= ∅. Since f is strictly increasing, we
have

conv(f(Θ)) =
⋃
t∈Θ

Jf (t),

and Jf (t
′) ∩ Jf (t′′) = ∅ for all t′, t′′ ∈ Θ with t′ ̸= t′′. Using also that F (X) ⊆

conv(f(Θ)), there exist t1, t2 ∈ Θ with t1 < t2 such that F (X) ∩ Jf (ti) ̸= ∅,
i = 1, 2. Hence there exist x1, x2 ∈ X such that F (xi) ∈ Jf (ti), i = 1, 2.
Consequently, similarly as before, we have

p(xi)(F (xi)− f(t))

{
> 0 if t < ti, t ∈ Θ,

< 0 if t > ti, t ∈ Θ,
i = 1, 2,

yielding that ϑ1,ψ(xi) = ti, i = 1, 2. Therefore, (t1, t2) ⊆ Θψ, showing that Θψ is
not empty, as expected.

The next lemma is connected to Theorem 2.10 in Barczy and Páles [1],
where we derived several implications between the property [T ] of a function
Ψ(X,Θ) and the monotonicity properties of the map (2.3) defined in the next
lemma.

Lemma 2.2. Let f : Θ → R be a strictly increasing function, p : X →
R++, F : X → conv(f(Θ)), and define ψ : X × Θ → R by (2.1). Then, for all
x, y ∈ X with ϑ1,ψ(x) < ϑ1,ψ(y), the map

(2.3) (ϑ1,ψ(x), ϑ1,ψ(y)) ∋ u 7→ −ψ(x, u)
ψ(y, u)

is positive and strictly increasing.

Proof: Let x, y ∈ X with ϑ1,ψ(x) < ϑ1,ψ(y) and let u ∈(ϑ1,ψ(x), ϑ1,ψ(y))
be arbitrary. Then ψ(x, u) < 0 < ψ(y, u), which proves that the map (2.3)
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is positive valued. To see the strict monotonicity property, let additionally
v ∈ (ϑ1,ψ(x), ϑ1,ψ(y)) be arbitrary with u < v. Then ψ(x, v) < 0 < ψ(y, v),
which implies that F (x) < f(v) < F (y). Thus F (x) < F (y) and, by the strict
monotonicity of f , we also have f(u) < f(v). Therefore

(F (y)− F (x))(f(v)− f(u)) > 0,

which is equivalent to the inequality

(F (x)− f(u))(F (y)− f(v)) > (F (y)− f(u))(F (x)− f(v)).

Multiplying this inequality by −p(x)
p(y)(F (y)−f(u))(F (y)−f(v)) < 0 side by side, it follows

that

−ψ(x, u)
ψ(y, u)

= −p(x)(F (x)− f(u))

p(y)(F (y)− f(u))
< −p(x)(F (x)− f(v))

p(y)(F (y)− f(v))
= −ψ(x, v)

ψ(y, v)
.

This completes the proof of the strict increasingness of the map (2.3). We note
that the statement also follows from the proof of Proposition 2.19 in Barczy and
Páles [1].

In the following result, we describe sufficient conditions which imply that
the function ψ defined by (2.1) possesses the property [Z1] and [Z], respectively.

Lemma 2.3. Let f : Θ → R be a strictly increasing function, p : X →
R++, F : X → f(Θ) and define ψ : X × Θ → R by (2.1). Then ψ has the
property [Z1] and

(2.4) Θψ =
{
t ∈ Θ | ∃x, y ∈ X : F (x) < f(t) < F (y)

}
.

If, in addition, conv(F (X)) ⊆ f(Θ), then ψ has the property [Z] as well.

Proof: Since F (X) ⊆ f(Θ), the restriction of f (−1) onto F (X) is the
strictly increasing inverse of f in the standard sense restricted to F (X). Thus,
for all x ∈ X, we have

ψ(x, ϑ1,ψ(x)) = p(x)(F (x)− f(ϑ1,ψ(x))) = p(x)
(
F (x)− f(f (−1)(F (x)))

)
= p(x)(F (x)− F (x)) = 0,

yielding that ψ has the property [Z1]. Furthermore, using also that (f (−1)◦f)(t) =
t, t ∈ Θ, we get that

Θψ =
{
t ∈ Θ | ∃x, y ∈ X : ϑ1,ψ(x) < t < ϑ1,ψ(y)

}
=

{
t ∈ Θ | ∃x, y ∈ X : f (−1)(F (x)) < t < f (−1)(F (y))

}
=

{
t ∈ Θ | ∃x, y ∈ X : (f ◦ f (−1))(F (x)) < f(t) < (f ◦ f (−1))(F (y))

}
=

{
t ∈ Θ | ∃x, y ∈ X : F (x) < f(t) < F (y)

}
,
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as desired.

To prove the last assertion, let us assume that conv(F (X)) ⊆ f(Θ). Then,
by (2.2), for each n ∈ N and x = (x1, . . . , xn) ∈ Xn, we have

n∑
i=1

ψ(xi, ϑn,ψ(x))

=

n∑
i=1

p(xi)
(
F (xi)− f(ϑn,ψ(x))

)
=

n∑
i=1

p(xi)F (xi)−
n∑
i=1

p(xi)f

f (−1)

 n∑
j=1

p(xj)

p(x1) + · · ·+ p(xn)
F (xj)


=

n∑
i=1

p(xi)F (xi)−
n∑
i=1

p(xi)

n∑
j=1

p(xj)

p(x1) + · · ·+ p(xn)
F (xj) = 0,

where we used that
∑n

j=1
p(xj)

p(x1)+···+p(xn)F (xj) ∈ conv(F (X)) ⊆ f(Θ).

In the next remark, we point out the fact that (2.4) does not hold in general,
showing that the assumption F (X) ⊆ f(Θ) in Lemma 2.3 is indispensable.

Remark 2.1. Let X := {x1, x2}, Θ := R, let p : X → R++, f : R → R
be defined by

f(t) :=


t if t ⩽ 1,

t+ 1 if 1 < t ⩽ 2,

t+ 2 if t > 2,

and F : X → R be such that F (x1) := 1 and F (x2) := 3, 5. Then conv(f(Θ)) =
R, and

p(x1)(F (x1)− f(t))


> 0 if t < 1,

= 0 if t = 1,

< 0 if t > 1,

and

p(x2)(F (x2)− f(t))

{
> 0 if t ⩽ 2,

< 0 if t > 2,

yielding that ϑ1,ψ(xj) = j, j = 1, 2. Hence Θψ = (1, 2). However,{
t ∈ Θ | ∃ x, y ∈ X : F (x) < f(t) < F (y)

}
= (1, 2],

which does not coincide with Θψ = (1, 2). Note that F (X) ⊆ f(Θ) is also not
valid, and ψ does not have the property [Z1], since ψ(x2, ϑ1,ψ(x2)) = ψ(x2, 2) =

p(x2)(F (x2)− f(2)) = p(x2)
2 > 0. 2

Below, we solve the comparison problem for Bajraktarević-type estimators.
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Theorem 2.1. Let f, g : Θ → R be strictly increasing functions, p, q :
X → R++, F : X → f(Θ), G : X → g(Θ), and suppose that conv(G(X)) ⊆ g(Θ).
Let ψ : X ×Θ → R and φ : X ×Θ → R be given by

ψ(x, t) := p(x)(F (x)− f(t)), x ∈ X, t ∈ Θ,

φ(x, t) := q(x)(G(x)− g(t)), x ∈ X, t ∈ Θ.
(2.5)

Assume that (f (−1) ◦ F )(x) ⩽ (g(−1) ◦ G)(x), x ∈ X. Then ϑn,ψ(x) ⩽ ϑn,φ(x)
holds for each n ∈ N and x ∈ Xn if and only if the inequality

q(y)

q(x)
· G(y)− g(t)

G(x)− g(t)
⩽
p(y)

p(x)
· F (y)− f(t)

F (x)− f(t)
(2.6)

is valid for all t ∈ Θ and for all x, y ∈ X with G(x) < g(t) < G(y).

Proof: By Proposition 2.19 in Barczy and Páles [1] and Lemma 2.3, ψ
has the properties [T ] and [Z1], and φ has the property [Z]. Using Theorem 1.1,
we have that ϑn,ψ(x) ⩽ ϑn,φ(x) holds for each n ∈ N and x ∈ Xn if and only if
the inequality

ψ(x, t)φ(y, t) ⩽ ψ(y, t)φ(x, t)

is valid for all t ∈ Θ and for all x, y ∈ X with ϑ1,φ(x) < t < ϑ1,φ(y).

Using G(X) ⊆ g(Θ), Lemma 2.3 yields that

Θφ =
{
t ∈ Θ | ∃x, y ∈ X : G(x) < g(t) < G(y)

}
,

and for all t ∈ Θ and x, y ∈ X, the inequality ϑ1,φ(x) < t < ϑ1,φ(y) holds if
and only if G(x) < g(t) < G(y). Consequently, ϑn,ψ(x) ⩽ ϑn,φ(x) holds for each
n ∈ N and x ∈ Xn if and only if

p(x)(F (x)− f(t))q(y)(G(y)− g(t)) ⩽ p(y)(F (y)− f(t))q(x)(G(x)− g(t))(2.7)

is valid for all t ∈ Θ and for all x, y ∈ X with G(x) < g(t) < G(y). Using that
f is strictly increasing, F (X) ⊆ f(Θ), and g(−1) restricted to g(Θ) is strictly
increasing, for all t ∈ Θ and for all x ∈ X with G(x) < g(t), we have that

F (x) = (f ◦ f (−1))(F (x)) = f(f (−1)(F (x)))

⩽ f(g(−1)(G(x))) < f(g(−1)(g(t))) = f(t).

Consequently, G(x) − g(t) < 0 and F (x) − f(t) < 0 in the inequality (2.7), and
hence by rearranging it, the assertion follows.

In the next result, under some additional regularity assumptions on f and
g, we derive another set of conditions that is equivalent to (2.6).
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Theorem 2.2. Let f, g : Θ → R be strictly increasing functions, p, q :
X → R++, F : X → f(Θ), G : X → g(Θ), and suppose that F (X) = f(Θ) and
conv(G(X)) ⊆ g(Θ). Let ψ : X ×Θ → R and φ : X ×Θ → R be given by (2.5).
Assume that (f (−1) ◦ F )(x) = (g(−1) ◦G)(x) =: ϑ1(x), x ∈ X, and that f and g
are differentiable at ϑ1(x) for all x ∈ X with non-vanishing (and hence positive)
derivatives. Then ϑn,ψ(x) ⩽ ϑn,φ(x) holds for each n ∈ N and x ∈ Xn if and
only if the inequality

p(y)

p(x)
· F (y)− F (x)

f ′
(
f (−1)(F (x))

) ⩽
q(y)

q(x)
· G(y)−G(x)

g′
(
g(−1)(G(x))

)
is valid for all x, y ∈ X.

Proof: Since F (X) = f(Θ), we have that

ϑ1(X) = (f (−1) ◦ F )(X) = f (−1)(F (X)) = f (−1)(f(Θ)) = Θ.

Further, for all x ∈ X, we have

∂2ψ(x, ϑ1(x)) = −p(x)f ′(ϑ1(x)) = −p(x)f ′
(
f (−1)(F (x))

)
,

∂2φ(x, ϑ1(x)) = −q(x)g′(ϑ1(x)) = −q(x)g′
(
g(−1)(G(x))

)
.

Consequently, using Theorem 1.2, we have that ϑn,ψ(x) ⩽ ϑn,φ(x) holds for each
n ∈ N and x ∈ Xn if and only if

p(y)

p(x)
· F (y)− f(ϑ1(x))

f ′(ϑ1(x))
⩽
q(y)

q(x)
· G(y)− g(ϑ1(x))

g′(ϑ1(x))

is valid for all x, y ∈ X, which yields the statement, since

f(ϑ1(x)) = f(f (−1)(F (x))) = (f ◦ f (−1))(F (x)) = F (x), x ∈ X,

due to the condition F (X) ⊆ f(Θ), and similarly, we also have g(ϑ1(x)) = G(x),
x ∈ X.

In the next result, among others, we point out that, under the assumptions
of Theorem 2.2, the function g is continuous.

Lemma 2.4. Let f, g : Θ → R be strictly increasing functions, F : X →
f(Θ), G : X → g(Θ), and suppose that F (X) = f(Θ) and conv(G(X)) ⊆ g(Θ).
Assume that (f (−1) ◦ F )(x) = (g(−1) ◦G)(x), x ∈ X. Then

(i) G(X) = g(Θ) and this set is convex.

(ii) g is continuous, and G(x) = (g ◦ f (−1))(F (x)), x ∈ X.
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Proof: (i). Since F (X) = f(Θ), we have that

(f (−1) ◦ F )(X) = f (−1)(F (X)) = f (−1)(f(Θ)) = Θ,

which implies that (g(−1) ◦ G)(X) = (f (−1) ◦ F )(X) = Θ holds as well. Hence,
using that G(X) ⊆ g(Θ), we have that

g(Θ) = g((g(−1) ◦G)(X)) = (g ◦ g(−1))(G(X)) = G(X).

Consequently, conv(g(Θ)) = conv(G(X)), and, since conv(G(X)) ⊆ g(Θ), we
obtain that g(Θ) ⊆ conv(g(Θ)) = conv(G(X)) ⊆ g(Θ), yielding that g(Θ) =
conv(G(X)) is a convex set.

(ii). Since g is strictly increasing and its range g(Θ) is convex (see part
(i)), we can see that g is continuous as well. Finally, note that the equality
(f (−1) ◦ F )(x) = (g(−1) ◦ G)(x), x ∈ X, implies that G(x) = (g ◦ f (−1))(F (x)),
x ∈ X, since G(X) ⊆ g(Θ).

3. EQUALITY OF BAJRAKTAREVIĆ-TYPE ψ-ESTIMATORS

In this section, we apply Theorem 1.3 for solving the equality problem
for Bajraktarević-type estimators. In the proof, we will use a result on the
Schwarzian derivative of a function. Given a nondegenerate open interval I ⊆ R,
for a three times differentiable function h : I → R with a nonvanishing first
derivative, its Schwarzian derivative Sh : I → R is defined by

Sh(x) :=
h′′′(x)

h′(x)
− 3

2

(
h′′(x)

h′(x)

)2

, x ∈ I.

The following result is well-known, see, e.g., Grünwald and Páles [4, Corollary 3].

Lemma 3.1. Let I ⊆ R be a nondegenerate open interval, and h : I →
R be a three times differentiable function such that h′ does not vanish on I. Then
Sh(x) = 0, x ∈ I, holds if and only if there exist four constants a, b, c, d ∈ R with
ad ̸= bc and 0 /∈ cI + d such that

h(x) =
ax+ b

cx+ d
, x ∈ I.

In the proof of the subsequent theorems, the following auxiliary result plays
an important role.

Lemma 3.2. Let I be a nondegenerate open interval of R. Let f, g : I →
R be strictly increasing functions such that there exist four constants a, b, c, d ∈ R
with 0 /∈ cf(I) + d and

g(t) =
af(t) + b

cf(t) + d
, t ∈ I.
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Then ad > bc and cf + d is either everywhere positive or everywhere negative on
I.

Proof: The condition 0 /∈ cf(I)+d yields that (c, d) ̸= (0, 0). If ad = bc,
then there exists λ ∈ R such that (a, b) = λ(c, d). In this case, we get that g(t) = λ
for all t ∈ I, which contradicts the strict monotonicity of g. Thus ad ̸= bc must
hold.

Next, we check that cf + d is either everywhere positive or everywhere
negative on I. On the contrary, if cf + d changes sign in I, then c cannot be
zero and hence cf + d is also strictly monotone. Therefore, using also that I
is a nondegenerate open interval, there exists a unique point τ ∈ I such that
cf(t)+d >(<) 0 for all t < τ , t ∈ I, and cf(t)+d <(>) 0 for all t > τ , t ∈ I. Let
t < τ < r < s be arbitrarily fixed elements of I. Then (cf(t) + d)(cf(r) + d) < 0
and (cf(r) + d)(cf(s) + d) > 0. Consequently, using the strict increasingness of
g, the inequalities

af(t) + b

cf(t) + d
= g(t) < g(r) =

af(r) + b

cf(r) + d

and
af(r) + b

cf(r) + d
= g(r) < g(s) =

af(s) + b

cf(s) + d

imply that

(af(t) + b)(cf(r) + d) > (af(r) + b)(cf(t) + d),

(af(r) + b)(cf(s) + d) < (af(s) + b)(cf(r) + d),

or equivalently,

0 > (ad− bc)(f(r)− f(t)) and 0 < (ad− bc)(f(s)− f(r)).(3.1)

Since f is also strictly increasing, we have that f(t) < f(r) < f(s). Therefore,
(ad−bc)(f(r)−f(t)) and (ad−bc)(f(s)−f(r)) should have the same signs. This
together with the inequalities (3.1) lead us to a contradiction.

Finally, to show that ad > bc, let r, s ∈ I with r < s be fixed. Then,
using that cf + d does not change sign in I, we have (cf(r) + d)(cf(s) + d) > 0,
and therefore the inequality g(r) < g(s), in the same way as above, implies
0 < (ad − bc)(f(s) − f(r)). This, in view of the strict increasingness of f yields
that ad− bc > 0.

Theorem 3.1. Let f, g : Θ → R be strictly increasing functions such
that f is continuous, p, q : X → R++, F : X → f(Θ), G : X → g(Θ), and
suppose that F (X) = f(Θ) and conv(G(X)) ⊆ g(Θ). Let ψ : X × Θ → R and
φ : X × Θ → R be given by (2.5). If ϑn,ψ(x) = ϑn,φ(x) holds for each n ∈ N
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and x ∈ Xn, then there exist four constants a, b, c, d ∈ R with ad ̸= bc and
0 /∈ cf(Θ) + d such that

g(t) =
af(t) + b

cf(t) + d
, t ∈ Θ,

G(x) =
aF (x) + b

cF (x) + d
, x ∈ X,

q(x) = (cF (x) + d)p(x), x ∈ X.

(3.2)

Proof: Since f is strictly increasing and continuous and Θ is a non-
degenerate open interval, we have f(Θ) is a non-degenerate open interval. Hence
conv(f(Θ)) = f(Θ) = F (X), and then, as a consequence of Lemma 2.3, we get
ψ ∈ Ψ[Z](X,Θ). Further, since conv(G(X)) ⊆ g(Θ), Lemma 2.3 also yields that
φ ∈ Ψ[Z](X,Θ).

We first verify that Θψ = Θ. The inclusion Θψ ⊆ Θ is trivial. To prove the
reversed one, let t ∈ Θ be arbitrary. Now choose r, s ∈ Θ such that r < t < s.
Using that F (X) = f(Θ), we can find x, y ∈ X such that f(r) = F (x) and
f(s) = F (y). Since f is strictly increasing, it follows that F (x) = f(r) < f(t) <
f(s) = F (y), showing that t belongs to the set{

t ∈ Θ | ∃x, y ∈ X : F (x) < f(t) < F (y)
}
,

which, according to (2.4), equals Θψ.

Assume that ϑn,ψ(x) = ϑn,φ(x) holds for each n ∈ N and x ∈ Xn. Then,
in the case n = 1, this equality and (2.2) imply that (f (−1) ◦ F )(x) = ϑ1,ψ(x) =
ϑ1,φ(x) = (g(−1) ◦ G)(x), x ∈ X. Hence, according to Lemma 2.4, we get that
G(X) = conv(G(X)) = g(Θ) is a convex set and g is continuous. Then, similarly
as we derived Θψ = Θ, we have that Θφ = Θ holds as well.

For all x, y ∈ X with G(x) < G(y), let us introduce the notation

Θx,y := {t ∈ Θ |G(x) < g(t) < G(y)}.

Using that F (X) ⊆ f(Θ), G(X) ⊆ g(Θ), and that the restrictions of f (−1) and
g(−1) to f(Θ) and g(Θ) are the strictly increasing inverses of f and g in the
standard sense, respectively, for all x, y ∈ X with G(x) < G(y), we have

Θx,y = {t ∈ Θ | g(−1)(G(x)) < t < g(−1)(G(y))}
= {t ∈ Θ | f (−1)(F (x)) < t < f (−1)(F (y))}
= {t ∈ Θ |F (x) < f(t) < F (y)}.

(3.3)

The previous argument also shows that for all x, y ∈ X, we get G(x) < G(y)
if and only if F (x) < F (y), and the set Θx,y is a nonempty open interval for
all x, y ∈ X with G(x) < G(y), since it is the intersection of the open intervals
(g(−1)(G(x)), g(−1)(G(y))) and Θ.
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In view of (3.3), Lemma 2.3 and the equality Θψ = Θ we can see that

(3.4)

Θφ =
⋃

{x,y∈X:G(x)<G(y)}

Θx,y

=
⋃

{x,y∈X:F (x)<F (y)}

{t ∈ Θ |F (x) < f(t) < F (y)} = Θψ = Θ.

Using that the image under f of a union of subsets is the union of the images
under f of the given subsets, (3.4) immediately yields that⋃

{x,y∈X:G(x)<G(y)}

f(Θx,y) = f(Θ),(3.5)

which is an open interval, since Θ is a nonempty open interval and f is strictly
increasing and continuous.

Using Theorem 2.1, we have that

q(y)

q(x)
· G(y)− g(t)

G(x)− g(t)
=
p(y)

p(x)
· F (y)− f(t)

F (x)− f(t)
(3.6)

holds for all t ∈ Θ and for all x, y ∈ X with G(x) < g(t) < G(y), or equivalently,
(3.6) holds for all x, y ∈ X with G(x) < G(y) and for all t ∈ Θx,y.

One can readily check that for all x, y ∈ X with G(x) < G(y) and for all
t ∈ Θx,y, the equality (3.6) is equivalent to any of the following three equalities:

p(x)(F (x)− f(t))q(y)(G(y)− g(t)) = p(y)(F (y)− f(t))q(x)(G(x)− g(t)),(
p(y)(F (y)− f(t))q(x)− p(x)(F (x)− f(t))q(y)

)
g(t)

= p(y)(F (y)− f(t))q(x)G(x)− p(x)(F (x)− f(t))q(y)G(y),

(cx,yf(t) + dx,y)g(t) = ax,yf(t) + bx,y,

(3.7)

where

ax,y := p(x)q(y)G(y)− p(y)q(x)G(x),

bx,y := p(y)q(x)F (y)G(x)− p(x)q(y)F (x)G(y),

cx,y := p(x)q(y)− p(y)q(x),

dx,y := p(y)q(x)F (y)− p(x)q(y)F (x).

Here, due to G(x) ̸= G(y), we have that (ax,y, cx,y) ̸= (0, 0) and (bx,y, dx,y) ̸=
(0, 0) hold. Substituting s := f(t) (i.e., t = f (−1)(s)) in the third equality in
(3.7), it follows that

(cx,ys+ dx,y)(g ◦ f (−1))(s) = ax,ys+ bx,y(3.8)

for all x, y ∈ X with G(x) < G(y) and for all s ∈ f(Θx,y).
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Next, we check that cx,ys+ dx,y ̸= 0 for all x, y ∈ X with G(x) < G(y) and
for all s ∈ f(Θx,y). If cx,ys + dx,y = 0 and cx,y = 0 were true, then dx,y = 0,
ax,y ̸= 0, bx,y ̸= 0 and ax,ys + bx,y = 0 (following from (3.8)). This leads us
to a contradiction, since cx,y = dx,y = 0 implies that p(x)q(y) = p(y)q(x) and
F (x) = F (y), which cannot happen due to F (x) < F (y). If cx,ys + dx,y = 0

and cx,y ̸= 0 were true, then s = −dx,y
cx,y

and ax,ys + bx,y = 0, yielding that
cx,ybx,y − dx,yax,y = 0. This leads us to a contradiction, since an easy calculation
shows that

cx,ybx,y − dx,yax,y = p(x)p(y)q(x)q(y)(F (x)− F (y))(G(y)−G(x)),(3.9)

which cannot be 0 for any x, y ∈ X with G(x) < G(y).

Consequently,

(g ◦ f (−1))(s) =
ax,ys+ bx,y
cx,ys+ dx,y

(3.10)

for all x, y ∈ X with G(x) < G(y) and for all s ∈ f(Θx,y).

We can apply Lemma 3.1 to the function h := g ◦ f (−1) defined on the
nondegenerate open interval I := f(Θ), since (3.10) implies that h is three times
differentiable on I such that h′ does not vanish on I. Indeed, using (3.10), we
have that

h′(s) =
ax,ydx,y − bx,ycx,y
(cx,ys+ dx,y)2

̸= 0, s ∈ f(Θx,y)

for all x, y ∈ X with G(x) < G(y), where we used (3.9). Hence, as a consequence
of (3.5), we have h′(s) ̸= 0, s ∈ f(Θ). Taking into account that f(Θx,y) is a
nondegenerate open interval for all x, y ∈ X with G(x) < G(y), Lemma 3.1 and
(3.10) imply that Sh(s) = 0, s ∈ f(Θ). Consequently, using again Lemma 3.1,
there exist four constants a∗, b∗, c∗, d∗ ∈ R with a∗d∗ ̸= b∗c∗ and 0 /∈ c∗f(Θ) + d∗

such that

h(s) = (g ◦ f (−1))(s) =
a∗s+ b∗

c∗s+ d∗
, s ∈ f(Θ).(3.11)

By substituting s := f(t), where t ∈ Θ, it follows that

g(t) =
a∗f(t) + b∗

c∗f(t) + d∗
, t ∈ Θ,

as desired. Using (3.11), the assumptions f (−1)◦F = g(−1)◦G and G(X) ⊆ g(Θ),
we get that

G(x) = g((f (−1) ◦ F )(x)) = (g ◦ f (−1))(F (x)) =
a∗F (x) + b∗

c∗F (x) + d∗
, x ∈ X,

where 0 /∈ c∗F (X) + d∗, since F (X) = f(Θ) and 0 /∈ c∗f(Θ) + d∗.
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By (3.6) and taking into account the forms of G and g, we get

q(y)

q(x)
·

a∗F (y) + b∗

c∗F (y) + d∗
− a∗f(t) + b∗

c∗f(t) + d∗

a∗F (x) + b∗

c∗F (x) + d∗
− a∗f(t) + b∗

c∗f(t) + d∗

=
p(y)

p(x)
· F (y)− f(t)

F (x)− f(t)

holds for all x, y ∈ X with G(x) < G(y) and for all t ∈ Θx,y. Using that
a∗d∗ − b∗c∗ ̸= 0, after some algebraic calculations, we obtain that

q(y)

p(y)
=
c∗F (y) + d∗

c∗F (x) + d∗
· q(x)
p(x)

holds for all x, y ∈ X with G(x) < G(y), or equivalently,(q
p

)
(y)

c∗F (y) + d∗
=

(q
p

)
(x)

c∗F (x) + d∗

holds for all x, y ∈ X with G(x) < G(y). Since q/p is positive, it follows that
there exists a constant k ∈ R \ {0} such that

q(x) = k(c∗F (x) + d∗)p(x), x ∈ X.

The statement of the proposition now holds with the choices a := ka∗,
b := kb∗, c := kc∗ and d := kd∗.

We note that in the proof of Theorem 3.1, the assumption that f is contin-
uous is used for deriving that f(Θ) is an open interval, which is essential when
we apply Lemma 3.1. Note also that in the proof of Theorem 3.1 it turned out
that g is continuous as well, however, we did not utilize this property in the
proof. Nonetheless, the continuity of g also follows from the result itself, since f
is continuous and g(t) = (af(t) + b)/(cf(t) + d), t ∈ Θ.

Next, we will provide a set of sufficient conditions on f , g, F and G in order
that ϑn,ψ(x) = ϑn,φ(x) hold for each n ∈ N and x ∈ Xn.

Theorem 3.2. Let f, g : Θ → R be strictly increasing functions, p, q :
X → R++, F : X → conv(f(Θ)), and G : X → conv(g(Θ)). Let ψ : X ×Θ → R
and φ : X ×Θ → R be given by (2.5). If there exist four constants a, b, c, d ∈ R
with 0 /∈ cf(Θ) + d such that (3.2) holds, then ϑn,ψ(x) = ϑn,φ(x) holds for each
n ∈ N and x ∈ Xn.

Proof: Since p and q are strictly positive functions, as a consequence of
the equality q = (cF + d)p, we get that cF + d is positive on X. Further, for all
x ∈ X and t ∈ Θ, we obtain

φ(x, t) = q(x)(G(x)− g(t)) = (cF (x) + d)p(x)

(
aF (x) + b

cF (x) + d
− af(t) + b

cf(t) + d

)
= p(x)

(ad− bc)(F (x)− f(t))

cf(t) + d
=

ad− bc

cf(t) + d
ψ(x, t).

(3.12)
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Using Lemma 3.2, we have that ad > bc, and cf + d is either everywhere
positive or everywhere negative on Θ. We show that the latter property cannot
hold. To the contrary, assume that cf + d is everywhere negative on Θ, i.e.,
cf(Θ) + d ⊆ R−−. Then c · conv(f(Θ)) + d = conv(cf(Θ) + d) ⊆ R−−. Using
that F (X) ⊆ conv(f(Θ)), this implies that

c · F (X) + d ⊆ c · conv(f(Θ)) + d ⊆ R−−,

which contradicts the positivity of cF + d on X. Consequently, cf + d must be
everywhere positive on Θ.

To prove the equality ϑn,ψ = ϑn,φ on Xn, let n ∈ N and x = (x1, . . . , xn) ∈
Xn be arbitrary. Then, by (3.12), we have

n∑
i=1

φ(xi, t) =
ad− bc

cf(t) + d

n∑
i=1

ψ(xi, t), t ∈ Θ.

Since (ad− bc)/(cf + d) is positive everywhere on Θ. This implies that

sign

( n∑
i=1

φ(xi, t)

)
= sign

( n∑
i=1

ψ(xi, t)

)
, t ∈ Θ.

Hence the unique points of sign change of the functions

Θ ∋ t 7→
n∑
i=1

φ(xi, t) and Θ ∋ t 7→
n∑
i=1

ψ(xi, t)

are equal to each other, which implies the equality ϑn,ψ(x) = ϑn,φ(x), as desired.

Next, we give an equivalent form of the first equality in (3.2). Roughly
speaking, we derive a necessary and sufficient condition in order that two strictly
increasing functions defined on a nondegenerate open interval be the Möbius
transforms of each other.

Proposition 3.1. Let I be a nondegenerate open interval of R. Let
f, g : I → R be strictly increasing functions. The following two statements are
equivalent:

(i) There exist four constants a, b, c, d ∈ R with 0 /∈ cf(I) + d and

g(t) =
af(t) + b

cf(t) + d
, t ∈ I.(3.13)

(ii) For all t1, t2, t3, t4 ∈ I, we have

(3.14)

∣∣∣∣∣∣∣∣
1 1 1 1

f(t1) f(t2) f(t3) f(t4)
g(t1) g(t2) g(t3) g(t4)

f(t1)g(t1) f(t2)g(t2) f(t3)g(t3) f(t4)g(t4)

∣∣∣∣∣∣∣∣ = 0.
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Proof: (i)=⇒(ii). Let us suppose that there exist four real constants
a, b, c, d ∈ R such that 0 /∈ cf(I) + d and (3.13) hold. By Lemma 3.2, we have
ad > bc. Further, (cf(t) + d)g(t) = af(t) + b, t ∈ I, yielding that

1 · b+ f(t) · a+ g(t) · (−d) + f(t)g(t) · (−c) = 0, t ∈ I.

In particular, for all t1, t2, t3, t4 ∈ I, we have that
1 1 1 1

f(t1) f(t2) f(t3) f(t4)
g(t1) g(t2) g(t3) g(t4)

f(t1)g(t1) f(t2)g(t2) f(t3)g(t3) f(t4)g(t4)


⊤

·


b
a
−d
−c

 =


0
0
0
0

 .
As a consequence of the inequality ad > bc, we have that (b, a,−d,−c) ̸=
(0, 0, 0, 0), which shows that (b, a,−d,−c) is a nontrivial solution to the above
homogeneous system of linear equations. Hence we obtain that (3.14) must hold
for all t1, t2, t3, t4 ∈ I.

(ii)=⇒(i). Let t3 < t4 be fixed elements of I. By the strict monotonicity
of f , the vectors (1, f(t3)) and (1, f(t4)) are linearly independent. Assume first
that, for all t ∈ I,

(3.15)

∣∣∣∣∣∣
1 1 1
f(t) f(t3) f(t4)
g(t) g(t3) g(t4)

∣∣∣∣∣∣ = 0

holds. Expanding the determinant along its first column, for all t ∈ I, we get

b+ af(t)− dg(t) = 0

where

a := −
∣∣∣∣ 1 1
g(t3) g(t4)

∣∣∣∣ , b :=

∣∣∣∣f(t3) f(t4)g(t3) g(t4)

∣∣∣∣ , d := −
∣∣∣∣ 1 1
f(t3) f(t4)

∣∣∣∣ ̸= 0.

Therefore, (3.13) holds with c = 0 and we also have that 0 ̸∈ cf(I) + d = {d}.

Now we consider the case when (3.15) is not valid for all t ∈ I, that is,
there exists t2 ∈ I such that (3.15) does not hold for t = t2. Then, by (3.14), for
all t ∈ I, ∣∣∣∣∣∣∣∣

1 1 1 1
f(t) f(t2) f(t3) f(t4)
g(t) g(t2) g(t3) g(t4)

f(t)g(t) f(t2)g(t2) f(t3)g(t3) f(t4)g(t4)

∣∣∣∣∣∣∣∣ = 0.

Expanding the determinant along its first column, for all t ∈ I, we get

(3.16) b+ af(t)− dg(t)− cf(t)g(t) = 0,
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where

a := −

∣∣∣∣∣∣
1 1 1

g(t2) g(t3) g(t4)
f(t2)g(t2) f(t3)g(t3) f(t4)g(t4)

∣∣∣∣∣∣ ,
b :=

∣∣∣∣∣∣
f(t2) f(t3) f(t4)
g(t2) g(t3) g(t4)

f(t2)g(t2) f(t3)g(t3) f(t4)g(t4)

∣∣∣∣∣∣ ,
c :=

∣∣∣∣∣∣
1 1 1

f(t2) f(t3) f(t4)
g(t2) g(t3) g(t4)

∣∣∣∣∣∣ ̸= 0,

d := −

∣∣∣∣∣∣
1 1 1

f(t2) f(t3) f(t4)
f(t2)g(t2) f(t3)g(t3) f(t4)g(t4)

∣∣∣∣∣∣ .
Since c ̸= 0, we have that cf + d is strictly monotone. We now prove that cf + d
does not vanish on I. Assume, on the contrary, that for some t1 ∈ I, we have
that cf(t1) + d = 0. Then, cf(t) + d ̸= 0 for t ∈ I \ {t0}, and, by (3.16), we get
that af(t1) + b = 0. This implies that ad = bc. Therefore, applying (3.16) for
t ∈ I \ {t1}, we obtain

g(t) =
af(t) + b

cf(t) + d
=
af(t) + ad

c

cf(t) + d
=
a

c
,

which contradicts the strict monotonicity of g.

As a consequence of Theorem 3.1, we can characterize the equality of
quasiarithmetic-type ψ-estimators.

Corollary 3.1. Let f, g : Θ → R be strictly increasing functions, F :
X → conv(f(Θ)), and G : X → conv(g(Θ)). Let ψ : X×Θ → R and φ : X×Θ →
R be given by

ψ(x, t) := F (x)− f(t), φ(x, t) := G(x)− g(t), x ∈ X, t ∈ Θ.

The following two assertions hold:

(i) If there exist two constants a, b ∈ R with a ̸= 0 such that

g(t) = af(t) + b, t ∈ Θ, and G(x) = aF (x) + b, x ∈ X,(3.17)

then ϑn,ψ(x) = ϑn,φ(x) holds for each n ∈ N and x ∈ Xn.

(ii) In addition, suppose that f is continuous, F (X) = f(Θ) and conv(G(X)) ⊆
g(Θ). If ϑn,ψ(x) = ϑn,φ(x) holds for each n ∈ N and x ∈ Xn, then there
exist two constants a, b ∈ R with a ̸= 0 such that (3.17) holds.
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Proof: (i). Let us assume that there exist two constants a, b ∈ R with
a ̸= 0 such that (3.17) holds. By choosing c := 0, d := 1 and p(x) := q(x) := 1,
x ∈ X, we have cf(Θ)+d = 1, and hence 0 /∈ cf(Θ)+d. Further, (3.2) is satisfied
as well. Consequently, Theorem 3.2 yields that ϑn,ψ(x) = ϑn,φ(x) for each n ∈ N
and x ∈ Xn.

(ii). One can apply Theorem 3.1 with the given functions f, g, F and G
and by choosing p(x) := q(x) := 1, x ∈ X. Then we obtain that there exist four
constants a, b, c, d ∈ R with ad ̸= bc and 0 /∈ cf(Θ)+ d such that (3.2) holds, i.e.,

g(t) =
af(t) + b

cf(t) + d
, t ∈ Θ,

G(x) =
aF (x) + b

cF (x) + d
, x ∈ X,

q(x) = (cF (x) + d)p(x), x ∈ X.

Since p = q = 1, we get cF (x) + d = 1, x ∈ X, and hence G(x) = aF (x) + b,
x ∈ X. Consequently, in order to prove the statement, it is enough to verify
that cf(t) + d = 1, t ∈ Θ. We check that c = 0 and hence d = 1. Since Θ is a
nondegenerate open interval of R and f is strictly increasing and continuous, we
have that f(Θ) is a nondegenerate interval of R. Hence, using that F (X) = f(Θ),
the range F (X) of F contains at least two distinct elements, and consequently,
there exist x1, x2 ∈ X such that F (x1) ̸= F (x2). Since cF (x1) + d = 1 and
cF (x2)+d = 1, we have c(F (x1)−F (x2)) = 0, yielding that c = 0, as desired.
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