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1. INTRODUCTION

Regression analysis is a versatile statistical tool that can be used to model
the relationship between a dependent variable and one or more independent vari-
ables. It is one of the most widely used statistical analyses due to its simplicity
and effectiveness. Multiple linear regression model in matrix form is given by

(1.1) y = Xβ + ε.

In Eq. (1.1), y is an n× 1 response vector, X is an n× p design matrix of known
constants, β is an p× 1 unknown parameters vector and ε is an n× 1 stochastic
error vector such that E (ε) = 0 and Cov (ε) = σ2I. The ordinary least squares
(OLS) method is widely used for estimation of β. OLS aims to minimize the
sum of squares of the error terms. The objective function and OLS estimates are
given by respectively.

(1.2) β̂ = argmin
β

(
n∑

i=1

ε2i

)
= argmin

β

(
n∑

i=1

(yi − xiβ)
2

)

(1.3) β̂ = (X ′X)−1X ′y

The covariance matrix of OLS estimator is σ2(X ′X)−1. The OLS estimator
has the minimum variance property among all linear unbiased estimators under
the model assumptions. However, the high correlations between columns of X or
the nonexistence of the full rank property can result multicollinearity problem. In
the presence of multicollinearity, the OLS estimator loses its minimum variance
property. The ridge estimator is a widely used alternative to the OLS estimator in
the presence of the multicollinearity problem. The ridge estimator that proposed
by [8] is biased but has lower variance than OLS estimator. The normality of the
error terms is another important assumption that must be met in the multiple
linear regression model for statistical significance testing of the model. Under
the normality assumption, the ML and OLS estimators of β are equal. Outliers
are one of the factors that can lead to a violation of the normality assumption.
M-estimators are commonly used as an alternative to OLS estimators when the
normality assumption is violated. [11] proposed M-estimators, which are a gen-
eralization of ML estimators and are robust to departures from the normality
assumption. Many M-estimators have been proposed in the literature (see for
example [4]).

In multiple linear regression analysis, outliers and multicollinearity problems
can be encountered simultaneously. In the presence of both outliers and mul-
ticollinearity problems in the model, The ridge estimator based on M estimator
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Ridge-M (RM) is proposed by [24] and [5]. The RM is given by

(1.4) β̂RM =
(
X

′
X + kI

)−1
X

′
Xβ̂M.

where β̂M denotes OLS based M estimator. The use of OLS estimators in RM
may adversely affect the performance of the estimator. From this point of view,
we propose M estimators based on ridge estimation instead of OLS estimation
when outlier and multicollinearity problems coexist. The proposed M estimator
based on ridge estimation is obtained by rearranging the Iteratively Reweighted
Least Squares (IRLS) algorithm. The proposed approach also provides a solution
to the problem of the optimal ridge estimator selection with M-type estimators.

This paper is organized as follows. The proposed M estimators based on
ridge estimation are defined after examining the ridge and M estimators. The
performance of the proposed estimator is examined through by a simulation study
and a real data application. In the simulation study, the mean square error (MSE)
is used as a comparison criterion. The proposed estimators are compared with
the ridge and classical M estimators, considering different sample sizes, outlier
rates, and correlation structures. The performance of the proposed estimators is
also compared in the simulation study for lognormal distributed errors. In the
real data application, the Tobacco dataset, which has both multicollinearity and
outlier problems, is used. Iterative k-fold cross validation is used the comparison
criterion in the real data application.

2. Material and Method

2.1. Ridge Estimators

The ridge estimator of unknown parameter vector is given by

(2.1) β̂R =
(
X

′
X + kI

)−1
X

′
y.

where k is known as ridge (shrinkage, bias) parameter which tunes the variance
-bias trade off.

The canonical form of Eq. (1.1) with Z = XD and α = Dβ as

(2.2) y = Zα+ ε

D is defined as an orthogonal eigenvector matrix such that D′ (X ′X)D = Λ
where Λ = diag(λ1, λ2, . . . , λp) is eigenvalues of X

′X. The ridge estimator of α
is given by

(2.3) α̂R =
(
Z ′Z + kI

)−1
Z ′y.
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Figure 1: (a) The components of MSE for ridge estimator (b) The MSE
comparisons of ridge and OLS estimators

The scalar MSE of the Ridge estimator is equal to

(2.4) SMSE
(
β̂R

)
=

p∑
i=1

σ2λi

(λi + k)2
+ k2β′

(
X

′
X + kI

)−2
β

or

(2.5) SMSE (α̂R) =

p∑
i=1

σ2λi

(λi + k)2
+

p∑
i=1

k2α2
i

(λi + k)2
.

The first term on the right-hand side of the Eq. (2.4)-(2.5) is the contribution of
the total variance to the MSE. The second term on the right-hand side of the Eq.
(2.4)-(2.5) is the contribution of the sum of the square of the bias to the MSE.

Figure 1 shows the MSE values as a function of k for ridge estimation, and
the comparison of MSE values between ridge and OLS. The choice of the ridge
parameter has a vital role in ridge regression, so there are different ridge estima-
tors proposed by many authors in the literature (see [16] and [17] for instance).
Table 1 provides a summary of the ridge estimators investigated in this study.

2.2. M Estimators

The M estimators are a class of robust estimators used as an alternative to
OLS estimators for outlier or non-normality problems in regression analysis. M
estimators were first described by [11] as a generalization of MLE. [12] extended
the idea of using M estimators for solution of regression problems. In regression
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Table 1: Selected ridge parameter estimators from the literature.

Estimators Reference

k̂HK = σ̂2

α̂2
max

[8]

k̂HKB = pσ̂2∑p
i=1 α̂

2
i

[9]

k̂LW = pσ2∑p
i=1 λiα̂2

i
[14]

k̂HSL = σ̂2
∑p

i=1 (λiα̂i)
2

(
∑p

i=1 λiα̂2
i )

2 [7]

k̂AM = 1
p

∑p
i=1

σ̂2

α̂2
i

[15]

k̂GM = σ̂2

(
∏p

i=1 α̂
2
i )

1
p

[15]

k̂MED =Median
{

σ̂2

α̂2
i

}
, i = 1, . . . , p [15]

k̂KS = λmaxσ̂2

(n−p)σ̂2+λmaxα̂2
max

[13]

analysis, M estimates are obtained by minimizing a certain objective function in
Eq. (2.6), such as the sum of the squared error terms.

(2.6) β̂M= argmin
β

(
n∑

i=1

ρ(εi)

)

In M estimators, the objective function is the negative form of the natural log-
arithm of the likelihood function of the distribution of errors. The objective
functions ρ(.) have properties following below ([19]):

1. ρ (0)= 0

2. ρ(ε)≥0

3. ρ (ε)=ρ(−ε)

4. ρ (ε1)<ρ(ε2) for 0 <ε1<ε2

5. ρ(ε) is continuous and differentiable.

The influence function first described by [6] is a measure of the qualitative ro-
bustness. The influence function measures the marginal effect of the data on the
parameter estimator. The influence function is defined by

(2.7) ψ (ε) =
dρ(ε)

dε

The influence function ψ (.) has properties following ([2]):

1. ψ(ε)≥0 for ε≥0

2. ψ (−ε)= −ψ(ε)
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Table 2: Objective and influence functions for the selected M-Estimators
from literature.

Estimators Objective Function Influence Function

Huber

{
ε2

2 , −k ≤ ε ≤ k

k|ε| − k2

2 , ε < −k or ε > k

{
ε, −k ≤ ε ≤ k

ksign(ε), ε < −k or ε > k

Fair k2F ln
(

|ε|
kF

− ln
(
1 + |ε|

kF

))
, |ε| <∞ ε

1+
|ε|
kF

Hampel



ε2

2 |ε| ≤ a

a|ε| − a2

2 a < |ε| ≤ b

ab− a2

2 + a(c−b)
2

[
1−

(
c−|ε|
c−b

)2]
b < |ε| ≤ c

ab−−a2

2 + a(c−b)
2 |ε| > c


ε |ε| ≤ a

asign(ε) a < |ε| ≤ b
asign(ε)(c−|ε|)

c−b b < |ε| ≤ c

0 |ε| > c

Tukey


k2T
6

(
1−

{
1− (ε/kT )

2
}3
)

|ε| ≤ kT

k2T
6 |ε| > kT

{
ε
(
1− (ε/kT )

2
)2

|ε| ≤ kT

0 |ε| > kT

Andrew

{
k2A

{
1− cos

(
ε
kA

)}
|ε| ≤ kAπ

2k2A |ε| > kAπ

{
kA sin

(
ε
kA

)
|ε| ≤ kAπ

0 |ε| > kAπ

Welsch k2w
2

(
1− e

−
(

ε
kW

)2)
, |ε| <∞ εe

−
(

ε
kW

)2

Cauchy
k2C
2 ln

(
1 +

(
ε
kC

)2)
, |ε| <∞ ε

1+
(

ε
kC

)2

Talwar

{
ε2

2 |ε| ≤ kTw
k2Tw
2 |ε| > kTw

{
ε |ε| ≤ kTw

0 |ε| > kTw

Ramsay 1−(1+kR|ε|)e−kR|ε|

k2R
, |ε| <∞ εe−kR|ε|

Geman-McClure ε2

k2GM+ε2
, |ε| <∞ 2εk2GM

(k2GM+ε2)
2

3. ψ
′
(0)= 1

4. ψ
′ ′ (0)= 0

5. ψ
′′′
(0)< 0

6. ψ(ε) is continuous and partially differentiable

Another important function in M estimator is the weight function obtained
by dividing the influence function by ε.

(2.8) ω (ε) =
ψ(ε)

ε

commonly used objective functions, influence functions, and weight functions for
selected M estimators are given in Tables 2–3.

Iteratively reweighted least squares (IRLS) algorithm is widely used for
parameter estimations in M regression. IRLS algorithm is given below.

� Step 1: Initial estimates of the parameters vector β̂0 is obtained by OLS

β̂0 = (X ′WX)−1X
′
Wy

where W = diag(1).



Novel Robust Estimators for Linear Regression Model 7

Table 3: Weight functions and tuning parameters for the selected M-
Estimators from literature.

Estimators Weight Function Tuning Parameter Reference

Huber

{
1, −k ≤ ε ≤ k
k
|ε| , ε < −k or ε > k

k = 1.5σ̂ σ̂ = 1.4826MAD [3]

Fair 1

1+
|ε|
kF

kF = 1.3998 [22]

Hampel


1 |ε| ≤ a
a
|ε| a < |ε| ≤ b

a(c−|ε|)
|ε|(c−b) b < |ε| ≤ c

0 |ε| > c

a = 1.35 b = 2.7 c = 5.4 [22]

Tukey


(
1−

(
ε
kT

)2)2

|ε| ≤ kT

0 |ε| > kT

kT = 2 [1]

Andrew

{
ksin

(
ε

kA

)
ε |ε| ≤ kAπ
0 |ε| > kAπ

kA = 1.339 [23]

Welsch e
−
(

ε
kW

)2

kW = 2.9846 [23]
Cauchy 1

1+
(

ε
kC

)2 kC = 2.3849 [22]

Talwar

{
1 |ε| ≤ kTw

0 |ε| > kTw
kTw = 2.7955 [10]

Ramsay e−kR|ε| kR = 0.3569 [4]

Geman-McClure
2k2GM

(k2GM+ε2)
2 kGM = 3.787376 [4]

� Step 2: The estimates of stochastic error vector ε is calculated by

ε̂ = y −Xβ̂0.

� Step 3: The weights denoted by W new are updated based on the weight
function of selected M-estimator by using ε̂.

� Step 4: The estimates of the parameters vector are updated by

β̂new =
(
X ′W newX

)−1
X

′
W newy.

� Step 5: The convergence condition is examined for the termination of the
algorithm. The convergence condition can be used as

 β̂M = β̂new and stop algorithm if
∑p

i=0

∣∣∣β̂newi − β̂0i

∣∣∣ ≤ tol

β̂0 = β̂new and repeat Step 2 - 5 if
∑p

i=0

∣∣∣β̂newi − β̂0i

∣∣∣ > tol

where tol is tolerance value and set to 10−4 in this study.

2.3. Proposed M-Ridge Estimators

In this study, we propose a novel M-estimators based on ridge estimators
when multicollinearity and outlier problems coexist in the multiple linear regres-
sion model. Eq. (1.4) is a common approach for dealing with multicollinearity
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and non-normality. In many studies, the IRLS algorithm is used to obtain esti-
mates by using Eq. (1.4). M-estimators are typically obtained by IRLS algorithm
using OLS errors. However, it is clear that OLS estimators are unreliable in case
of multicollinearity problem. Therefore, we propose to modify the IRLS algo-
rithm by obtaining M-estimators using the errors from ridge estimators instead
of OLS. OLS method gives equal weights ( wi = 1) to each observation vector.
On the other hand, M estimators provide more robust estimates in case of outlier
or non-normality by weighting the observation vectors according to the size of
the errors. M-estimates using weights based on the errors of OLS can adversely
affect the performance of RM estimators since OLS estimates are unstable in ex-
istence of multicollinearity. Based on this idea obtaining M-estimates from ridge
estimates instead of OLS can increase the performance of the estimator in cases
where both multicollinearity and outlier problems coexist.

In this study, M estimators based on ridge estimators (M-Ridge) are pro-
posed to address the coexistence of outliers and multicollinearity problems in
multiple linear regression models. The estimates of the stochastic error vector
are computed based on ridge estimates in the proposed approach. The IRLS
algorithm is arranged as follows to obtain the proposed M-Ridge estimates:

� Step 1: Initial estimates of the parameter vector β̂0M−Ridge is obtained
based on ridge estimator with the selected ridge parameter estimate

β̂0M−Ridge =
(
X

′
WX + k̂I

)−1
X

′
Wy

where W = diag(1).

� Step 2: The estimates of stochastic error vector (ε) is calculated by

ε̂ = y −Xβ̂0M−Ridge.

� Step 3: The weights are updated based on the weight function of selected
M-estimator by using ε̂ and denoted by W new.

� Step 4: The estimates of the parameter vector is updated by

β̂newM−Ridge =
(
X

′
W newX + k̂I

)−1
X

′
W newy.

� Step 5: The convergence condition for termination of the algorithm used
as β̂M−Ridge = β̂0M−Ridge and stop algorithm if

∑p
i=0

∣∣∣β̂newM−Ridge − β̂0M−Ridge

∣∣∣ ≤ tol

β̂0M−Ridge = β̂newM−Ridge and repeat Step 2 - 5 if
∑p

i=0

∣∣∣β̂newM−Ridge − β̂0M−Ridge

∣∣∣ > tol

where tol represents tolerance value and set to 10−4 in this study.
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Figure 2: Box-plots of the dependent variable for a selection of artificial
data sets with different sample sizes and outlier rates.

3. Simulation Study

In the simulation study, the performance of the proposed method for arti-
ficial data sets that contain outliers and multicollinearity problems is examined.
The explanatory variables in the artificial dataset are generated as

(3.1) xij =
(
1− ρ2

)1/2
zij + ρzi(p+1)

for i = 1, . . . , n and j = 1, . . . , p where ρ2 denotes the correlation between
explanatory variables and zij’s are random numbers from standard normal dis-
tribution [20]. Coefficient vector β in Eq. (3.2) is selected as the normalized
eigenvector corresponding to the largest eigenvalue of X ′X so that β

′
β =1. The

dependent variable vector is determined by

(3.2) yi = β1xi1 + β2xi2 + . . .+ βpxip + εi

where εi generated from two component mixture normal distribution in order
to create an outlier problem. According to the selected outlier observation rate
(OOR), the errors corresponding outlier observations are produced from the nor-
mal distribution with N(5, 0.1) while rest of are from a standard normal distri-
bution. Some selected box plots of dependent variables for different OOR’s are
shown in Figure 2.

Condition index (CI) is a measure of multicollinearity and values of CI
greater than 30 are indicative of strong multicollinearity [18]. In the simulation
study, CI’s are computed as 41.728 and 39.844 for n = 20, ρ2 = 0.99 and 0.999
respectively. For n = 100, ρ2 = 0.99 and 0.999, CI’s are 130.174 and 127.231
respectively.
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The performance of the proposed estimator is evaluated according to the
selected values of parameters for ρ2 = 0.99 and 0.99, n = 20 and 100, OOR =
10% and 20% and p = 4. A Monte Carlo simulation with 5000 replications
is performed to show the performance of the proposed estimator. M-Ridge is
compared to OLS, Ridge, M, and RM estimators in terms of the estimated MSE.
Monte Carlo simulation results are given in Tables 4–11.

(3.3) M̂SE
(
β̂
)
=

1

5000

5000∑
t=1

p∑
i=1

(
β̂i,t − βi

)2
According to simulation results for OOR=10%, n = 20 and ρ2 = 0.99, the pro-
posed M-Ridge estimators are generally more successful than others. Cauchy
M-Ridge estimator with kAM ridge parameter is the best estimator with the
smallest estimated MSE value of 0.3469. The M-Ridge estimators are successful
79 out of 80 comparisons against the RM estimators. Among the selected ridge
parameters in robust estimators, the proposed kAM ridge parameter by [15] is
the most successful ridge parameter with smaller estimated MSE. The M-Ridge
estimators are successful 9 out of 10 comparisons against the RM estimators for
kAM ridge parameter.

When the simulation results for OOR=20%, n = 20 and ρ2 = 0.99 is
analyzed, it is observed that the estimated MSE values are increased when the
OOR’s are increased as expected. Talwar M-Ridge estimator with kAM ridge
parameter is the best estimator with the smallest estimated MSE value of 0.400.
The M-Ridge estimators are successfull 78 out of the 80 comparisons against the
RM estimators.

According to results of the simulation for OOR=10%, n = 100 and ρ2 =
0.99, the proposed M-Ridge estimators are found more successful than RM esti-
mators in all comparisons with RM estimators. Geman-McClure M-Ridge esti-
mator with kAM ridge parameter is the best estimator with the smallest estimated
MSE value of 0.293.

According to results of the simulation for OOR=20%, n = 100 and ρ2 =
0.99, the proposed M-Ridge estimators are found more successful than RM esti-
mators in all comparisons with RM estimators. Geman-McClure M-Ridge estima-
tor with kHSL ridge parameter is the best estimator with the smallest estimated
MSE value of 0.198.

When the simulation results for OOR=10%, n = 20 and ρ2 = 0.999 are
analyzed, it is observed that the estimated MSE values increase as expected when
the ρ2 increases. The proposed M-Ridge estimators are generally more successful
than others. The M-Ridge estimators are successful 72 out of the 80 comparisons
against the RM estimators. According to results of the simulation for OOR=20%,
n = 20 and ρ2 = 0.999, the proposed M-Ridge estimators are successful 76 out
of the 80 comparisons against the RM estimators.

According to results of the simulation for OOR=10%, n = 100 and ρ2 =
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0.999, the proposed M-Ridge estimators are found more successful than RM esti-
mators in all comparisons with RM estimators. Geman-McClure M-Ridge estima-
tor with kHSL ridge parameter iss the best estimator with the smallest estimated
MSE value of 0.224.

According to results of the simulation performed for OOR=20%, n = 100
and ρ2 = 0.999, the proposed M-Ridge estimators are found more successful
than RM estimators in all comparisons with RM estimators. Geman-McClure
M-Ridge estimator with kHSL ridge parameter is the best estimator with the
smallest estimated MSE value of 0.186. Among the selected ridge parameters in
M-Ridge estimators, the proposed kHSL ridge parameter by Hocking, [7] is the
most successful ridge parameter with smaller estimated MSE values.

The results from Tables 4–11 can be summarized as follows. In most cases,
MSE values increased with increasing OOR and ρ2, while controlling for other
factors. The M-Ridge and RM estimators are found to be more successful than
the OLS, ridge, and M estimators according to the MSE criteria. The M-Ridge
estimator is found to be superior to the RM estimator according to the MSE
criteria.

Box plots of MSE values for M-Ridge and RM estimators with different
ridge parameters given in Figure 3 shows that the M-Ridge estimators are more
robust to the changes in ridge parameter than the RM estimators, and have
smaller MSE values. When the average MSE values obtained with different ridge
parameters are examined, the M-Ridge estimates are found to be more successful
than the RM estimates in all cases.

The proposed estimator M-Ridge has smaller MSE than the RM estimator
in all cases examined except for the bias parameter kAM. In comparison M-Ridge
and RM estimators with ridge parameter kAM, the proposed M-Ridge estimator
has smaller MSE than the RM estimator in 65 of the 80 cases. Box plot of MSE
values for M-Ridge and RM estimators with ridge parameter kAM is given Figure
4. As evident from Figure 4, the proposed M-Ridge estimator outperforms the
RM estimator in terms of mean squared error (MSE) for the bias parameter kAM.

In the second stage of the simulation study, the performance of the esti-
mators is examined for the errors from log-normal distribution with parameters
µ = 0 and σ2 = 1. The simulation study involves specific parameter settings, in-
cluding ρ2 = 0.99 and 0.999, n = 20 and 100, and p = 4. Monte Carlo simulation
results based on 5000 replications are presented in Tables 12–15.

Robust estimators are found more successful in the simulation study for
the log-normal distributed errors. Among the robust estimators, the proposed
M-Ridge estimators generally outperformed the RM estimators. Box plots of
MSE values for M-Ridge and RM estimators with different ridge parameters are
given Figure 5.
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Figure 3: Box plots of MSE values for M-Ridge and RM estimators with
different ridge estimators(Cases 1-8)

Figure 4: Box plots of MSE values for M-Ridge and RM estimators with
ridge estimator kAM
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Figure 5: Box plots of MSE values for M-Ridge and RM estimators with
different ridge parameters (Cases 9-12)

4. Real Data Application

In this section, we consider Tobacco data [21], which contains both mul-
ticollinearity and outlier problems. In application, the dataset centralized and
standardized by proportioning the square root of the overall sum of squares. The
scatter matrix for the independent variables and the box-plot of the error terms
for OLS estimates are given in Figure 6.

According to Figure 6, it is clearly seen that the data set contains outlier
and multicollinearity problems. The calculated CI value of 43.0758 for Tobacco
dataset indicates the presence of a strong multicollinearity issue.

The performance of the proposed M-Ridge estimators evaluated with the
k-fold cross validation technique in the Tobacco dataset. The original data set is
randomly partitioned into k equal sized subgroups in k-fold cross validation. Of
the k subgroups, a single subgroup is retained as the validation data for testing
the model, and the remaining k-1 subgroups are used as training data. This
process is then repeated k times, with each of the k subgroups used exactly once
as the validation data. In k-fold cross validation, the cross validation(CV) as the
mean of sum of errors for test data sets is given below.

(4.1) Ei =

m∑
j=1

(yj,test − ŷj,test)
2
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Figure 6: The scatter matrix for the independent variables and the box-
plot of the error terms for the OLS estimates

(4.2) CV =
1

k

k∑
i=1

Ei

The performances of the estimators are tested with k-fold cross validation by
choosing k = 10. The k-fold cross validation results for the proposed estimator
and other investigated estimators in the Tobacco dataset are given in Table 16.

According to results of k-fold cross validation, M-ridge and RM estimators
as robust estimator are found more successful than OLS, ridge, and M estimators.
In most cases M-Ridge found superior to RM estimators in comparisons between
the proposed M-Ridge with RM estimators. The proposed Huber’s M-ridge esti-
mator by kAM bias parameter is found the most successful estimator which has
the smallest CV.

5. Conclusions

In this study, new robust estimators which named by M-Ridge are improved
in case of coexistence of multicollinearity and outlier problems. The M-Ridge es-
timators are based on the notion that rather than converting M-estimates derived
from OLS estimates into ridge estimates as proposed by [24] and [5], M-estimates
are obtained directly from errors based on ridge estimates. The performance of
M-Ridge estimators is examined according to estimated MSE and k-fold cross
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validation in simulations and real data application, respectively. in the simu-
lation study, M-ridge estimators with generally smaller estimated MSE values
outperformed OLS, ridge, M, and RM estimators. In the comparison of robust
M-Ridge and RM estimators according to the MSE criterion, the success rates
of M-Ridge estimators for normal distributed errors are 95.3125% in the small
sample sizes and 100% in the large sample sizes. The success rates of M-Ridge
estimators are found 96.875% in small sample sizes and 89.375% in large sample
sizes for log-normal distributed errors. In the real data application, the perfor-
mances of the estimators are tested with k-fold cross validation by choosing k=10.
According to k-fold cross validation, Huber’s M-ridge estimator based on kAM is
found the best estimator. In future studies, new estimators can be obtained by
using different biased estimators instead of ridge estimators with the proposed
new approach.
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Table 4: Scaler MSE values of the estimators for OOR 10%, n = 20 and
ρ2 = 0.99 (Case 1).

OLS 1507.06 Ridge k̂HK k̂HKB k̂LW k̂HSL k̂AM k̂GM k̂MED k̂KS

117.891 203.820 175.044 8.077 0.389 14.856 55.152 121.791

M Robust k̂HK k̂HKB k̂LW k̂HSL k̂AM k̂GM k̂MED k̂KS

Huber 893.860 M-Ridge 65.026 105.234 92.032 4.379 0.353 7.331 27.022 67.014
RM 76.065 124.456 107.344 5.159 0.362 9.094 32.482 78.446

Fair 943.136 M-Ridge 38.283 57.969 53.438 2.584 0.355 3.023 14.198 39.404
RM 79.520 132.394 114.473 5.438 0.366 9.708 34.836 82.030

Hampel 836.801 M-Ridge 54.173 82.300 73.597 3.397 0.349 5.069 19.628 55.864
RM 67.543 105.384 91.648 4.259 0.361 7.597 25.959 69.763

Tukey 1725.782 M-Ridge 22.249 30.281 30.816 1.812 0.478 1.482 6.477 22.991
RM 113.010 179.605 158.260 7.309 0.547 12.915 44.879 117.495

Andrew 796.919 M-Ridge 34.516 49.614 46.638 2.183 0.350 2.647 11.226 35.558
RM 62.959 96.741 84.938 3.931 0.356 6.884 23.387 65.036

Welsch 823.663 M-Ridge 48.872 73.823 66.670 3.091 0.3471 4.369 17.552 50.371
RM 67.208 105.509 91.881 4.288 0.359 7.621 26.180 69.392

Cauchy 883.687 M-Ridge 58.091 92.384 81.816 3.817 0.3469 5.739 23.240 59.837
RM 75.384 123.741 106.886 5.054 0.361 9.069 32.235 77.746

Talwar 798.563 M-Ridge 58.062 88.502 78.570 3.723 0.349 5.993 21.085 59.900
RM 63.332 97.581 85.610 4.462 0.356 6.962 23.633 65.399

Ramsay 873.291 M-Ridge 42.236 64.156 58.646 2.781 0.350 3.506 15.571 43.483
RM 73.695 119.985 103.895 4.921 0.363 8.779 31.011 76.031

G-Mc 838.096 M-Ridge 3.511 4.043 4.623 0.620 0.533 0.365 1.089 3.496
RM 69.923 111.871 97.097 4.574 0.360 8.140 28.382 72.158

Table 5: Scaler MSE values of the estimators for OOR 20%, n = 20 and
ρ2 = 0.99 (Case 2).

OLS 4694.981 Ridge k̂HK k̂HKB k̂LW k̂HSL k̂AM k̂GM k̂MED k̂KS

3023.756 1657.074 676.982 327.444 0.458 106.551 443.482 3031.023

M Robust k̂HK k̂HKB k̂LW k̂HSL k̂AM k̂GM k̂MED k̂KS

Huber 3499.616 M-Ridge 1599.733 637.071 251.808 128.696 0.435 28.668 147.896 1605.432
RM 2215.030 1208.167 513.362 251.770 0.446 75.058 320.177 2220.244

Fair 3013.929 M-Ridge 1002.236 337.370 121.444 69.689 0.459 10.292 68.019 1006.376
RM 1907.099 1045.375 452.743 211.948 0.432 66.114 275.936 1911.399

Hampel 1905.393 M-Ridge 706.030 247.065 104.786 41.117 0.487 8.286 53.669 708.909
RM 1133.244 611.446 292.873 111.803 0.685 38.936 159.321 1136.115

Tukey 2541.135 M-Ridge 286.908 68.632 27.276 15.501 0.574 2.080 13.644 288.771
RM 1369.543 689.342 306.027 123.549 0.691 42.663 180.762 1373.767

Andrew 1689.642 M-Ridge 418.640 116.646 50.478 22.527 0.432 3.639 25.613 420.770
RM 983.336 525.215 258.749 96.927 0.622 33.425 138.235 985.961

Welsch 1903.509 M-Ridge 665.134 223.833 93.211 39.497 0.468 7.313 47.753 667.858
RM 1141.321 619.021 296.636 116.229 0.645 39.414 161.378 1144.114

Cauchy 2760.425 M-Ridge 1191.597 464.814 179.835 88.974 0.449 17.053 100.373 1195.715
RM 1744.399 958.343 424.448 195.682 0.469 60.379 251.544 1748.220

Talwar 2636.496 M-Ridge 1110.995 316.013 125.896 53.185 0.400 8.258 55.988 1114.771
RM 1602.653 856.312 392.798 192.809 0.700 51.032 224.708 1606.681

Ramsay 2493.603 M-Ridge 857.939 289.901 109.017 56.928 0.469 8.972 58.796 861.333
RM 1562.552 857.858 385.871 173.938 0.491 54.120 224.474 1565.977

G-Mc 2105.865 M-Ridge 86.130 13.987 4.905 4.436 0.722 0.614 2.669 86.714
RM 1297.936 711.442 332.535 139.783 0.552 45.168 185.207 1300.832
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Table 6: Scaler MSE values of the estimators for OOR 10%, n = 100 and
ρ2 = 0.99 (Case 3).

OLS 1900.100 Ridge k̂HK k̂HKB k̂LW k̂HSL k̂AM k̂GM k̂MED k̂KS

258.580 486.807 407.134 6.339 3.333 107.302 222.727 321.897

M Robust k̂HK k̂HKB k̂LW k̂HSL k̂AM k̂GM k̂MED k̂KS

Huber 891.006 M-Ridge 93.567 181.536 154.375 2.118 0.968 33.451 75.540 114.005
RM 113.235 219.419 185.531 2.959 1.308 44.842 93.393 138.377

Fair 988.946 M-Ridge 59.672 114.154 99.039 1.018 0.568 16.256 45.757 72.816
RM 128.024 247.708 209.377 3.323 1.502 51.467 107.126 156.737

Hampel 772.782 M-Ridge 54.855 107.133 93.165 1.088 0.581 16.220 37.948 67.716
RM 77.652 152.433 130.182 1.912 0.911 27.604 56.031 96.922

Tukey 1492.272 M-Ridge 25.028 48.464 46.163 0.591 0.513 5.186 16.207 31.567
RM 129.960 251.541 216.397 2.900 1.676 46.762 98.990 167.889

Andrew 662.853 M-Ridge 33.579 63.891 57.262 0.624 0.403 8.336 21.429 41.319
RM 63.863 123.986 106.262 1.512 0.767 21.807 44.028 80.121

Welsch 744.195 M-Ridge 50.271 97.880 85.458 0.979 0.526 14.488 35.122 61.654
RM 77.018 151.056 128.898 1.927 0.892 27.679 56.528 95.555

Cauchy 885.819 M-Ridge 78.338 152.276 130.334 1.580 0.758 25.550 61.696 95.331
RM 110.798 215.614 182.538 2.901 1.274 43.720 90.783 135.441

Talwar 660.464 M-Ridge 54.922 106.275 91.784 1.178 0.633 17.414 37.127 68.444
RM 63.666 123.667 105.832 1.516 0.771 21.831 44.165 79.918

Ramsay 856.196 M-Ridge 55.031 106.159 92.334 0.992 0.531 15.402 41.355 66.862
RM 103.387 201.764 171.137 2.703 1.183 40.237 83.454 126.539

G-Mc 777.916 M-Ridge 4.829 8.354 8.553 0.247 0.293 0.832 2.949 5.822
RM 87.590 171.532 145.969 2.259 0.999 32.884 67.883 107.598

Table 7: Scaler MSE values of the estimators for OOR 20%, n = 100 and
ρ2 = 0.99 (Case 4).

OLS 3140.552 Ridge k̂HK k̂HKB k̂LW k̂HSL k̂AM k̂GM k̂MED k̂KS

226.692 811.123 874.977 9.332 7.970 181.913 294.674 359.045

M Robust k̂HK k̂HKB k̂LW k̂HSL k̂AM k̂GM k̂MED k̂KS

Huber 1474.408 M-Ridge 75.450 283.226 310.723 2.560 2.013 51.429 96.867 114.645
RM 114.687 385.839 410.733 4.178 3.159 85.005 143.605 171.957

Fair 1507.492 M-Ridge 35.669 152.533 178.194 1.234 1.104 20.904 46.666 54.648
RM 114.665 391.136 418.459 4.239 3.249 85.926 144.340 172.800

Hampel 1189.339 M-Ridge 29.586 111.818 128.957 0.825 0.704 15.732 34.737 43.583
RM 63.598 221.697 240.768 2.063 1.565 42.226 74.015 95.084

Tukey 1790.016 M-Ridge 9.576 41.978 54.622 0.552 0.565 4.569 11.537 14.676
RM 75.537 289.926 323.985 2.523 2.201 53.629 92.767 121.165

Andrew 783.499 M-Ridge 15.158 56.914 67.810 0.465 0.440 7.418 17.193 22.266
RM 38.859 137.467 150.653 1.236 1.005 25.053 44.108 58.605

Welsch 1070.609 M-Ridge 26.181 99.490 114.792 0.736 0.628 13.944 31.093 38.397
RM 60.273 206.505 223.232 1.974 1.452 39.910 70.273 88.976

Cauchy 1352.270 M-Ridge 50.324 196.219 219.783 1.574 1.280 31.148 64.321 75.687
RM 101.800 338.651 360.149 3.611 2.653 73.538 125.615 150.779

Talwar 778.506 M-Ridge 27.514 99.066 111.324 0.802 0.689 15.950 31.236 40.935
RM 38.689 136.494 149.389 1.230 1.002 24.974 44.057 58.376

Ramsay 1287.711 M-Ridge 31.230 127.685 147.766 0.970 0.842 17.486 39.782 46.736
RM 92.675 308.265 328.386 3.238 2.349 65.859 113.328 136.630

G-Mc 1120.644 M-Ridge 1.808 7.754 11.174 0.198 0.269 0.910 2.177 2.587
RM 72.654 243.053 260.381 2.461 1.758 49.745 86.907 106.340
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Table 8: Scaler MSE values of the estimators for OOR 10%, n = 20 and
ρ2 = 0.999 (Case 5).

OLS 14807.131 Ridge k̂HK k̂HKB k̂LW k̂HSL k̂AM k̂GM k̂MED k̂KS

2068.689 1999.721 706.270 21.945 0.300 56.045 543.728 2073.417

M Robust k̂HK k̂HKB k̂LW k̂HSL k̂AM k̂GM k̂MED k̂KS

Huber 8764.191 M-Ridge 1111.019 1031.415 439.101 11.680 0.303 27.145 264.628 1113.431
RM 1292.304 1221.216 520.768 13.549 0.302 34.240 319.383 1295.113

Fair 9249.708 M-Ridge 688.926 566.519 221.816 7.872 0.320 9.988 138.747 690.468
RM 1366.085 1299.036 532.820 13.916 0.303 36.592 342.872 1369.059

Hampel 8199.155 M-Ridge 911.395 806.542 397.144 9.601 0.309 17.856 191.799 913.506
RM 1124.288 1033.059 507.277 11.099 0.306 28.453 254.572 1126.910

Tukey 16930.813 M-Ridge 400.689 292.637 133.467 4.608 0.453 3.838 60.458 401.800
RM 1939.736 1760.914 763.987 16.661 0.470 47.636 437.201 1945.317

Andrew 7813.175 M-Ridge 588.172 484.797 243.485 6.487 0.318 8.721 108.747 589.560
RM 1035.535 948.363 490.190 10.272 0.305 25.642 228.576 1038.009

Welsch 8071.554 M-Ridge 830.188 723.092 348.570 8.912 0.310 15.163 171.399 832.089
RM 1121.485 1034.472 501.415 11.180 0.305 28.555 256.846 1124.063

Cauchy 8662.866 M-Ridge 1006.607 905.638 380.991 10.934 0.305 20.375 228.035 1008.800
RM 1285.447 1213.984 516.863 13.268 0.301 34.186 317.189 1288.227

Talwar 7831.714 M-Ridge 957.074 867.037 449.919 9.688 0.302 21.840 205.884 959.290
RM 1039.385 956.961 483.800 11.357 0.304 25.956 230.884 1041.855

Ramsay 8559.872 M-Ridge 744.164 627.712 266.277 8.316 0.316 11.811 152.213 745.821
RM 1252.891 1177.020 514.515 12.637 0.304 33.048 304.977 1255.644

G-Mc 8213.268 M-Ridge 62.305 37.282 16.202 1.275 0.485 0.608 8.142 62.445
RM 1177.158 1097.163 504.450 11.864 0.304 30.579 278.798 1179.791

Table 9: Scaler MSE values of the estimators for OOR 20%, n = 20 and
ρ2 = 0.999 (Case 6).

OLS 47401.887 Ridge k̂HK k̂HKB k̂LW k̂HSL k̂AM k̂GM k̂MED k̂KS

31219.846 16777.823 21574.414 510.123 0.297 387.819 3709.695 31226.605

M Robust k̂HK k̂HKB k̂LW k̂HSL k̂AM k̂GM k̂MED k̂KS

Huber 35046.937 M-Ridge 16614.515 6433.902 9701.346 203.245 0.383 100.656 1201.710 16620.019
RM 22737.765 12175.911 15828.326 398.921 0.357 270.606 2655.248 22742.587

Fair 30145.911 M-Ridge 10515.510 3417.909 5621.556 120.061 0.411 32.969 542.742 10519.477
RM 19559.568 10531.888 13638.694 332.774 0.350 238.470 2283.153 19563.543

Hampel 18720.207 M-Ridge 7303.376 2496.267 3983.442 64.521 0.470 26.347 428.332 7306.089
RM 11468.182 6084.823 7868.771 166.890 0.685 136.012 1282.201 11470.814

Tukey 25115.230 M-Ridge 3072.891 694.490 1377.559 29.169 0.546 5.185 102.614 3074.634
RM 14038.131 6925.769 9098.242 191.214 0.664 150.676 1473.750 14042.051

Andrew 16616.234 M-Ridge 4398.887 1184.785 2131.911 37.422 0.403 11.202 203.191 4400.891
RM 9958.532 5222.772 6792.274 159.023 0.616 116.154 1105.293 9960.951

Welsch 18732.179 M-Ridge 6903.999 2264.845 3692.730 62.878 0.446 23.223 380.758 6906.578
RM 11563.878 6168.397 7977.234 176.626 0.637 138.219 1301.755 11566.440

Cauchy 27512.585 M-Ridge 12372.348 4701.652 7178.307 146.249 0.411 56.566 809.476 12376.232
RM 17835.668 9632.454 12482.338 305.635 0.408 216.826 2071.882 17839.191

Talwar 26024.879 M-Ridge 11460.867 3189.382 5901.231 90.671 0.374 28.123 442.991 11463.500
RM 16231.667 8519.122 11150.957 344.609 0.711 177.636 1815.415 16235.367

Ramsay 24797.853 M-Ridge 8964.764 2935.818 4811.464 95.923 0.434 28.542 468.760 8967.998
RM 15955.039 8613.469 11160.167 270.261 0.441 193.793 1843.388 15958.193

G-Mc 20833.458 M-Ridge 943.263 138.798 339.125 7.597 0.684 1.123 17.713 943.858
RM 13200.980 7118.483 9213.394 214.553 0.524 160.277 1507.855 13203.641
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Table 10: Scaler MSE values of the estimators for OOR 10%, n = 100 and
ρ2 = 0.999 (Case 7).

OLS 18517.999 Ridge k̂HK k̂HKB k̂LW k̂HSL k̂AM k̂GM k̂MED k̂KS

2504.533 4706.645 4097.869 1.899 1.235 467.179 2140.604 2560.969

M Robust k̂HK k̂HKB k̂LW k̂HSL k̂AM k̂GM k̂MED k̂KS

Huber 8890.015 M-Ridge 910.818 1762.354 1564.003 0.669 0.443 139.555 729.165 928.705
RM 1104.600 2134.951 1877.057 0.880 0.497 196.037 903.696 1126.708

Fair 9836.618 M-Ridge 577.118 1101.013 1006.757 0.419 0.386 60.238 438.211 588.751
RM 1247.491 2407.877 2116.585 0.964 0.562 225.078 1035.408 1272.883

Hampel 7803.645 M-Ridge 536.871 1042.389 949.718 0.405 0.333 64.471 368.317 547.574
RM 763.262 1490.965 1325.432 0.604 0.386 118.841 546.865 779.340

Tukey 15075.198 M-Ridge 239.013 462.022 470.656 0.438 0.458 16.656 152.421 244.621
RM 1272.080 2454.062 2210.714 0.957 0.732 196.359 960.346 1304.124

Andrew 6695.389 M-Ridge 327.636 619.131 584.560 0.303 0.283 31.200 207.327 334.089
RM 628.710 1213.243 1082.776 0.499 0.343 93.179 430.567 642.018

Welsch 7511.262 M-Ridge 491.194 951.042 870.874 0.379 0.316 56.855 340.229 500.762
RM 756.604 1476.726 1311.232 0.600 0.377 119.490 551.231 772.158

Cauchy 8855.387 M-Ridge 761.912 1476.605 1322.699 0.532 0.398 102.518 594.711 776.775
RM 1081.718 2099.460 1847.911 0.845 0.485 191.164 879.030 1103.333

Talwar 6670.480 M-Ridge 539.118 1037.643 935.352 0.429 0.323 72.074 361.953 550.108
RM 626.080 1209.639 1078.217 0.522 0.345 93.196 431.408 639.413

Ramsay 8581.543 M-Ridge 534.111 1026.813 939.240 0.392 0.343 58.365 397.546 544.460
RM 1010.555 1966.145 1734.052 0.793 0.458 175.670 809.017 1030.735

G-Mc 7829.529 M-Ridge 44.168 77.362 85.725 0.224 0.266 2.147 26.096 45.037
RM 858.215 1674.177 1481.715 0.679 0.404 142.978 659.846 875.358

Table 11: Scaler MSE values of the estimators for OOR 20%, n = 100 and
ρ2 = 0.999 (Case 8).

OLS 30238.893 Ridge k̂HK k̂HKB k̂LW k̂HSL k̂AM k̂GM k̂MED k̂KS

2118.929 7749.269 8724.782 3.342 3.450 749.439 2715.282 2227.345

M Robust k̂HK k̂HKB k̂LW k̂HSL k̂AM k̂GM k̂MED k̂KS

Huber 14573.073 M-Ridge 704.728 2705.611 3119.209 1.042 1.078 196.682 891.648 736.316
RM 1082.727 3714.399 4123.085 1.172 1.176 354.481 1334.789 1130.734

Fair 14871.272 M-Ridge 327.168 1439.940 1792.199 0.771 0.860 70.318 421.709 342.186
RM 1081.582 3761.587 4197.642 1.224 1.234 357.826 1340.583 1130.142

Hampel 12033.327 M-Ridge 277.873 1066.741 1307.909 0.420 0.445 56.344 321.465 288.670
RM 604.230 2141.156 2440.996 0.590 0.591 173.613 693.384 629.139

Tukey 18102.683 M-Ridge 85.479 389.947 552.495 0.474 0.511 13.505 101.956 89.391
RM 714.260 2790.553 3290.897 0.868 0.901 214.551 865.647 749.799

Andrew 7924.098 M-Ridge 141.920 540.689 688.279 0.291 0.313 25.735 158.922 147.372
RM 369.850 1326.828 1528.770 0.399 0.411 102.101 414.734 384.879

Welsch 10821.232 M-Ridge 245.473 948.332 1162.733 0.378 0.406 49.678 287.261 254.978
RM 572.652 1994.584 2260.556 0.554 0.550 164.785 658.226 595.591

Cauchy 13458.812 M-Ridge 468.079 1868.520 2210.937 0.752 0.801 112.682 589.157 488.358
RM 962.844 3264.931 3622.010 0.971 0.964 307.095 1169.258 1003.969

Talwar 7871.997 M-Ridge 260.574 950.086 1129.894 0.343 0.360 61.100 291.902 270.608
RM 368.039 1316.858 1515.506 0.398 0.410 101.647 413.844 383.041

Ramsay 12868.287 M-Ridge 288.666 1209.728 1489.077 0.558 0.621 59.709 362.044 300.966
RM 877.358 2973.707 3306.614 0.862 0.851 274.816 1055.887 914.148

G-Mc 11272.675 M-Ridge 13.782 67.987 109.560 0.186 0.243 2.080 16.860 14.357
RM 689.126 2346.527 2628.418 0.657 0.646 206.975 811.716 716.889
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Table 12: Scaler MSE of the estimators for lognormal distributed errors,
n = 20 and ρ2 = 0.99 (Case 9).

OLS 3394.857 Ridge k̂HK k̂HKB k̂LW k̂HSL k̂AM k̂GM k̂MED k̂KS

916.252 603.731 599.784 37.128 1.277 41.289 114.869 923.979

M Robust k̂HK k̂HKB k̂LW k̂HSL k̂AM k̂GM k̂MED k̂KS

Huber 1162.188 M-Ridge 192.488 89.897 98.023 8.009 0.442 4.535 16.129 194.639
RM 278.480 167.505 164.175 12.759 0.562 11.868 33.977 281.253

Fair 870.719 M-Ridge 56.820 19.709 23.938 2.026 0.435 0.941 3.327 57.369
RM 211.251 128.710 128.574 9.966 0.494 9.090 25.274 213.322

Hampel 1569.666 M-Ridge 65.604 25.721 30.567 2.646 0.397 1.206 4.050 66.543
RM 248.562 139.487 144.229 9.720 0.552 8.410 24.123 252.698

Tukey 7023.009 M-Ridge 53.023 14.939 19.346 2.260 0.693 0.975 2.382 53.898
RM 1563.448 1014.971 1070.368 63.501 1.962 61.597 150.988 1579.596

Andrew 1857.532 M-Ridge 49.237 16.610 21.006 1.975 0.448 0.765 2.504 49.894
RM 296.768 171.919 179.478 10.872 0.631 10.951 31.587 301.625

Welsch 1449.204 M-Ridge 55.090 20.680 25.154 2.233 0.404 0.961 3.236 55.842
RM 235.004 129.488 134.193 9.115 0.529 7.785 21.807 238.809

Cauchy 657.616 M-Ridge 53.355 23.447 25.361 2.451 0.381 1.237 4.320 54.083
RM 121.514 70.437 69.866 5.810 0.397 4.793 13.782 123.219

Talwar 1647.434 M-Ridge 109.115 48.123 53.427 4.316 0.438 2.546 8.368 110.804
RM 307.538 196.182 187.911 14.753 0.696 12.769 39.202 311.609

Ramsay 720.429 M-Ridge 33.217 12.415 14.805 1.386 0.407 0.622 2.124 33.619
RM 126.110 73.255 75.165 5.622 0.405 4.944 13.988 127.997

G-Mc 924.968 M-Ridge 3.387 0.809 1.191 0.549 0.674 0.260 0.372 3.320
RM 148.018 84.571 88.603 6.265 0.438 5.548 15.472 150.460

Table 13: Scaler MSE of the estimators for lognormal distributed errors,
n = 20 and ρ2 = 0.999 (Case 10).

OLS 33306.964 Ridge k̂HK k̂HKB k̂LW k̂HSL k̂AM k̂GM k̂MED k̂KS

8997.876 5948.933 4765.248 104.566 1.083 162.260 1206.539 9005.269

M Robust k̂HK k̂HKB k̂LW k̂HSL k̂AM k̂GM k̂MED k̂KS

Huber 11407.251 M-Ridge 1887.833 881.303 843.324 25.901 0.402 15.669 160.412 1889.963
RM 2740.443 1647.381 1379.774 40.759 0.472 45.442 346.777 2743.180

Fair 8550.317 M-Ridge 550.887 191.837 194.284 5.752 0.405 2.707 31.811 551.423
RM 2081.149 1265.936 1050.649 31.524 0.420 34.752 257.867 2083.184

Hampel 15477.152 M-Ridge 637.706 250.228 252.280 8.641 0.362 3.724 39.164 638.621
RM 2394.337 1374.564 1225.932 30.642 0.476 31.099 251.450 2398.295

Tukey 70204.772 M-Ridge 506.971 137.156 156.075 5.348 0.667 2.064 18.025 507.562
RM 15823.483 10261.280 7822.940 190.337 1.673 261.502 1878.946 15839.540

Andrew 18307.094 M-Ridge 475.212 160.095 167.463 5.641 0.414 2.086 23.054 475.849
RM 2908.757 1689.845 1508.914 32.021 0.533 40.246 322.296 2913.510

Welsch 14280.645 M-Ridge 534.852 200.797 204.341 7.167 0.369 2.873 30.971 535.587
RM 2259.062 1275.468 1120.455 29.871 0.455 28.744 222.713 2262.735

Cauchy 6459.583 M-Ridge 514.559 228.322 238.338 7.214 0.347 3.905 41.604 515.262
RM 1188.789 691.444 614.623 19.014 0.340 17.444 136.780 1190.450

Talwar 16168.063 M-Ridge 1042.757 469.180 483.516 14.245 0.397 7.998 81.662 1044.302
RM 2932.190 1915.777 1739.678 45.062 0.599 48.285 404.205 2936.126

Ramsay 7079.695 M-Ridge 320.713 120.290 127.999 3.859 0.374 1.738 19.700 321.104
RM 1241.382 719.259 623.470 18.542 0.346 17.830 139.794 1243.242

G-Mc 9098.966 M-Ridge 30.482 6.632 7.986 0.689 0.636 0.205 0.983 30.427
RM 1444.830 831.317 722.369 20.078 0.377 19.933 155.790 1447.224
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Table 14: Scaler MSE of the estimators for lognormal distributed errors,
n = 100 and ρ2 = 0.99 (Case 11).

OLS 2591.635 Ridge k̂HK k̂HKB k̂LW k̂HSL k̂AM k̂GM k̂MED k̂KS

573.003 448.774 413.554 102.524 1.180 26.348 88.479 629.044

M Robust k̂HK k̂HKB k̂LW k̂HSL k̂AM k̂GM k̂MED k̂KS

Huber 551.834 M-Ridge 80.668 51.510 48.476 9.118 0.440 2.737 9.414 90.462
RM 98.618 69.915 63.961 12.238 0.455 4.278 13.492 111.049

Fair 397.395 M-Ridge 29.977 15.077 15.355 3.252 0.463 0.668 2.580 33.079
RM 75.175 53.887 49.261 9.928 0.412 3.331 10.552 84.039

Hampel 423.251 M-Ridge 29.755 17.699 18.068 3.317 0.422 0.846 2.862 34.648
RM 52.986 37.996 36.471 6.806 0.386 2.249 6.932 63.021

Tukey 3245.259 M-Ridge 36.679 13.949 16.491 3.707 0.790 0.907 2.166 40.897
RM 405.126 288.511 278.345 64.671 1.090 17.262 53.500 477.177

Andrew 513.681 M-Ridge 23.992 12.479 13.303 2.506 0.481 0.561 1.868 27.491
RM 65.498 46.550 44.483 8.062 0.406 2.733 8.438 77.534

Welsch 397.044 M-Ridge 24.905 14.398 14.920 2.771 0.430 0.673 2.276 28.891
RM 49.503 35.653 34.395 6.445 0.380 2.110 6.500 58.918

Cauchy 336.273 M-Ridge 30.534 17.975 17.966 3.347 0.406 0.897 3.131 34.839
RM 49.484 34.726 32.953 6.161 0.377 2.163 6.694 57.297

Talwar 742.333 M-Ridge 63.221 38.948 39.548 7.171 0.476 1.927 6.432 73.963
RM 95.081 67.508 64.573 11.798 0.476 4.040 12.171 112.141

Ramsay 298.564 M-Ridge 17.229 9.359 9.892 1.915 0.439 0.450 1.534 19.699
RM 39.871 28.284 27.394 5.229 0.361 1.740 5.398 46.880

G-Mc 314.456 M-Ridge 2.236 0.775 1.022 0.576 0.725 0.264 0.364 2.344
RM 39.419 28.255 27.378 5.192 0.361 1.709 5.291 46.883

Table 15: Scaler MSE of the estimators for lognormal distributed errors,
n = 100 and ρ2 = 0.999 (Case 12).

OLS 26187.711 Ridge k̂HK k̂HKB k̂LW k̂HSL k̂AM k̂GM k̂MED k̂KS

5765.011 4521.224 4171.784 363.889 1.006 100.677 886.798 5813.761

M Robust k̂HK k̂HKB k̂LW k̂HSL k̂AM k̂GM k̂MED k̂KS

Huber 5573.883 M-Ridge 812.268 517.892 487.361 25.690 0.397 9.624 93.055 820.752
RM 992.387 702.943 643.330 33.857 0.395 15.928 134.248 1002.994

Fair 4014.625 M-Ridge 300.611 150.789 153.540 10.356 0.430 1.866 24.279 303.397
RM 756.714 541.853 495.544 30.149 0.359 12.483 104.993 764.332

Hampel 4273.551 M-Ridge 297.335 177.075 180.812 9.781 0.382 2.597 27.063 301.513
RM 530.388 381.596 366.397 19.924 0.334 8.043 68.137 538.783

Tukey 32900.989 M-Ridge 362.298 133.322 160.017 11.241 0.772 1.675 15.586 366.051
RM 4065.108 2903.287 2800.391 286.532 0.901 62.973 530.283 4125.723

Andrew 5184.126 M-Ridge 238.865 124.184 132.466 7.460 0.441 1.471 16.755 241.894
RM 655.177 467.279 446.635 24.000 0.349 9.799 83.137 665.252

Welsch 4009.178 M-Ridge 248.654 143.897 149.126 7.927 0.391 1.976 21.212 252.068
RM 495.659 358.134 345.584 18.386 0.329 7.543 63.862 503.526

Cauchy 3398.437 M-Ridge 306.533 180.189 180.040 9.248 0.370 2.842 30.068 310.248
RM 497.619 349.030 331.268 16.575 0.329 7.888 66.151 504.205

Talwar 7500.811 M-Ridge 633.598 390.162 394.856 22.666 0.429 6.276 61.806 642.454
RM 953.262 678.261 648.862 34.612 0.405 14.541 119.698 967.474

Ramsay 3017.670 M-Ridge 172.115 93.414 98.636 5.096 0.401 1.217 13.926 174.256
RM 400.455 284.226 275.344 13.882 0.315 6.269 53.136 406.326

G-Mc 3177.000 M-Ridge 20.322 6.647 8.365 0.931 0.685 0.173 0.812 20.436
RM 395.365 283.874 275.088 14.118 0.315 6.112 51.940 401.605
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Table 16: Comparison of estimation methods with k-fold cross validation
method in Tobacco data set (×10−4)

OLS 68.1432 Ridge k̂HK k̂HKB k̂LW k̂HSL k̂AM k̂GM k̂MED k̂KS

68.0701 65.9109 68.7738 59.4768 60.2571 62.8117 60.8897 68.0576

M Robust k̂HK k̂HKB k̂LW k̂HSL k̂AM k̂GM k̂MED k̂KS

Huber 63.1867 M-Ridge 60.6909 58.3774 64.6720 57.5810 56.3181 56.9301 56.9256 60.7143
RM 60.9831 60.5311 65.6347 57.4911 57.1628 58.6564 57.9275 60.9912

Fair 67.9456 M-Ridge 67.7549 65.6060 68.6012 59.3509 59.9869 62.4962 60.6256 67.7434
RM 67.7889 65.6930 68.6143 59.3478 60.1035 62.6280 60.7455 67.7773

Hampel 68.1432 M-Ridge 68.0701 65.9109 68.7738 59.4768 60.2571 62.8117 60.8897 68.0576
RM 68.0701 65.9109 68.7738 59.4768 60.2571 62.8117 60.8897 68.0576

Tukey 68.1401 M-Ridge 68.0502 65.8924 68.7567 59.4634 60.2362 62.7901 60.8719 68.0379
RM 68.0540 65.9005 68.7632 59.4698 60.2493 62.8027 60.8843 68.0416

Andrew 68.1426 M-Ridge 67.9074 65.5226 68.6910 59.8668 59.9523 62.2556 60.4219 67.8935
RM 68.0671 65.9089 68.7719 59.4755 60.2556 62.8100 60.8887 68.0546

Welsch 68.1425 M-Ridge 68.0656 65.9067 68.7700 59.4738 60.2524 62.8069 60.8857 68.0532
RM 68.0665 65.9085 68.7714 59.4753 60.2553 62.8097 60.8885 68.0540

Cauchy 68.1425 M-Ridge 68.0656 65.9067 68.7700 59.4738 60.2524 62.8069 60.8857 68.0532
RM 68.0665 65.9085 68.7714 59.4753 60.2553 62.8097 60.8885 68.0540

Talwar 68.1432 M-Ridge 68.0701 65.9109 68.7738 59.4768 60.2571 62.8117 60.8897 68.0576
RM 68.0701 65.9109 68.7738 59.4768 60.2571 62.8117 60.8897 68.0576

Ramsay 68.0439 M-Ridge 67.9084 65.7540 68.6823 59.4092 60.1156 62.6480 60.7522 67.8964
RM 67.9261 65.7997 68.6917 59.4105 60.1784 62.7178 60.8162 67.9141

G-Mc 68.0172 M-Ridge 67.0976 64.8476 73.2344 65.1371 62.7903 63.0754 62.4144 67.0648
RM 68.0656 65.9080 68.7709 59.4749 60.2549 62.8092 60.8882 68.0532
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