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1. INTRODUCTION

In survival analysis, the estimation of survival characteristics plays an important role
in gaining deeper insights about the observed time-to-event data. Analyzing such data us-
ing appropriate probability models are of special interest for several researchers. However,
choosing a suitable lifetime model out of thousands is a mammoth task, but can be tackled
skillfully if one decides to select the models based on the hazard nature of the data. Apart
from the constant hazard rate, there exist monotone and non-monotone hazard rate which
can occur naturally in many survival studies. The Weibull, gamma, generalized exponential
distribution, etc. are usually the primary choices to analyze any survival data with monotone
hazard rate. But in many cancer or tumor recurrence-related studies, the hazard associated
with the events of interest can initially increase, and then can gradually decrease after a cer-
tain time point (see Boucher and Kerber, 2001, for instance). Such types of hazard pattern
is known as hump type or non-monotone hazard rate and arises naturally in many demo-
graphic or pharmaceutical studies where the initial failures are very high, reaching a peak
and then decline slowly. Child mortality data can be taken as another example. The inverse
exponential, inverse Weibull, inverse Gaussian, generalized inverse exponential distributions,
etc. can be chosen as suitable models for these types of situations.

The inverse Lomax distribution (ILD) was initially explored by Kleiber and Kotz (2003)
in the context of stochastic modelling in economics and actuarial science. Later, it was stud-
ied by Rahman et al. (2013) for estimation and prediction purposes through a Bayesian
approach. Having both decreasing and non-monotone hazard rates, ILD can be used to
model lifetime data that exhibits a non-monotone hazard nature. Classical and the Bayesian
estimation procedures for the parameters and reliability functions of ILD using type-II cen-
sored observations have been discussed by Singh et al. (2016). Yadav et al. (2016) explored
the parametric estimation procedure for ILD parameters under type-I and type-II hybrid
censoring setup. Kumar et al. (2021) proposed the transmuted version of ILD and discussed
its distributional properties. The probability density function (PDF) and cumulative distri-
bution function (CDF) of ILD are given as

(1.1) f(x; ζ, ϑ) =
ζϑ

x2

(
1 +

ϑ

x

)−(1+ζ)

|x, ζ, ϑ∈R+

and

(1.2) F (x; ζ, ϑ) =

(
1 +

ϑ

x

)−ζ

|x, ζ, ϑ∈R+ ,

respectively. Recently, Yadav et al. (2019) proposed the Bayesian estimation of stress-
strength reliability parameter for ILD using observations under a progressive type-II cen-
soring (PCS-II) setup. Analyzing survival data under a progressive censoring strategy has
garnered significant attention over a few decades because as opposed to usual type-I and
type-II censoring, it offers a convenient flexibility of removing experimental subjects during
the experiment. Progressive censoring was properly discussed by Cohen (1963) to deal with
more sophisticated life testing experiments. PCS-II can be described as follows; suppose n
units are subjected to a certain life test and the experimenter needs to obtain only m failures.
At the time of first failure X1:m:n, R1 of the surviving units are randomly removed from the
remaining (n−1) units and the experiment continues further. When the second failure X2:m:n

is observed, R2 of the surviving units are randomly removed from the remaining (n− 2−R1)
units. The experiment continues in a similar fashion until the mth failure Xm:m:n is observed,
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and all the remaining Rm surviving units are removed from the experiment. Such a sample of
size m is known as progressive type-II censored sample with censoring scheme (R1, R2, ..., Rm)
provided n = m+

∑m
i=1Ri. If all Ri; i = 1, 2, ...,m−1 are zero and Rm = n−m, then the above

censoring scheme reduces to conventional type-II censoring scheme and the case of complete
sample is obtained by considering all Ri; i = 1, 2, ...,m equal to zero. The theoretical aspects
along with the applications of the PCS-II in life testing experiments are discussed by several
statisticians( see Cohen, 1963; Balakrishnan and Aggarwala, 2000; Balakrishnan, 2007, for
details). Various parametric inferential procedures for different lifetime models under PCS-II
are explored by several researchers, viz., Kundu (2008), Pradhan and Kundu (2009), Rastogi
and Tripathi (2014), Singh et al. (2015a), Singh et al. (2015b), Dey et al. (2016), Kayal et al.
(2017), Maurya et al. (2017) etc. For recent accounts of the estimation of model parameters
for different probability distributions under PCS-II, the readers may go through Lodhi et al.
(2021), Maurya et al. (2019), Yadav et al. (2019), and Yadav et al. (2022).

The main objective of the present article is twofold. First; to derive some additional
survival and distributional properties not considered by Rahman et al. (2013), and second; to
address the classical and the Bayes estimation techniques of the survival and hazard function
of ILD under PCS-II. Further, the asymptotic confidence interval (ACI) and different boot-
strap confidence intervals (BCIs), namely, standard bootstrap (s-boot), percentile bootstrap
(p-boot), and student-t bootstrap (t-boot), and the Bayes credible intervals are constructed
for the survival and hazard function for the same design of censoring parameters. A Monte
Carlo simulation study has been performed to investigate the performances of the obtained
estimators and corresponding intervals in terms of mean squared errors (MSEs) and width
of the intervals, respectively. To the best of our knowledge, no attempt has been made to
estimate the survival characteristics for ILD under PCS-II till now. Hence, the present article
has been molded to fill up this research gap.

The sectional bifurcation of the study is as follows; the introduction of the proposed
study and model is given in Section 1. Section 2 describes some distributional properties of
ILD. The likelihood function under PCS-II and maximum likelihood estimator (MLE) are
discussed in Section 3. Section 4 is devoted to the estimation of survival characteristics.
Different bootstrap confidence intervals (s-boot, p-boot, t-boot) under PCS-II are obtained
in Section 5. Section 6 describes the Bayes estimation procedure along with the Bayes
computation under symmetric and asymmetric loss functions using informative gamma prior.
Comparative study among the proposed estimators is performed by conducting Monte Carlo
simulation in Section 7. The practical application of the study has been illustrated through
two medical data sets in Section 8. Finally, the concluding remarks of the paper are presented
in Section 9.

2. DIFFERENT CHARACTERIZATIONS OF ILD

In this section, various survival and distributional properties of ILD such as survival
and hazard rate, residual life function, moments and inverse moment based characterizations
etc have been discussed, and important expressions related to them are derived.
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2.1. Survival and hazard functions

The survival and hazard functions are the two vital characteristics of any lifetime
distribution. Hazard rate (better known as instantaneous failure rate) is the dynamic speed
with which a system or component fails, expressed in failures per unit of time, whereas the
survival function gives the probability that an object of interest will survive beyond any
specified time. So if the phenomenon under consideration resembles the characteristics of
ILD then the survival and hazard of ILD for t > 0 are expressed as

S(t; ζ, ϑ) = 1− F (t; ζ, ϑ) = 1−
(
1 +

ϑ

t

)−ζ

(2.1)

and

h(t; ζ, ϑ) =
f(t; ζ, ϑ)

S(t; ζ, ϑ)
=

ζϑ
t2
(1 + ϑ

t )
−(ζ+1)

1− (1 + ϑ
t )

−ζ
,(2.2)

respectively.

2.2. Aging intensity

Aging is an interesting phenomenon and an inherent property of a system(may be
living or non-living) in life tests. It is obtained by using the hazard rate and is a measure
of deterioration of a unit (system) over time. It plays a vital role in depicting the failure
pattern of an unit. Jiang et al. (2003) defined aging intensity (AI) function as a quantitative
measure of aging. Larger value of the AI function indicates increasing tendency of aging of
the random variable under consideration. It is interesting to note that for a given failure rate
there exists a unique AI function but not vice versa. Using Equation (2.1) and (2.2), the AI
function for ILD is

Lx(t; ζ, ϑ) =
−tf(t; ζ, ϑ)

S(t; ζ, ϑ) logS(t; ζ, ϑ)
=

−(ζϑ)
t (1 + ϑ

t )
−(ζ+1)

1−
(
1 + ϑ

t

)−ζ
log
(
1−

(
1 + ϑ

t

)−ζ
) .(2.3)

Singh et al. (2016) demonstrated the shape of hazard rate of ILD to be inverted bathtub
shaped. A comparative study illustrates that the monotonicity of hazard rate is not, in
general, transmitted to the monotonicity of the AI function (see Nanda et al., 2007).

2.3. Characterization of (reversed) residual lifetime distribution

The residual lifetime R(t) can be interpreted as the additional life beyond which an
unit survives under the constraint that it has survived up to time x i.e; R(t) = X − x|X >
x, x ≥ 0. As a dual of this concept, the reverse residual lifetime R̄(t) is defined as the time
glided to reach the failure time given that the unit has lifetime less than or equal to x, i.e,
R̄(t) = x−X|X ≤ x, x ≥ 0. The survival function of R(t) for ILD is given by

(2.4) SR(t) = P (X − x > t|X > x) =
S(x+ t; ζ, ϑ)

S(x; ζ, ϑ)
=

1−
(
1 + ϑ

t+x

)−ζ

1−
(
1 + ϑ

x

)−ζ
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and corresponding PDF of R(t) is obtained as
(2.5)

fR(t) =

ζϑ

[
(1+ ϑ

t+x)
−(ζ+1)

(t+x)2
− (1+ϑ

x )
−(ζ+1)

(x)2

]
− ζϑ

(
1 + ϑ

t+x

)−(ζ+1) (
1 + ϑ

x

)−(ζ+1)
[
(1+ϑ

x )
(t+x)2

− (1+ ϑ
x+t)

(x)2

]
[
1−

(
1 + ϑ

x

)−ζ
]2 .

The hazard function of R(t) denoted by hR(t) is given as
(2.6)

hR(t) =

ζϑ

[
(1+ ϑ

t+x)
−(ζ+1)

(t+x)2
− (1+ϑ

x )
−(ζ+1)

(x)2

]
− ζϑ

(
1 + ϑ

t+x

)−(ζ+1) (
1 + ϑ

x

)−(ζ+1)
[
(1+ϑ

x )
(t+x)2

− (1+ ϑ
x+t)

(x)2

]
[
1−

(
1 + ϑ

x

)−ζ
] [

1−
(
1 + ϑ

x+t

)−ζ
] .

Similarly, the expressions of survival function, PDF and hazard function for R̄(t), t ≥ 0 are
given as

(2.7) SR̄(t) = P (x−X > t|X ≤ x) =
F (x− t; ζ, ϑ)

F (x; ζ, ϑ)
=

(
1 + ϑ

x−t

)−ζ

(
1 + ϑ

x

)−ζ
,

(2.8) fR̄(t) = ζϑ

(
1 +

ϑ

x− t

)−(ζ+1)(
1 +

ϑ

x

)−(ζ+1)
(1 + ϑ

x

)
(x− t)2

−

(
1 + ϑ

x−t

)
x2

 ,
and

(2.9) hR̄(t) = ζϑ

(
1 +

ϑ

x− t

)−1(
1 +

ϑ

x

)−(2ζ+1)
(1 + ϑ

x

)
(x− t)2

−

(
1 + ϑ

x−t

)
x2

 ,
respectively.

2.4. Moment based characterization

Moments are crucial measures for determining the shape and nature of any distribution.
The expression for rth raw moment of ILD is obtained as follows:

µr = E(xr) =

∫ ∞

0
ζϑ xr−2

(
1 +

ϑ

x

)−(1+ζ)

dx.(2.10)

The integral stated above involves the term 1/x2 which is divergent, therefore moments of
ILD do not exist for r ≥ 1. To overcome this drawback, truncation can be considered
as a viable option. Sometimes truncating the distribution at both ends holds significance
when finite mean (first order moment) of the distribution does not exist. Truncation plays
a crucial role in understanding the population characteristics when some units are lost or
deliberately removed. A truncated distributions are the conditional distributions with a
restricted domain, and it is categorized as doubly truncated (restricted at both ends), right
truncated (restricted at the right end), and left truncated (restricted at the left end). The
PDF of both end truncated ILD in (a, b); a < b is given as

(2.11) fTILD(x; ζ, ϑ) =
ϑζ
(
1 + ϑ

x

)−(ζ+1)

x2
[(
1+ϑ

b

)−ζ −
(
1+ϑ

a

)−ζ] ; a < x < b.
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Hence, the expression for rth moments of TILD can be obtained as follows:

E(Xr
TILD) =

ϑζ[(
1+ϑ

b

)−ζ −
(
1+ϑ

a

)−ζ] ∫ b

a
xr−2

(
1 +

ϑ

x

)−(ζ+1)
dx.

However, after careful consideration it can be seen that even after truncating, the finite
moments do not exist in closed form.

2.5. Characterization based on inverse moments

Several studies have asserted that for an inverse family of distributions, moments do
not exist. The probable reason is that the integral under consideration for the calculation of
moments might not be absolutely convergent. Therefore, the need to evaluate inverse mo-
ments and subsequently inverse moment generating function arises. The rth inverse moment
about origin is calculated as follows:

µ′r−1 = E

(
1

xr

)
=

∫ ∞

0

1

xr
ζϑ

x2

(
1 +

ϑ

x

)−(1+ζ)

dx.

after simplification of the above integral, we get

(2.12) µ′r−1 =
ζ

ϑr
B(r + 1, ζ − 1)B2(r + 1, ζ − 1),

where B(·, ·) and B2(·, ·) is the beta function and beta function of second kind, respectively.
For a particular value of r = 1, inverse moment converts into the harmonic mean H.

H =
1

(ζ − 1)ϑ
, ζ > 1.(2.13)

Inverse moment generating function is derived as follows and denoted by Gx(t). The other
generating function can be obtained in a similar fashion.

Gx(t) =

∞∑
0

tr

r!
µ′r−1 .

which yields

Gx(t) =

∞∑
0

tr

r!

ζ

ϑr
B(r + 1, ζ − 1)B2(r + 1, ζ − 1).(2.14)

2.6. Entropy

Renyi entropy is a common measure for quantifying information that provides a gen-
eralization to various notions of entropy. It is particularly useful in the field of statistical
inference, econometrics, and pattern recognition in computer science. For ILD, the entropy
function is given by

η =
1

1− δ1
log

∫ ∞

0
f(x; ζ, ϑ)δ1 dx =

1

1− δ1
log

∫ ∞

0

(
ζϑ

x2

(
1 +

ϑ

x

)−(ζ+1)
)δ1

dx.

After simplifications, the above integral becomes

η =
1

1− δ1
log

(
ζδ1

ϑδ1 − 1
B[2δ1 − 1, (ζ − 1)δ1 + 1]

)
; δ1 ̸= 1.(2.15)
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2.7. Stochastic ordering

A random variable X is said to be stochastically greater than another random variable
Y (Y ≤st X) if FY (x) ≤ FX(x) for all x. Similar assertions can be firmly stated in

• hazard rate order (Y ≤hr X) if hY (x) ≤ hX(x) for all x.
• mean residual life order (Y ≤mlr X) if eY (x) ≤ eX(x) for all x.
• likelihood ratio order (Y ≤lr X) if fX(x)

fY (x) is an increasing function of x.

The results due to Shaked and Shanthikumar (1994) are well known for establishing the
implications regarding the stochastic ordering of distributions. The inference drawn using
the likelihood ratio implies that the same will be obtained if we consider either hazard rate
or mean residual life.

Theorem 2.1. Let X and Y be two independent random variables that follow ILD
with shape parameters ζ1 and ζ2 and scale parameters ϑ1 and ϑ2 respectively. If ζ1 > ζ2 and
ϑ1 > ϑ2 then (Y ≤lr X) for all x.

Proof: For given X ∼ ILD(ζ1, ϑ1) and Y ∼ ILD(ζ2,ϑ2), we have

ψ =
f(x; ζ1, ϑ1)

f(x; ζ2, ϑ2)

ψ =
ζ1ϑ1
ζ2ϑ2

(
1 +

ϑ1
x

)−(ζ1+1)(
1 +

ϑ2
x

)ζ2+1

.

d

dx
ψ =

(
ζ1ϑ1
ζ2ϑ2

) (1 + ϑ1
x

)−(ζ1+2) (
1 + ϑ2

x

)ζ2
x2

[(
1 +

ϑ2
x

)
ϑ1 (ζ1 + 1)−

(
1 +

ϑ1
x

)
ϑ2 (ζ2 + 1)

]
.

the above equation increases in x for all ζ1 > ζ2 and ϑ1 > ϑ2.

Corollary 2.1. Let X ∼ ILD(ζ1, ϑ1) and Y ∼ ILD(ζ2,ϑ2). If ζ1 > ζ2 and ϑ1 > ϑ2
then (Y ≤lr X). Hence, (Y ≤hr X) and (Y ≤mrl X) and (Y ≤st X).

2.8. Characterization based on order statistics

2.8.1. Distribution of extreme order statistics

Let x(1) ≤ x(2) ≤ ... ≤ x(n) be the ordered sample taken from ILD with PDF in
Equation (1.1) and CDF in Equation (1.2). Then, the PDF of minimum order statistics for
the ILD, denoted by fX(1)

(x(1)), is given as

(2.16) fX(1)
(x(1)) =


nζϑ
x2
(1)

(
1−

(
1 + ϑ

x(1)

)−ζ
)n−1 (

1 + ϑ
x(1)

)−(ζ+1)
x(1) > 0

0 otherwise.
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and the PDF of maximum order statistics for ILD, denoted by fX(n)
(x(n)), is given as

(2.17) fX(n)
(x(n)) =


nζϑ
x2
(n)

(1 + ϑ
x(n)

)−(ζn+1) x(n) > 0

0 otherwise.
,

respectively.

2.8.2. Distribution of range

Range is defined as the difference between maximum order statistics and minimum
order statistics, given as

r = x(n) − x(1).

Let, s = x(1). Now the joint distribution of (r, s) is given as follows:
(2.18)

h(r, s) =
n(n− 1)ζ2ϑ2

(r + s)s

[(
1 +

ϑ

r + s

)−ζ

−
(
1 +

ϑ

s

)−ζ
]n−2 [(

1 +
ϑ

r + s

)(
1 +

ϑ

s

)]−(ζ+1)

.

To obtain the distribution of range r, integrate h(r, s) with respect to s and we get following
as the PDF of range r and is given as
(2.19)

h(r) = ζ
2
ϑ
2
n(n−1)

∑n−2
i=0

∑∞
j=0

∑∞
k=0(−1)n−2−i+l−j−k+ζ(i+1−n)

(
−(ζ(i+1)+1)

j

)(
−(ζ(n−i−1)+1)

k

)
(r + j)jϑjrn−2−i−j−k+ζ(i+1−n)∑∞

l=0

(
−ζ(i+1)

l

)
(l − j − k − ζ(n − i − 1) − 1)

.

2.8.3. Distribution of median

Let x(1) ≤ x(2) ≤ ... ≤ x(n) be the ordered sample taken from ILD with PDF (1.1)
and CDF (1.2). Then median is defined as the value corresponding to that observation that
exceeds and is exceeded by the same number of observations. There are two cases to deal
with:
First case is when the number of observations (n) is odd i.e., n = 2m + 1 where m is any
positive integer. In this case median is given by (n + 1)/2 th observation and the PDF for
the median is as follows:

(2.20) h(xmed) =
ζϑ(2m+ 1)!

(m!)2x2med

[
1 +

ϑ

xmed

]−ζ(m+1)+1
[
1−

(
1 +

ϑ

xmed

)−ζ
]m

.

The Second case, when the number of observations (n) is even i.e., n = 2m where m is any
positive integer. In this case median is given as the average value of (n/2)th observation and
(n/2)th+1 observation. For the PDF of median in this case we first evaluate the joint pdf of
u =

(
X(n) +X(n+1)

)
/2 and v = X(n) which is

(2.21)

h(u, v) =
2m!ζϑ

(m− 1)2!

1

u2(2u− v)2

∫ u

0

[(
1 +

ϑ

v

)−ζ
(
1−

(
1 +

ϑ

2u− v

)−ζ
)]m−1 [(

1 +
ϑ

v

)(
1− (1 +

ϑ

2u− v
)−ζ

)]−(ζ+1)

.

Now the PDF of median (obtained by integrating with respect to v) is as follows:

(2.22) h
′
(u) =

(2m)!
∑m−1

r=0

∑∞
0

∑∞
0 (−1)i+k+j−1

(m−1
i

)(−(2ζ+1)
j

)(−ζi
k

)
ϑ−(2ζ+1+i)(2u+ ϑ)−(ζi+k)uj+k+(3+i)ζ−1∑∞

0

(−ζ(i+1)−1
l

)
2−(ζ(i+1)+l+1)

.
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3. LIKELIHOOD FUNCTION AND MLE OF THE PARAMETERS

In this section, the method of maximum likelihood estimation has been discussed to
obtain the estimate of the S for t > 0, where S = [S(t), h(t)]. Let us assume that (X,R,m, n)
is the progressively censored data observed from ILD, i.e.,

(X,R,m, n) ⇒ (X1:m:n, R1), (X2:m:n, R2), ..., (Xm:m:n, Rm)

and the likelihood function of (ζ, ϑ) for observed data is written as:

L(ζ, ϑ|X) = ζ1

m∏
i=1

f(xi; ζ, ϑ)[S(xi; ζ, ϑ)]
Ri

= ζ1ζ
mϑm

m∏
i=1

1

x2i

(
1 +

ϑ

xi

)−(ζ+1)
[
1−

(
1 +

ϑ

xi

)−ζ
]Ri

(3.1)

where
ζ1 = n(n− 1−R1)(n− 2−R2 −R1)...(n−m+1−R1...−Rm−1).

The log-likelihood function is

lnL(ζ, ϑ) = ln ζ +m ln ζ +m lnϑ− (1 + ζ)

m∑
i=1

ln

(
1 +

ϑ

xi

)
− 2

m∑
i=1

lnxi

+
m∑
i=1

Ri ln

[
1−

(
1 +

ϑ

xi

)−ζ
]
.

(3.2)

The MLEs of the parameters ζ and ϑ are computed by differentiating Equation (3.2) with
respect to the parameters and equate it to zero, i.e,

(3.3) ∂ lnL(ζ, ϑ)

∂ζ
=
m

ζ
−

m∑
i=1

ln

(
1 +

ϑ

xi

)
+

m∑
i=1

Ri

(
1 + ϑ

xi

)−ζ
ln
(
1 + ϑ

xi

)
[
1−

(
1 + ϑ

xi

)−ζ
] = 0

and

(3.4) ∂ lnL

∂ϑ
=
m

ϑ
− (1 + ζ)

m∑
i=1

1

xi + ϑ
+

m∑
i=1

ζRi

(
1 + ϑ

xi

)−(ζ+1)

xi

[
1−

(
1 + ϑ

xi

)−ζ
] = 0.

From the obtained likelihood equations, given in Equations (3.3) and (3.4), it is observed
that the MLEs can not be computed in closed form due to the implicit form of the likelihood
equation. Therefore, one may use any iterative procedure like Newton-Raphson (N-R) to
obtain the MLEs of the parameter.

4. ESTIMATION OF THE SURVIVAL CHARACTERISTICS

In parametric inferential theory, the estimation of the survival characteristics for the
complete sample case is somehow manageable due to the explicit form of the associated
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distribution, but the same is not true in case of censored sample. Therefore, the invariance
property of MLE may be used to obtain the estimates of the survival characteristics. Once,
the MLEs (ζ̂, ϑ̂) of the parameters (ζ, ϑ) are obtained, the MLEs of the survival and hazard
function for any t > 0 can be calculated by simply plugging the MLEs of the parameters into
the corresponding functions. Hence, the MLEs of S(t), h(t) are given as

(4.1) Ŝ(t) = 1−

(
1 +

ϑ̂

t

)−ζ̂

and

(4.2) ĥ(t) =
ζ̂ ϑ̂
(
1 + ϑ̂

t

)−(1+ζ̂)

t2
[
1−

(
1 + ϑ̂

t

)−ζ̂
] ,

respectively.

4.1. Asymptotic distribution of survival characteristics

From the previous section, it is observed that the exact distribution of MLE of the
survival characteristics S = [S(t), h(t)] are not available. Hence, in this section, the asymp-
totic distribution of S with the help of asymptotic distribution of (ζ, ϑ) based on asymptotic
properties and general condition of MLEs are derived. Generally, for large samples, the
asymptotic distribution of the parameters approximately follow a normal distribution. i.e.

[
√
n1(ζ̂ − ζ),

√
n2(ϑ̂− ϑ)] → N2

(
0,

1

I(Θ̂)

)

where Θ = (ζ, ϑ) and

(4.3) I(Θ̂) =

(
ϕ11 ϕ12
ϕ21 ϕ22

)
.

The matrix I(Θ̂) is called the Fisher information matrix.

ϕ11 = −E
(
∂2 lnL

∂ζ2

)
, ϕ12 = −E

(
∂2 lnL

∂ζ∂ϑ

)
, ϕ21 = −E

(
∂2 lnL

∂ζ∂ϑ

)
, ϕ22 = −E

(
∂2 lnL

∂ϑ2

)
where,

∂2 lnL

∂ζ2
=

m

ζ2
+

m∑
i=1

Ri log

(
1 +

ϑ

xi

)2 (1 + ϑ
xi
)ζ[(

1 + ϑ
xi

)ζ
− 1

]2 ,
∂2 lnL

∂ϑ2
=

m

ϑ2
+

m∑
i=0

(
ζ + 1

(xi + ϑ)2

)
+ ζ

m∑
i=0

Ri

(
(ζ + 1)(1 + ϑ

xi
)ζ − 1

x2i
[
(1 + ϑ

xi
)ζ+1 − (1 + ϑ

xi
)
]2
)
,

∂2 lnL

∂ζ∂ϑ
=

∂2 lnL

∂ϑ∂ζ

=

m∑
i=1

1

(ϑ+ xi)
−

m∑
i=1

Ri

[
1

xi+ϑ

[(
1 + ϑ

xi

)ζ − 1
]
− ζ log(1 + ϑ

xi
)(1 + ϑ

xi
)ζ−1 1

xi

]
(1 + ϑ

xi
)ζ − 1

.
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We are interested in constructing the confidence interval for S. Since the explicit distribution
of S is not easily obtained, thus the concept of large sample theory has been used to construct
an asymptotic confidence interval. For large samples, it can be easily verified that,

(4.4) Z =
Ŝ − S√
V ar(Ŝ)

→ N(0, 1) when ni → ∞; i = 1, 2.

From Equation (4.4), it is clear that an estimated variance of S is needed. Thus, the concept
of delta method is used to obtain the variance of S.

V ar(S) = 1

n1ϕ11

(
∂S
∂ζ

)2

+
1

n2ϕ22

(
∂S
∂ϑ

)2

where,(
∂S
∂ζ

)2

=

[(
∂S(t)

∂ζ

)2

,

(
∂h(t)

∂ζ

)2
]
,

(
∂S
∂ϑ

)2

=

[(
∂h(t)

∂ϑ

)2

,

(
∂h(t)

∂ϑ

)2
]

and

∂S(t)

∂ζ
=

(
1 +

ϑ

t

)−ζ

log
(
1 + ϑ

t

)
,

∂S(t)

∂ϑ
=
ζ

t

(
1 + ϑ

t

)−(ζ+1)
,

∂h(t)

∂ζ
=

ζϑ
t2
(1 + ϑ

t )
−(ζ+1)

1− (1 + ϑ
t )

−ζ

1ζ − log
(
1 + ϑ

t

)
−

(1+ϑ
t )

−ζ
log

(
1+
ϑ

t

)
1−(1+ϑ

t )
−ζ

 ,

∂h(t)

∂ϑ
=

ζϑ
t2
(1 + ϑ

t )
−(ζ+1)

1− (1 + ϑ
t )

−ζ

 1ϑ − 1 + ζ

(t+ ϑ)
− ζ(1+ϑ

t )
−ζ−1

t

1−
(
1+
ϑ

t

)−ζ


 ,
respectively. Hence, using the asymptotic distribution of S given in Equation (4.4) the

100(1− τ)% ACI for S is obtained as

[ŜL, ŜU ] ∈ [Ŝ ∓ Z τ
2

√
V ar(Ŝ)].

5. BOOTSTRAP CONFIDENCE INTERVAL

The number of observations obtained through any life testing experiments are often
not large enough, therefore the ACI may not be an appropriate choice. Thus, in this section,
an alternative confidence interval construction procedure, known as the bootstrap method,
suggested by Efron and Tibshirani (1993), is considered. This method of finding confidence
interval is the most efficient sampling and re-sampling procedures without the need of pivotal
quantity. Here, we discuss the different types of BCIs, namely (s − boot), (p − boot), and
(t− boot). The following steps may be used to construct different 95% BCIs.
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• Specify the values of censoring parameters n,m,Ri and model parameters ζ, ϑ.
• Generate X1:m:n, X2:m:n, ..., Xm:m:n ordered PCS-II from ILD such that m ≤ n.
• Compute MLE (ζ̂, ϑ̂) of the parameters (ζ, ϑ) and obtain Ŝ(t), ĥ(t) of S usingX1:m:n, ..., Xm:m:n.
• Again generate PCS-II bootstrap samples X∗

1:m:n, X
∗
2:m:n, ..., X

∗
m:m:n from ILD using

Θ̂ = (ζ̂, ϑ̂) as population parameters and calculate the MLE Θ̂∗.
• Compute MLE Ŝ∗

1 = [Ŝ∗
1(t), ĥ

∗
1(t)] of S using Θ̂∗.

• Repeat above steps B times to generate Ŝ∗
i ; i = 2, ..., B.

5.1. s-boot

Let S̄∗ and V ∗ be the sample mean and sample standard deviation of Ŝ∗, i = 1, 2, ..., B.

S̄∗ =
1

B

B∑
i=1

Ŝ∗
i and V ∗ =

√√√√ 1

B

B∑
i=1

(Ŝ∗
i − S̄∗)2,

respectively. Thus, 100(1− τ)% s-boot confidence interval for S is given by(
Ŝs
L Ŝs

U

)
∈

(
Ŝ∗ − Zτ/2 V

∗ Ŝ∗ + Zτ/2 V
∗
)
.

5.2. p-boot

Let Ŝ∗(δ) be the δ-percentile of (Ŝ∗
(i); i = 1, 2, ..., B) and Ŝ∗(δ) is such that

1

B

B∑
i=1

I(S∗
(i) ≤ Ŝ∗(δ)) = δ : 0 ≤ δ ≤ 1.

where, I(.) is the indicator function. Then 100(1− τ)% p-boot confidence interval is given by(
Ŝp
L Ŝp

U

)
∈

(
Ŝ∗[B τ

2
] Ŝ∗[B 1−τ

2
]
)
.

5.3. t-boot

The student’s t-bootstrap confidence interval is obtained by the following additional
steps:

• Generate again bootstrap sample X∗∗
1:m:n, X

∗∗
2:m:n, ..., X

∗∗
m:m:n of size m ≤ n using Θ̂∗.

• Compute MLE of Θ say Θ̂i
∗∗ and obtain Ŝ∗∗

i , MLE of S, ∀i = 1, ..., B.

• Calculate V ∗∗ =
√

1
B

∑B
i=1(Ŝ∗∗

i − S̄∗∗)2 where S̄∗∗ = 1
B

∑B
i=1 Ŝ∗∗

i .
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• Compute the statistic T =
Ŝ∗∗ − S̄∗∗

V ∗∗ . The 100(1 − τ)% t-boot confidence interval for
S is given by (

Ŝp
L Ŝp

U

)
∈

(
S̄∗∗ − tτ/2 V ∗∗ S̄∗∗ + tτ/2 V ∗∗

)
.

To study the different CIs, we consider their estimated average widths (W) and coverage
probability (P). For each of the considered methods, the average width of the BCIs are
computed based on B different trials. The average width and coverage probability are
given by

W =

∑B
i=1 (Ui − Li)

B
,

P =
#(L ≤ Θ ≤ U)

B
,

where L and U are the lower and upper limit of the corresponding 100(1 − τ)% CI
based on B replicates, respectively.

6. BAYESIAN ESTIMATION

In this section, Bayes estimators for S are derived using the posterior distribution of ζ
and ϑ. It is well known that in the Bayesian paradigm, model parameter(s) are treated as a
random variable that follows some standard probability distribution, quantified as the prior
distribution. The accuracy of the Bayes estimators is measured by appropriately chosen loss
functions. Here, we have chosen gamma prior and general class of asymmetric loss function
(ASLF) in our study. The considered prior is more flexible in terms of accommodating variety
of shapes of other standard distributions. The prior for ζ and ϑ are given as

(6.1a) g1(ζ;µ, ω) =
ωµ

Γµ
e−ζωζµ−1

and

(6.1b) g2(ϑ;κ, ν) =
νκ

Γκ
e−ϑνϑκ−1,

respectively, where, µ, ω, κ & ν are the hyper-parameters which are assumed to be known
and positive. Since, the considered priors are independent in nature, the joint posterior given
data using the Equations (3.1) and (6.1a-6.1b) is obtained as follows:

(6.2) P (ζ, ϑ|data) = Λ e−(ωζ+νϑ)ζµ+m−1ϑω+m−1
m∏
i=1

(
1 +

ϑ

xi

)−(ζ+1)
[
1−

(
1 +

ϑ

xi

)−ζ
]Ri

,

where Λ is the normalizing constant, given as

Λ =

∫ ∞

0

∫ ∞

0
e−(ωζ+νϑ)ζµ+m−1ϑκ+m−1

m∏
i=1

(
1 +

ϑ

xi

)−(ζ+1)
[
1−

(
1 +

ϑ

xi

)−ζ
]Ri

dζ dϑ.

The general form of the generalized class of ASLF was proposed by Calabria and Pulcini
(1996) as the modified version of the Linex loss function. The general mathematical form of
generalized ASLF is given as

Las(δ, δ̂) ∝

(
δ̂

δ

)ε

− ε ln

(
δ̂

δ

)
− 1.
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where ε is the loss parameter that reflects the departure from symmetry. The Bayes estimates
of the parameter δ concerning the considered loss function is obtained by using the following
expression:

(6.3) δ̂as =
[
E(δ−ε)

]− 1
ε ,

provided the expectation exists and is finite. It is to be noted that for different values of
ε as -2, -1, 1, 2 the ASLF is reduced to precautionary loss function (PLF), squared error
loss function (SELF), entropy loss function (ELF) and general entropy loss function (GELF),
respectively. Hence, using the Equation (6.3), the Bayes estimator of S under ASLF are
obtained as
(6.4)

Ŝ(t)as =

Λ ∫ ∞

0

∫ ∞

0

[
1−

(
1 +

ϑ

t

)−ζ
]−ε

e−(ωζ+νϑ)ζµ+m−1ϑκ+m−1
m∏
i=1

(
1 +

ϑ

xi

)−(ζ+1)
[
1−

(
1 +

ϑ

xi

)−ζ
]Ri

dζ dϑ

−1/ε

,

(6.5)

ĥ(t)as =

Λ ∫ ∞

0

∫ ∞

0

[
ζϑ

t2 + ϑt

]−ε

e−(ωζ+νϑ)ζµ+m−1ϑκ+m−1
m∏
i=1

(
1 +

ϑ

xi

)−(ζ+1)
[
1−

(
1 +

ϑ

xi

)−ζ
]Ri

dζ dϑ

−1/ε

.

Since all the Bayesian estimates obtained above involve a ratio of two integrals, they are not
easy to compute analytically. Therefore, resorting to approximation techniques or sample
generation techniques from high dimensional posterior setting is an immediate option. Here,
we used the Markov Chain Monte Carlo method to obtain the approximated Bayes estimates
of the survival characteristics using the generated posterior sample.

6.1. Markov Chain Monte Carlo method

Markov Chain Monte Carlo (MCMC) method is one of the most appropriate and effi-
cient computational procedures to approximate the Equations (6.4-6.5) based on generated
sequences of ζ and ϑ. MCMC comprises various Bayes computational techniques. Among all
of the accept and reject MCMC methods, the M-H algorithm suggested by Hastings (1970)
is used extensively by the researchers. This method efficiently works when the marginal
posterior distribution does not assume any standard form. The detailed description of this
method may be found in Smith and Roberts (1993), Gelfand and Smith (1990), Upadhyay
et al. (2001), Yadav et al. (2022). The marginal posterior distribution of ζ and ϑ are given
as

(6.6) πζ(ζ, |data, ϑ) ∝ e−ωζ ζµ+m−1
m∏
i=1

(
1 +

ϑ

xi

)−(ζ+1)
[
1−

(
1 +

ϑ

xi

)−ζ
]Ri

and

(6.7) πϑ(ϑ, |data, ζ) ∝ e−νϑ ϑκ+m−1
m∏
i=1

(
1 +

ϑ

xi

)−(ζ+1)
[
1−

(
1 +

ϑ

xi

)−ζ
]Ri

,

respectively. The following steps are used to extract the posterior sample from the above
marginal densities, given in the Equation (6.6-6.7).

• start with initial values (ζ0, ϑ0).
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• generate N sequences of ζ, ϑ as ζ1, ζ2, ..., ζN , ϑ1, ϑ2, ..., ϑN using normal distribution as
proposal density.

• generate the sequence for S for any mission time t > 0 as

S1, S2, ..., SN and h1, h2, ..., hN .

• The Bayes estimates of S under ASLF are obtained as

Ŝ(t)as =

 1

N −Nb

N−Nb∑
j=1

S−ε
j

−1/ε

ĥ(t)as =

 1

N −Nb

N−Nb∑
j=1

h−ε
j

−1/ε

,

Where, Nb denotes the burn-in period. The Bayes credible/highest posterior density interval
(HPDI) for survival characteristics may be constructed by employing the algorithm by Chen
and Shao (1999).

7. MONTE CARLO SIMULATIONS

From the previous section, it is clear that the exact expressions of MLE and Bayes
estimators are not available in explicit form, thus the theoretical comparison among the
obtained estimators is not possible. Hence, in this section, Monte Carlo simulations have
been performed to compare the performances of the proposed estimators. The simulation
study has been conducted for different variations of the censoring parameters (n,m,Ri) [see,
Table 1] along with the parameters’ variation as [(0.5, 0.75), (0.85, 1), (1.5, 0.85)& (2, 2)]. The

Table 1: Censoring schemes for simulation.
n,m Schemes Place of removals Ri

20, 10 R1 : (20, 10, 10, 0
9) Removals occurs at first stage

R2 : (20, 10, 0
9, 10) Removals occurs at last stage

R3 : (20, 10, 1
10) Removals occurs at each stage

R4 : (20, 10, 5, 0
8, 5) Removals occurs at first and last stages

R5 : (20, 10, 0
4, 52, 04) Removals occurs at some intermediate stages

40, 20 R6 : (40, 20, 5
4, 016) Removals occurs at some beginning stages

R7 : (40, 20, 0
16, 54) Removals occurs at some last stage

R8 : (40, 20, 1
20) Removals occurs at each stage

R9 : (40, 20, 2
5, 010, 25) Removals occurs at first and last stages

R10 : (40, 20, 0
8, 54, 08) Removals occurs at some intermediate stages

sequence of PCS-II samples is generated using the algorithm suggested by Balakrishnan
and Sandhu (1995). The value of effective sample size m is chosen such that the sample
information is 50% censored. The MLEs of the parameters are calculated using the N-R
method and invariance property has been used to construct MLEs of survival characteristics
for known mission time t = 4. The point estimates of the S are compared in terms of average
mean square (MSE) and interval estimates are compared in terms of the average width of
the interval. Bayes estimators are obtained with gamma informative priors under ASLF. The
values of loss parameter ε are chosen as (−2,−1, 1, 2). A positive value of ε indicates that
over-estimation is more serious than under-estimation and vice versa. The Bayes estimators
for the considered values of loss parameter correspond to the one obtained under PLF, SELF,
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ELF, and GELF respectively. Since the Bayes estimator assumes the ratio of two integrals,
hence MCMC technique has been used to obtain the Bayes point and interval estimates. The
values of the hyper-parameters are obtained in such a way that the prior mean is informative
(less prior variance). The ACIs of S are constructed by following the idea of the delta method.
Different parametric BCIs (s-boot, p-boot, t-boot) are computed. HPDIs are also computed
for the same setup and compared with ACIs and BCIs. All simulation procedures has been
performed using R-software and results are reported based on 3000 replications [see Tables 2-
6]. In the reported tables, Ŝ(t)M , Ŝ(t)P , Ŝ(t)S , Ŝ(t)E , Ŝ(t)G and ĥ(t)M , ĥ(t)P , ĥ(t)S , ĥ(t)E ,
ĥ(t)G denote the MLEs and Bayes estimates of S and RM , RP , RS , RE , RG denotes the
corresponding MSEs of the same obtained under PLF, SELF, ELF and GELF respectively.
The following conclusions are made based on Monte Carlo simulations.

• The MSEs of the MLEs and Bayes estimators are decreasing by increasing sample sizes
and effective sample sizes.

• For S(t), the Bayes estimators under ELF are less penalized as compared to the MLE
and other Bayes estimators.

• For h(t), the Bayes estimators under PLF outperform MLE and other Bayes estimators.
However, for parametric combination ζ = 2 and ϑ = 2 for some censoring schemes Bayes
estimator under SELF and PLF perform equally well.

• The width of the BCIs is lesser than the ACIs for S(t) as well as for h(t). Although
boot-p has the smallest width among BCIs for S(t), some variation is reported when
ζ = 2 and ϑ = 2 where boot-t bags the position.

• Similarly boot-t has smallest width among BCIs for h(t) but for ζ = 2 and ϑ = 2 for
some censoring schemes boot-p hails.

• The width of HPDIs is smaller than that of ACIs and BCIs for both S(t) and h(t).

8. REAL DATA APPLICATIONS

This section explored the application of the proposed procedures through two medical
data sets. The data sets are taken from Efron (1988) and Collett (2023). Data set-I represents
the survival times of 58 head and neck cancer patients treated with radiotherapy and data set-
II represents the survival times of 38 prostate cancer patients. The fitting of the ILD model
to the considered data sets is appropriately explained by Yadav et al. (2019) in the stress-
strength reliability estimation study. They have fitted ILD for these two data sets and also
shown the model compatibility among the most popular family of inverted distributions such
as inverted exponential distribution, generalized inverted exponential distribution, inverse
Weibull distribution, and remarked that ILD might be an alternative choice to explain the
real phenomenon with hump type hazard rate. Hence, here we have taken the same data sets
to estimate the survival characteristics with different censoring schemes, given in Table 7.

In Table 7, the quantity ab11 represents that the number a1 is repeated b1 times. For the
considered data sets, MLEs and Bayes estimates of the survival characteristics are obtained
using censoring schemes reported in Table 7 for arbitrarily chosen mission time t = 50, 200
for data set-I and t = 50, 65 for data set-II. The boxplot summary of the generated PCS-
II samples is given in Figure 1 & 2 respectively. The Bayes estimates are obtained with
non-informative prior (µ, ω, κ, ν → 0.0001) under different loss functions using the MCMC
technique. To implement MCMC technique in the real data set, the stationarity of Markov
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Table 2: Average estimates and MSEs of the estimator S(t)|t=4.

Schemes Parameter Ŝ(t)M Ŝ(t)P Ŝ(t)S Ŝ(t)E Ŝ(t)G RM RP RS RE RG

R1

0.5, 0.75

0.14646 0.13854 0.13050 0.11354 0.10440 0.00565 0.00310 0.00287 0.00282 0.00305
R2 0.13810 0.13605 0.13060 0.11942 0.11358 0.00331 0.00232 0.00220 0.00215 0.00224
R3 0.13968 0.13657 0.13040 0.11770 0.11105 0.00395 0.00260 0.00246 0.00242 0.00253
R4 0.13707 0.13369 0.12759 0.11490 0.10815 0.00410 0.00273 0.00262 0.00262 0.00276
R5 0.13774 0.13378 0.12750 0.11468 0.10806 0.00443 0.00271 0.00259 0.00260 0.00274
R6 0.13749 0.13667 0.13233 0.12333 0.11861 0.00282 0.00214 0.00204 0.00197 0.00200
R7 0.13382 0.13455 0.13155 0.12546 0.12232 0.00168 0.00143 0.00139 0.00137 0.00139
R8 0.13629 0.13609 0.13265 0.12561 0.12196 0.00226 0.00175 0.00169 0.00164 0.00165
R9 0.13716 0.13713 0.13374 0.12679 0.12318 0.00214 0.00172 0.00166 0.00160 0.00161
R10 0.13608 0.13610 0.13250 0.12516 0.12139 0.00243 0.00190 0.00182 0.00175 0.00175
R1

0.85, 1.0

0.17978 0.16737 0.15896 0.14114 0.13144 0.00848 0.00411 0.00402 0.00430 0.00474
R2 0.17339 0.16918 0.16322 0.15091 0.14443 0.00481 0.00302 0.00296 0.00307 0.00325
R3 0.17522 0.16884 0.16219 0.14839 0.14108 0.00564 0.00329 0.00322 0.00337 0.00361
R4 0.17370 0.16797 0.16127 0.14725 0.13972 0.00534 0.00322 0.00316 0.00335 0.00361
R5 0.17012 0.16398 0.15730 0.14354 0.13635 0.00599 0.00335 0.00333 0.00359 0.00388
R6 0.16965 0.16761 0.16291 0.15315 0.14801 0.00407 0.00273 0.00270 0.00277 0.00288
R7 0.17250 0.17186 0.16848 0.16157 0.15800 0.00267 0.00199 0.00195 0.00194 0.00197
R8 0.16804 0.16711 0.16337 0.15567 0.15168 0.00306 0.00223 0.00221 0.00227 0.00235
R9 0.17348 0.17199 0.16818 0.16033 0.15625 0.00299 0.00215 0.00210 0.00210 0.00215
R10 0.16869 0.16797 0.16407 0.15609 0.15196 0.00332 0.00237 0.00234 0.00238 0.00246
R1

1.5, 0.85

0.25891 0.24748 0.23779 0.21736 0.20637 0.01033 0.00582 0.00577 0.00624 0.00682
R2 0.25491 0.25008 0.24346 0.22973 0.22251 0.00598 0.00408 0.00402 0.00418 0.00440
R3 0.25781 0.25156 0.24416 0.22878 0.22068 0.00752 0.00486 0.00476 0.00490 0.00515
R4 0.26042 0.25358 0.24591 0.22986 0.22132 0.00762 0.00504 0.00491 0.00501 0.00526
R5 0.25184 0.24650 0.23915 0.22398 0.21605 0.00685 0.00437 0.00435 0.00464 0.00497
R6 0.25056 0.25027 0.24523 0.23486 0.22948 0.00512 0.00373 0.00367 0.00371 0.00381
R7 0.25196 0.25217 0.24860 0.24132 0.23758 0.00315 0.00262 0.00258 0.00258 0.00262
R8 0.25109 0.25125 0.24730 0.23923 0.23507 0.00401 0.00316 0.00311 0.00311 0.00316
R9 0.25204 0.25177 0.24772 0.23943 0.23514 0.00381 0.00299 0.00295 0.00295 0.00300
R10 0.24844 0.24912 0.24513 0.23701 0.23285 0.00397 0.00308 0.00305 0.00308 0.00315
R1

2,2

0.55021 0.52093 0.51302 0.49598 0.48668 0.01354 0.00874 0.00948 0.01148 0.01282
R2 0.55507 0.53545 0.52979 0.51779 0.51136 0.00962 0.00645 0.00679 0.00771 0.00832
R3 0.55617 0.53402 0.52787 0.51479 0.50777 0.01049 0.00652 0.00691 0.00799 0.00871
R4 0.55671 0.53304 0.52657 0.51275 0.50529 0.01146 0.00730 0.00773 0.00892 0.00972
R5 0.55302 0.53271 0.52666 0.51380 0.50692 0.01011 0.00661 0.00700 0.00808 0.00878
R6 0.55058 0.53913 0.53490 0.52610 0.52150 0.00750 0.00459 0.00479 0.00534 0.00568
R7 0.55396 0.54659 0.54351 0.53713 0.53382 0.00516 0.00363 0.00373 0.00398 0.00415
R8 0.54650 0.54061 0.53719 0.53011 0.52643 0.00598 0.00418 0.00433 0.00471 0.00495
R9 0.55276 0.54358 0.54009 0.53287 0.52911 0.00603 0.00405 0.00418 0.00453 0.00475
R10 0.55091 0.54381 0.54043 0.53345 0.52983 0.00580 0.00386 0.00398 0.00432 0.00453

Chain has been investigated via tuning of the variance, trace plot, auto-correlation function
plot, etc. About 500 generated posterior samples from full conditional densities in the very
beginning of the process (burn-in period, Nb) are excluded from the total generated sequence
of samples and it is observed that the generated sequence of posterior samples is well mixed
and follows the Markov property. The MCMC convergence and estimated density plots of
the survival and hazard function based on generated MCMC samples for t = 50 are given in
Figure 3 & 4, respectively. Different interval estimates (ACIs, BCIs, and HPDIs) for both
survival characteristics have been obtained for the same set up of design and reported in
Table 6. Table 6 indicates that the width of the BCIs is less as compared to the ACIs for all
set up of designs. However, the width of HPD intervals are better throughout the analysis
than these two in terms of the width of the interval. Further, it is noticed that for S(t),
t-boot has lesser width among all BCIs for data set-I and p-boot for data set-II. Similarly for
h(t), p-boot is preferable for the first data set whereas t-boot is for the second set.
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Table 3: Average estimates and MSEs of the estimators h(t)|t=4.

Schemes Parameter ĥ(t)M ĥ(t)P ĥ(t)S ĥ(t)E ĥ(t)G RM RP RS RE RG

R1

0.5, 0.75

0.20999 0.21500 0.21454 0.21358 0.21307 0.00063 0.00027 0.00028 0.00031 0.00032
R2 0.21330 0.21545 0.21515 0.21451 0.21419 0.00040 0.00023 0.00024 0.00025 0.00026
R3 0.21282 0.21557 0.21523 0.21450 0.21413 0.00044 0.00024 0.00025 0.00027 0.00028
R4 0.21309 0.21589 0.21556 0.21486 0.21449 0.00047 0.00026 0.00027 0.00029 0.00030
R5 0.21309 0.21628 0.21592 0.21517 0.21477 0.00053 0.00026 0.00026 0.00028 0.00029
R6 0.21308 0.21466 0.21442 0.21391 0.21365 0.00032 0.00022 0.00023 0.00024 0.00024
R7 0.21456 0.21513 0.21497 0.21463 0.21446 0.00021 0.00016 0.00017 0.00017 0.00018
R8 0.21323 0.21431 0.21411 0.21370 0.21350 0.00028 0.00020 0.00020 0.00021 0.00022
R9 0.21332 0.21428 0.21409 0.21371 0.21351 0.00026 0.00019 0.00020 0.00020 0.00021
R10 0.21355 0.21462 0.21441 0.21397 0.21375 0.00029 0.00021 0.00021 0.00022 0.00023
R1

0.85, 1.0

0.20135 0.20780 0.20725 0.20609 0.20548 0.00088 0.00034 0.00035 0.00038 0.00039
R2 0.20428 0.20724 0.20684 0.20602 0.20559 0.00054 0.00028 0.00029 0.00030 0.00031
R3 0.20338 0.20732 0.20688 0.20595 0.20547 0.00062 0.00030 0.00031 0.00032 0.00033
R4 0.20401 0.20768 0.20724 0.20634 0.20588 0.00060 0.00030 0.00030 0.00032 0.00033
R5 0.20515 0.20909 0.20865 0.20772 0.20724 0.00070 0.00033 0.00033 0.00035 0.00036
R6 0.20484 0.20693 0.20662 0.20596 0.20563 0.00046 0.00028 0.00029 0.00030 0.00031
R7 0.20434 0.20550 0.20526 0.20478 0.20453 0.00033 0.00023 0.00024 0.00024 0.00025
R8 0.20508 0.20650 0.20624 0.20572 0.20545 0.00037 0.00025 0.00026 0.00026 0.00027
R9 0.20352 0.20512 0.20486 0.20432 0.20404 0.00036 0.00024 0.00024 0.00025 0.00026
R10 0.20542 0.20683 0.20656 0.20600 0.20571 0.00039 0.00026 0.00026 0.00027 0.00028
R1

1.5, 0.85

0.19262 0.19784 0.19712 0.19559 0.19477 0.00086 0.00035 0.00037 0.00040 0.00043
R2 0.19478 0.19704 0.19654 0.19551 0.19497 0.00054 0.00028 0.00029 0.00031 0.00033
R3 0.19380 0.19678 0.19621 0.19502 0.19440 0.00065 0.00032 0.00033 0.00036 0.00038
R4 0.19371 0.19672 0.19615 0.19494 0.19431 0.00063 0.00031 0.00032 0.00035 0.00037
R5 0.19519 0.19798 0.19742 0.19626 0.19565 0.00061 0.00029 0.00030 0.00033 0.00034
R6 0.19659 0.19753 0.19715 0.19636 0.19596 0.00044 0.00028 0.00028 0.00030 0.00031
R7 0.19616 0.19653 0.19625 0.19570 0.19542 0.00028 0.00020 0.00021 0.00021 0.00022
R8 0.19660 0.19708 0.19678 0.19616 0.19584 0.00037 0.00025 0.00025 0.00026 0.00027
R9 0.19603 0.19670 0.19639 0.19576 0.19544 0.00035 0.00024 0.00024 0.00025 0.00026
R10 0.19713 0.19752 0.19721 0.19658 0.19626 0.00037 0.00024 0.00025 0.00026 0.00026
R1

2,2

0.13215 0.14127 0.13976 0.13652 0.13474 0.00104 0.00038 0.00037 0.00037 0.00038
R2 0.13336 0.13834 0.13720 0.13480 0.13354 0.00077 0.00031 0.00031 0.00032 0.00033
R3 0.13236 0.13862 0.13739 0.13478 0.13339 0.00087 0.00032 0.00031 0.00032 0.00033
R4 0.13198 0.13878 0.13749 0.13475 0.13329 0.00090 0.00035 0.00034 0.00036 0.00037
R5 0.13333 0.13898 0.13777 0.13520 0.13383 0.00083 0.00031 0.00031 0.00031 0.00032
R6 0.13454 0.13765 0.13674 0.13484 0.13384 0.00072 0.00027 0.00027 0.00027 0.00028
R7 0.13501 0.13630 0.13561 0.13421 0.13349 0.00051 0.00024 0.00024 0.00024 0.00024
R8 0.13720 0.13800 0.13726 0.13573 0.13495 0.00057 0.00026 0.00026 0.00026 0.00026
R9 0.13442 0.13661 0.13584 0.13426 0.13345 0.00058 0.00025 0.00025 0.00026 0.00026
R10 0.13539 0.13698 0.13623 0.13468 0.13388 0.00056 0.00024 0.00024 0.00024 0.00025

9. CONCLUDING REMARKS

In this paper, some distributional properties including some survival characteristics of
ILD have been studied. ILD can be used as a suitable lifetime model in several cancer or
tumor-related studies where hazard initially increases and decreases after a certain point.
Analyzing such data under PCS-II gives an edge to practitioners where subjects often leave
the study during the experiment for several reasons. Further, MLE and Bayes estimators
for S are discussed for specified t when the observed sample information is obtained under
PCS-II. The MLEs for the same are computed by using the invariance property. The Bayes
estimators are derived with two independent gamma prior under ASLF, and computed via
MCMC method also. Different confidence interval estimation procedures namely ACIs, BCIs
(boot-s, boot-p, and boot-t) & HPDIs are computed numerically for S. ACIs for the same
are computed by using the concept of delta method. A Monte Carlo simulation study has
been performed to investigate the performances of the proposed estimators for the different
censoring parameters. From this extensive simulation study, it is noted that Bayes estimators
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Table 4: Average width (W) and coverage probability (P) of ACIs and
HPDIs for S.

Schemes Parameter
ACI HPDI

S(t) h(t) S(t) h(t)
W P W P W P W P

R1

0.5, 0.75

0.59439 0.982 0.13671 0.961 0.17478 0.838 0.04704 0.879
R2 0.49384 0.988 0.11239 0.967 0.14513 0.825 0.03917 0.842
R3 0.53742 0.992 0.12221 0.972 0.15341 0.919 0.04138 0.845
R4 0.51180 0.993 0.11558 0.970 0.15156 0.889 0.04077 0.871
R5 0.55872 0.991 0.12837 0.963 0.15228 0.895 0.04149 0.826
R6 0.38232 0.990 0.09041 0.965 0.13115 0.896 0.03574 0.913
R7 0.33347 0.978 0.07757 0.970 0.10915 0.879 0.02996 0.922
R8 0.34861 0.983 0.08254 0.960 0.11726 0.861 0.03243 0.902
R9 0.34067 0.985 0.07997 0.967 0.11713 0.897 0.03195 0.723
R10 0.36988 0.993 0.08759 0.959 0.11939 0.908 0.03315 0.814
R1

0.85, 1.0

0.68697 0.980 0.15588 0.949 0.19845 0.893 0.05225 0.849
R2 0.61617 0.987 0.13673 0.973 0.17033 0.886 0.04513 0.856
R3 0.62798 0.991 0.14202 0.969 0.17880 0.911 0.04740 0.851
R4 0.61815 0.994 0.13753 0.970 0.17961 0.914 0.04707 0.841
R5 0.68605 0.993 0.15267 0.963 0.17562 0.898 0.04663 0.905
R6 0.45690 0.987 0.10584 0.952 0.15196 0.916 0.04064 0.892
R7 0.41171 0.988 0.09450 0.973 0.13162 0.931 0.03560 0.897
R8 0.41675 0.994 0.09675 0.960 0.13625 0.902 0.03699 0.903
R9 0.42230 0.979 0.09774 0.968 0.13959 0.889 0.03773 0.958
R10 0.44285 0.992 0.10264 0.965 0.13870 0.879 0.03771 0.918
R1

1.5, 0.85

1.23244 0.973 0.23652 0.978 0.26140 0.907 0.05967 0.941
R2 1.09173 0.940 0.20572 0.977 0.22025 0.881 0.05049 0.893
R3 1.18641 0.969 0.22391 0.977 0.23249 0.871 0.05340 0.913
R4 1.16277 0.943 0.21935 0.979 0.23800 0.881 0.05404 0.913
R5 1.17021 0.933 0.22264 0.981 0.22884 0.865 0.05280 0.882
R6 0.85517 0.923 0.16247 0.983 0.19315 0.857 0.04438 0.873
R7 0.72049 0.972 0.13767 0.985 0.16438 0.868 0.03819 0.907
R8 0.76727 0.952 0.14556 0.987 0.17222 0.853 0.03978 0.926
R9 0.74240 0.949 0.14193 0.989 0.17471 0.860 0.04030 0.888
R10 0.79104 0.982 0.15036 0.991 0.17188 0.871 0.04006 0.948
R1

2,2

2.20791 0.972 0.47009 0.993 0.34879 0.909 0.07879 0.934
R2 1.98079 0.961 0.42167 0.996 0.30033 0.914 0.06798 0.924
R3 2.05598 0.951 0.43625 0.988 0.31230 0.924 0.07082 0.933
R4 2.03495 0.941 0.43308 0.990 0.32008 0.915 0.07240 0.919
R5 2.10546 0.931 0.44696 0.989 0.30987 0.928 0.07038 0.930
R6 1.57591 0.921 0.33118 0.968 0.26156 0.909 0.06095 0.915
R7 1.38112 0.940 0.29048 0.943 0.22560 0.934 0.05259 0.892
R8 1.47554 0.980 0.30985 0.973 0.23614 0.928 0.05498 0.904
R9 1.38589 0.949 0.29213 0.949 0.23907 0.927 0.05571 0.917
R10 1.44112 0.980 0.30372 0.979 0.23528 0.927 0.05521 0.908

for the designed set up of simulation provides more accurate and precise results in terms
of MSE as compared to the classical (MLE) estimators. Subsequently, the HPDIs show
a shorter length of the interval in comparison to ACIs and BCIs. However, the interval
obtained through the bootstrap method is better in terms of the length of the interval than
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Table 5: Average width and corresponding coverage probability of differ-
ent BCIs for the S.

Schemes Parameter
s-boot p-boot t-boot

S(t) h(t) S(t) h(t) S(t) h(t)
W P W P W P W P W P W P

R1

0.5, 0.75

0.29544 0.873 0.07523 0.891 0.28378 0.886 0.07324 0.835 0.34628 0.895 0.05505 0.895
R2 0.21038 0.859 0.07314 0.842 0.20573 0.936 0.07104 0.896 0.24435 0.942 0.05714 0.888
R3 0.24127 0.889 0.07045 0.908 0.23423 0.889 0.07528 0.897 0.28671 0.879 0.05471 0.897
R4 0.23853 0.869 0.07411 0.893 0.23301 0.966 0.07069 0.914 0.28454 0.946 0.05193 0.897
R5 0.23643 0.918 0.08954 0.901 0.22909 0.942 0.08528 0.913 0.28475 0.952 0.05879 0.895
R6 0.20426 0.910 0.07011 0.895 0.20010 0.928 0.06828 0.926 0.24157 0.936 0.05224 0.886
R7 0.15742 0.892 0.05649 0.869 0.15501 0.920 0.05525 0.908 0.17670 0.923 0.04606 0.871
R8 0.17541 0.902 0.06093 0.877 0.17263 0.934 0.05945 0.907 0.20083 0.936 0.04800 0.823
R9 0.17308 0.932 0.05935 0.877 0.17041 0.922 0.05797 0.917 0.19856 0.925 0.04699 0.853
R10 0.18643 0.894 0.06420 0.843 0.18310 0.922 0.06233 0.886 0.21522 0.942 0.04946 0.859
R1

0.85, 1.0

0.31824 0.843 0.08922 0.879 0.30892 0.848 0.08057 0.867 0.38068 0.898 0.06723 0.867
R2 0.23656 0.861 0.08339 0.868 0.23125 0.870 0.07946 0.880 0.26713 0.888 0.06639 0.887
R3 0.27553 0.870 0.08568 0.875 0.26815 0.956 0.08173 0.878 0.31452 0.943 0.06277 0.902
R4 0.25835 0.900 0.09012 0.887 0.25231 0.940 0.08617 0.900 0.30549 0.950 0.06978 0.885
R5 0.30012 0.850 0.09317 0.872 0.29171 0.930 0.08824 0.898 0.33972 0.920 0.06900 0.867
R6 0.23756 0.890 0.07857 0.868 0.23329 0.917 0.07655 0.903 0.27315 0.923 0.06178 0.881
R7 0.18867 0.896 0.06437 0.854 0.18568 0.929 0.06299 0.898 0.20540 0.923 0.05499 0.890
R8 0.20558 0.897 0.06899 0.862 0.20233 0.921 0.06737 0.894 0.22904 0.917 0.05674 0.898
R9 0.20092 0.896 0.06785 0.871 0.19771 0.932 0.06637 0.909 0.22418 0.931 0.05625 0.884
R10 0.21548 0.891 0.07447 0.863 0.21147 0.915 0.07256 0.897 0.23939 0.911 0.06030 0.898
R1

1.5, 0.85

0.36231 0.882 0.10451 0.860 0.35456 0.930 0.09965 0.927 0.43190 0.934 0.07256 0.886
R2 0.27880 0.891 0.08134 0.847 0.27348 0.926 0.07812 0.909 0.31423 0.932 0.06353 0.878
R3 0.30380 0.875 0.08848 0.837 0.29800 0.924 0.08490 0.904 0.34757 0.930 0.06529 0.921
R4 0.30945 0.899 0.08723 0.848 0.30335 0.932 0.08379 0.911 0.35705 0.944 0.06391 0.900
R5 0.30762 0.886 0.08911 0.889 0.30105 0.919 0.08494 0.879 0.34854 0.923 0.06491 0.898
R6 0.26792 0.884 0.07936 0.850 0.26395 0.923 0.07704 0.901 0.29845 0.924 0.06365 0.897
R7 0.21408 0.912 0.06396 0.838 0.21132 0.928 0.06247 0.884 0.22868 0.932 0.05570 0.898
R8 0.22800 0.895 0.06930 0.844 0.22495 0.916 0.06750 0.887 0.24731 0.921 0.05867 0.910
R9 0.23282 0.898 0.07046 0.873 0.22967 0.928 0.06882 0.919 0.25259 0.930 0.06003 0.908
R10 0.23319 0.874 0.07193 0.842 0.22967 0.914 0.06981 0.891 0.25031 0.907 0.06072 0.886
R1

2,2

0.44109 0.898 0.13105 0.873 0.43231 0.931 0.12650 0.948 0.44720 0.897 0.11339 0.858
R2 0.36824 0.910 0.10699 0.863 0.36314 0.932 0.10361 0.930 0.36708 0.927 0.09854 0.874
R3 0.38664 0.899 0.11435 0.861 0.38031 0.926 0.11052 0.929 0.38435 0.916 0.10481 0.902
R4 0.39495 0.898 0.11599 0.873 0.38847 0.917 0.11222 0.937 0.39559 0.895 0.10499 0.868
R5 0.38736 0.891 0.11455 0.851 0.38084 0.918 0.11065 0.921 0.38019 0.902 0.10416 0.826
R6 0.33297 0.896 0.10286 0.842 0.32817 0.922 0.09988 0.903 0.31694 0.901 0.09924 0.887
R7 0.27225 0.911 0.08629 0.879 0.26956 0.927 0.08418 0.911 0.26040 0.909 0.08732 0.834
R8 0.29191 0.935 0.09239 0.872 0.28866 0.945 0.09001 0.913 0.27892 0.934 0.09280 0.882
R9 0.29427 0.928 0.09188 0.869 0.29071 0.950 0.08955 0.912 0.28156 0.930 0.09108 0.892
R10 0.29404 0.918 0.09288 0.853 0.29057 0.934 0.09030 0.916 0.27453 0.914 0.09292 0.900

that of ACIs. Consequently, the coverage probability goes down for the shorter length of
the confidence interval. Hence, the proposed estimation procedures under PCS-II might be
helpful for the lifetime practitioner/researchers to develop the guidelines for choosing the best
estimation techniques.

ACKNOWLEDGMENTS

We sincerely thank the Editor, Associate Editor, and anonymous referees for their
insightful comments and suggestions, which significantly improved the quality and clarity of
this work. Their valuable input was instrumental in refining the manuscript, and we deeply
appreciate their efforts.



On Progressively Type-II Censored Inverse Lomax Distribution 21

Table 6: Estimates of the survival characteristics S for different t in case
of real data.

Scheme time Ŝ(t)M Ŝ(t)P Ŝ(t)S Ŝ(t)E Ŝ(t)G ĥ(t)M ĥ(t)P ĥ(t)S ĥ(t)E ĥ(t)G

S1
c

t=50

0.78344 0.77581 0.77476 0.77261 0.77151 0.00602 0.00621 0.00615 0.00603 0.00596
S1
1 0.93249 0.92325 0.92275 0.92172 0.92118 0.00247 0.00280 0.00268 0.00244 0.00231
S1
2 0.81057 0.80386 0.80295 0.80109 0.80014 0.00477 0.00496 0.00490 0.00477 0.00470
S1
3 0.92374 0.91639 0.91596 0.91508 0.91463 0.00307 0.00334 0.00324 0.00304 0.00293
S1
4 0.84957 0.84302 0.84235 0.84098 0.84029 0.00307 0.00324 0.00318 0.00307 0.00302
S1
c

t=200

0.39219 0.38911 0.38679 0.38207 0.37967 0.00344 0.00346 0.00345 0.00344 0.00344
S1
1 0.61751 0.60872 0.60527 0.59804 0.59421 0.00251 0.00256 0.00255 0.00251 0.00249
S1
2 0.45579 0.45241 0.44974 0.44428 0.44147 0.00301 0.00303 0.00302 0.00301 0.00300
S1
3 0.56303 0.55908 0.55649 0.55115 0.54839 0.00288 0.00290 0.00289 0.00287 0.00286
S1
4 0.58007 0.57479 0.57229 0.56709 0.56439 0.00212 0.00217 0.00215 0.00212 0.00210
S2
c

t=50

0.50168 0.49672 0.49353 0.48698 0.48360 0.01252 0.01262 0.01258 0.01250 0.01246
S2
1 0.59031 0.58177 0.57829 0.57100 0.56714 0.01093 0.01113 0.01107 0.01094 0.01088
S2
2 0.54012 0.53310 0.52976 0.52282 0.51921 0.01156 0.01172 0.01167 0.01157 0.01152
S2
3 0.58363 0.57580 0.57260 0.56595 0.56248 0.01110 0.01127 0.01121 0.01110 0.01104
S2
4 0.54913 0.54376 0.54058 0.53399 0.53056 0.01135 0.01148 0.01143 0.01133 0.01128
S2
c

t=65

0.42186 0.41721 0.41407 0.40761 0.40427 0.01067 0.01075 0.01073 0.01069 0.01067
S2
1 0.50626 0.49833 0.49448 0.48652 0.48237 0.00959 0.00972 0.00969 0.00962 0.00958
S2
2 0.45971 0.45490 0.45153 0.44460 0.44102 0.01000 0.01009 0.01006 0.01001 0.00998
S2
3 0.49947 0.49607 0.49243 0.48486 0.48089 0.00971 0.00977 0.00974 0.00967 0.00964
S2
4 0.46863 0.46541 0.46195 0.45480 0.45109 0.00985 0.00991 0.00988 0.00982 0.00979

Scheme time ACIs BCIs HPDIs

S(t) h(t) S(t) [W] h(t) [W] S(t) h(t)
W W s-boot p-boot t-boot s-boot p-boot t-boot W W

S1
c

t=50

0.63162 0.01284 0.17508 0.17762 0.17712 0.00489 0.00481 0.00565 0.15711 0.00339
S1
1 0.39312 0.01103 0.12814 0.12863 0.10409 0.00370 0.00385 0.00468 0.11203 0.00311
S1
2 0.57287 0.01112 0.16770 0.16900 0.16619 0.00458 0.00440 0.00561 0.14882 0.00315
S1
3 0.46221 0.01390 0.11355 0.11089 0.10422 0.00361 0.00345 0.00387 0.10520 0.00308
S1
4 0.41529 0.00689 0.16008 0.15436 0.15314 0.00331 0.00336 0.00445 0.12863 0.00231
S1
c

t=200

0.65159 0.00253 0.20771 0.20474 0.20857 0.00127 0.00124 0.00125 0.16599 0.00074
S1
1 0.90544 0.00402 0.29154 0.29052 0.26534 0.00194 0.00184 0.00197 0.25247 0.00121
S1
2 0.70909 0.00294 0.23085 0.22830 0.22120 0.00160 0.00156 0.00162 0.18984 0.00093
S1
3 0.94641 0.00400 0.24873 0.24948 0.25422 0.00163 0.00161 0.00165 0.21125 0.00095
S1
4 0.65089 0.00281 0.26672 0.26874 0.21355 0.00181 0.00178 0.00215 0.21436 0.00107
S2
c

t=50

0.97569 0.01566 0.27779 0.27633 0.28298 0.00645 0.00636 0.00586 0.22187 0.00385
S2
1 0.98259 0.01701 0.29669 0.28999 0.28198 0.00766 0.00732 0.00732 0.25065 0.00453
S2
2 0.95709 0.01595 0.27914 0.27271 0.27563 0.00696 0.00669 0.00701 0.23077 0.00417
S2
3 0.99988 0.01722 0.27835 0.27135 0.27176 0.00722 0.00702 0.00710 0.23845 0.00432
S2
4 0.94550 0.01588 0.29541 0.30014 0.28853 0.00700 0.00688 0.00686 0.22929 0.00426
S2
c

t=65

0.90097 0.01046 0.26271 0.26208 0.28382 0.00074 0.00071 0.00055 0.19974 0.00252
S2
1 0.94943 0.01174 0.30240 0.29761 0.30065 0.00104 0.00095 0.00072 0.24200 0.00316
S2
2 0.90499 0.01094 0.26274 0.26014 0.26846 0.00094 0.00092 0.00069 0.21692 0.00287
S2
3 0.96209 0.01182 0.28030 0.27269 0.27761 0.00091 0.00088 0.00068 0.23597 0.00309
S2
4 0.89885 0.01096 0.27326 0.26975 0.27870 0.00101 0.00098 0.00073 0.22157 0.00295
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Table 7: Censoring schemes for the considered real data sets.
n,m Schemes Place of removals Ri

58, 30 S1
c : (58, 58, 058) Complete sample: no removals

S1
1 : (58, 30, 28, 029) Removals occurs at first stage
S1
2 : (58, 30, 029, 28) Removals occurs at last stage

S1
3 : (58, 30, 14, 028, 14) Removals occurs at first and last stage

S1
4 : (58, 30, 014, 142, 014) Removals occurs at some intermediate stages

38, 30 S2
c : (38, 38, 038) Complete sample: no removals

S2
1 : (38, 30, 8, 029) Removals occurs at first stage
S2
2 : (38, 30, 029, 8) Removals occurs at last stage

S2
3 : (38, 30, 4, 028, 4) Removals occurs at first and last stage

S2
4 : (38, 30, 014, 42, 014) Removals occurs at some intermediate stages

● ● ●
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Summary for the Scheme−I

50 100 150

Summary for the Scheme−II

● ● ● ● ● ●

0 50 100 150 200 250
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● ● ●

0 200 400 600 800 1000 1200 1400

Summary for the Scheme−IV

Figure 1: Box plot summary for the data set-I based on generated PCS-I
samples.
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Figure 2: Box plot summary for the data set-II based on generated PCS-II
samples.
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Figure 3: Posterior density and trace plot for the survival function for
data set-I when t = 50 based on 10000 MCMC samples.
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Figure 4: Posterior density and trace plot for the survival function for
data set-II when t = 50 based on 10000 MCMC samples.
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