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1. INTRODUCTION

The concept of dependence is the ability to predict any random variable by observing the other
variables. In time series analysis, non-zero values of the autocorrelation coefficient are considered as
dependence. The independence test of time series, consisting of the autocorrelation function, was initially
introduced in Von Neumann (1941) [39]. Durbin and Watson (1950) [18] introduced a hypothesis test
for the autocorrelation of errors in a regression model. In statistical literature, various schemes with
different properties have been used for testing independence. For instance, in classic tests, the test
is done using either the correlation or the numerical similarities among the ranks of observations (see
Mateus and Caeiro (2013) [30]). The run test is one of the most commonly used classic tests. This test
was introduced by Wald and Wolfowitz (1940) [40] and is a method for comparing two populations with
n1 and n2 sizes.

Divergence measures are criteria for studying the disparities in distribution functions or probabil-
ity density functions. Besides, these measures can be considered the different criteria between the joint
distribution function and the multiplication of marginal distribution functions(Bagnato et al., 2014 [4]).
Divergence measures can also be used to construct a test of independence. For instance, a test based on
the Kullback-Leibler measure was introduced by Robinson (1991) [34]. The interest in using Kullback-
Leibler divergence has been growing in the lost three decades for seeking the dependence presented in
time series. For example, Dionisio et al. (2004) [17] implemented a non-parametric test for serial indepen-
dence based on mutual information. In Dionisio et al. (2004) [17], a Kullback-Leibler distance between
the estimated joint distribution and the estimated marginal distributions was exploited. An independent
test through measuring the integrated absolute difference was considered in Robinson (1991) [34]. Skaug
and Tjøstheim (1993) [37] used the divergence measure of Cramer-von Mises as the basis of the test.
Similarly, Ghoudi et al. (2001) [22] proposed test statistics based on the Kolmogorov-Smirnov distance.
Furthermore, the BDS test(Broock et al., 1996 [9]) is a significant example of test methodologies using
the correlation dimension measure. Symbolic dynamics have been considered significant for scientists
in recent years. Tests via symbolic dynamics avoid the estimation of joint and marginal distributions.
This allows us to construct a straightforward, consistent, computationally feasible, and powerful test for
independence. Moreover, since the tests do not make any restrictive assumptions on the probabilistic
distribution, they can provide more general applicability than other tests. Matilla-Garćıa and Maŕın
(2008) [31] introduced a test by permutation symbolization via likelihood ratio, known as the G(m)
test or permutation entropy-based test. This test was used in Sensoy et al. (2015) [36] to forecast and
compare the Islamic market and conventional equity market. Cánovas et al. (2013) [11], by comparing
the tests proposed by Amigó et al. (2007) [2], Cánovas and Guillamón (2009) [10], and Matilla-Garćıa
and Maŕın (2008) [31], showed that the BDS test possesses superiority over the others. This superiority
is observed due to utilizing the numerical differences among observations instead of using their ranks.
However, the low convergence rate of the BDS test has led to not preserving the nominal level of signif-
icance for the samples with small sizes. This issue has been confirmed by Matilla-Garćıa et al. (2014)
[32], who showed that the BDS test does not preserve the nominal level even for the sample of 250,
although it has more power than their test. Considering the overlap between the m-dimensional vectors
generated from the observed time series, the test has been strongly criticized by Elsinger (2010) [19].
Accordingly, Elsinger (2010) [19] showed through the simulation study that the asymptotic distribution
of the G(m) test statistic deviated from the chi-square distribution remarkably. For the solution overlap
problem, Ashtari Nezhad et al. (2018) [3] deduced that the asymptotic distribution of the test statistic
G(m) was weighted chi-square. They explored alternative methods, including overlap-control and boot-
strap techniques, applicable to the overlap issue. Their conclusion was that the modified permutation
entropy-based test not only exhibited higher accuracy but also substantially enhanced the test’s power.

The asymptotic distribution of the weighted chi-square sum depends on the covariance matrix.
The estimation of this matrix is difficult. Moreover, the independence test using permutation entropy is
not as powerful as other tests(such as the BDS test). Another symbolization method can be proposed to
solve the overlap problem without estimating the covariance matrix and increase the test power. López
et al. (2010) [29] discussed the median symbolization and stated that when data is larger/smaller than
the median, it is coded into 1/0. To increase the accuracy and power of the test, we extend the median
symbolization by the quantile symbolization. The idea of quantile symbolization that is used to define
the density of the marginals is very close to the idea of equifrequency classes (see Bagnato and Punzo
(2010) [5]). Cánovas et al. (2023) [12] employed permutations combined with an additional symbol based
on quantiles. This approach captures some of the quantitative characteristics of a time series. Utilizing
this new codification system, they conducted independence tests for time series employing the classical
chi-square test. Given the substantial number of symbols and the utilization of overlapping elimination
to enhance test accuracy, it is essential to note that conducting this test necessitates a large sample size.
In this article, we present an independent test with high power and accuracy simultaneously. The rest
of the article is structured as follows. In Section 2, the methodology of constructing a test for serial
independence is rewired, and a new test based on Kullback-Leibler divergence is presented. Section 3
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discusses the asymptotic distribution and consistency of the proposed test statistic. In Section 4, the
special case of the proposed test, named the quantile symbolization, is introduced and analyzed. After
introducing competing tests in Section 5, a simulation study is conducted to compare the proposed
quantile symbolization test with some competing tests in Section 6. Finally, a real-world data example
is considered for illustrative purposes in Section 7. The paper is ended with some conclusions and
remarks.

2. A KULLBACK-LEIBLER TEST BASED ON SYMBOLIZATION

In this section, a test based on Kullback-Leibler information is developed for serial independence.

2.1. The preliminaries

The basic idea behind serial dependence is that both the past and future of a time series contain

information about unobserved variables that can be used to define the present time. For a stochastic

process {Zt, t ∈ Z}, it is of interest to test the following hypothesis:

H0 : {Zt, t ∈ Z}is a sequence of independent and identically distributed random variables.

It is clear that under hypothesis H0, the stochastic process {Zt, t ∈ Z} is stationary (see Cryer and Chan
(2008)[13, page 17]). Therefore, the null hypothesis is rejected if either the variables are dependent
or non-stationary. In most time series studies, we have only an observation corresponding to one of
{Zt, t = 1, 2, . . . , n}. Hence, the random vector Zt(m) defined as

Zt(m) = (Zt, Zt+1, . . . , Zt+m−1), t = 1, 2, . . . , n−m+ 1

may be considered as the basis of the hypothesis testing. In most of the previous studies, the hypotheses

have been designed using such vectors and considering the features of the independent and identically

distributed random variables. For instance, bearing in mind that the number of the permutations of each

m-dimensional vector of the independent and identically distributed random variables is 1
m!

, Matilla-

Garćıa and Maŕın (2008) [31] constructed the null hypothesis, H0. In our article, the null hypothesis is

equivalent to the following relation:

P (Zt ∈ B1, Zt+1 ∈ B2, . . . , Zt+m−1 ∈ Bm) = P (Zt ∈ B1)P (Zt+1 ∈ B2) . . . P (Zt+m−1 ∈ Bm),

for t = 1, 2, . . . , n−m+ 1 and all B1, B2, . . . , Bm ∈ B in where B denotes the Borel σ-algebra on R.

The most important issue of this procedure is to estimate P (Zt ∈ B1, Zt+1 ∈ B2, . . . , Zt+m−1 ∈
Bm). The more accurate prediction of this probability can obtain the more accurate test. For example,
if the Zt’s that are larger (smaller) than the median (Me) are coded to 1 (2), the initial phase is to apply
the following change of variable to Zt:

δt =

{
1 Zt < Me
2 Zt ≥Me

.

Thereafter, sample space for (δt, δt+1, δt+3−1) is G = {c1 = (1, 1, 1), c2 = (1, 2, 1), c3 = (1, 2, 2), c4 =

(1, 1, 2), c5 = (2, 1, 1), c6 = (2, 2, 1), c7 = (2, 1, 2), c8 = (2, 2, 2)}. For independent and identically dis-

tributed continuous random variables under this symbolization, we have

P ((δt, δt+1, δt+3−1) = ci) = (P (Zt ≤ Me))3 = (
1

2
)3, t = 1, 2, 3, . . . , n− 3 + 1, i = 1, 2, . . . , 8.

Therefore, comparing the probability of ci’s to ( 1
2
)3, it is possible to discern whether the null hypothesis

should be rejected or not. It should be noted that the test may raise some problems in practice. For
example, Zt may include ties or even be discrete. If the samples are drawn from continuous distributions,
tied observations (i.e., observations of equal value) theoretically occur with a probability of zero. How-
ever, this assumption is not realistic because, in practice, it is possible to obtain two exactly identical
values in the sample. Therefore, ties will sometimes occur, and how they are handled can impact the
results of the specific test being employed. For instance, in the case of a continuous variable Zt, we have
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P (Zt =Me) = 0. For this purpose, in our test, the value of δt is 2 when Zt =Me. In general, let R be
the number of symbols, i.e. G = {c1, c2, . . . , cR} as a set of symbols and the symbolization f : Rm −→ G
as a function by which a special symbol of the set G is appointed to any borders like Zt(m). For any
symbol ci, the random variable Wci,t is defined according to the following transformation:

Wci,t =

{
1 f(Zt(m)) = ci;
0 f(Zt(m)) ̸= ci,

i = 1, 2, . . . , R, t = 1, 2, . . . ,K,

where K = n −m + 1. Accordingly, when Zt’s are identically distributed, Wci,t follows the Bernoulli

distribution with success probability of pci , so that
∑R

i=1 pci = 1. On the other hand, the estimation of

pci results in p̂ci = 1
K

∑K
t=1Wci,t.

Remark 2.1. The vectors zt(m) represent our observations for estimating pci . However, due
to the overlap in zt(m), these vectors are not independent of each other, even under the null hypothesis.
Nevertheless, there are potential solutions to this issue. For instance, implementing control over the
overlap is a viable option, albeit with certain limitations. This becomes particularly relevant when
facing data scarcity as a common constraint, especially in economics, where the number of observations
(sample size) is relatively limited compared to the number of symbols (refer to Ashtari Nezhad et al.
(2018) [3], Section 5.1). Ashtari Nezhad et al. (2018) [3] demonstrated that the appropriate solution
to address this issue involves utilizing asymptotic results for m-dependent processes. The approach for
achieving this will be clarified in the subsequent section.

2.2. The proposed test statistic

The relative entropy was introduced by Kullback and Leibler (1951) [26] to draw a comparison
between two probability measure. In special case, the difference between two probability measures P
and P0 is:

D(P,P0) =

R∑
i=1

pi log
pi

p0i
,

where
∑R

i=1 pi =
∑R

i=1 p
0
i = 1. Now, if the probability vector P = (pc1 , pc2 , ..., pcR )T includes the

occurrence probabilities of any of the symbols c1, c2, ..., cR, the hypothesis H0 can be tested using
D(P̂,P0), by which the estimation of P and its value under H0 i.e. P0 = (p0c1 , p

0
c2
, ..., p0cR )T could be

compared. Accordingly, the statistic Mn(P̂,P0) can be presented as follows:

Mn(P̂,P
0) = 2KD(P̂,P0).

It can be deduced that the more disparity between P̂ and P0 leads to more amount of Mn(P̂,P0).

Hence, the null hypothesis, H0, is rejected for large amounts of Mn(P̂,P0).

3. THE TEST PROPERTIES

In this section, Mn(P̂,P0) is compared with other test statistics in the family of ϕ-divergence
Pardo (2006) [33]. The asymptotic distribution of the test statistic is derived. The test statistic’s
consistency is proven by presenting the asymptotic distribution.

3.1. Efficiency

By choosing a new measure for calculating the disparity between the probabilities of occurrence
of symbols in general and under the null hypothesis, H0, we introduced a new test statistic. Accordingly,
a wide class of tests via the ϕ-divergence under the symbolization was presented by the test statistic (see
Pardo (2006) [33, page 113]):

Mϕ
n (P̂,P0) =

2K

ϕ′′(1)
Dϕ(P̂,P

0),
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where Dϕ(P̂,P
0) =

∑R
i=1 p

0
ci
ϕ
( p̂ci
p0ci

)
and ϕ : [0,∞) −→ (−∞,∞] is a convex function such that ϕ(1) = 0

and ϕ′′(1) > 0. It is apparent that the more disparity between p̂ci and p0ci can lead to largerMϕ
n (P̂,P0).

Therefore, H0 is rejected whenMϕ
n (P̂,P0) is large enough. For ϕ(x) = x ln(x)−x+1,Mϕ

n (P̂,P0) reduce

to Mn(P̂,P0). In this section, we consider the test statistic Mϕ
n for testing H0, and its outcome based

on {zt, t = 1, 2, . . . , n} given by an. Let F
M

ϕ
n
(an) be the distribution function of Mϕ

n under the null

hypothesis and

△+
R =

{
P = (pc1 , pc2 , . . . , pcR )T : pci > 0, i = 1, 2, . . . , R,

R∑
i=1

pci = 1
}
.

For P ̸= P0 and P ∈ △+
R, the sequence {Mϕ

n , n ∈ N} has exact Bahadur slope(Bahadur, 1971 [7]) cϕ(P),
if with probability one

lim
n−→∞

log
(
1− F

M
ϕ
n
(an)

)
= −

1

2
cϕ(P).

Theorem 3.1. Suppose ϕ is continuously differentiable and

ϕ(0) + lim
r−→∞

ϕ(r)

r
<∞.

Then the exact Bahadur slope of Mϕ
n is given by

cϕ(P) = inf
ν∈Bϕ

2D(ν,P0),

where P ̸= P0 and

Bϕ =
{
ν : ν ∈ △+

R, Dϕ(ν,P
0) ≥ Dϕ(P̂,P

0)
}
.

Proof: The proof of the theorem can be found in A.1.

Remark 3.1. If ϕ(x) = x ln(x)− x+ 1 then

cKull(P) = 2D(P,P0), P ∈ △+
R; P ̸= P0.

Therefore,
cϕ(P) = inf

ν∈Bϕ

2D(ν,P0) ≤ 2D(P,P0) = cKull(P).

Remark 3.1 shows that the Kullback-Leibler test obtained for ϕ(x) = x ln(x)−x+1 has maximal Bahadur
efficiency among all the ϕ-divergence test statistics.

3.2. The asymptotic distribution

Under the null hypothesis, the stochastic process {f(Zt(m)), t ∈ Z} is (m − 1)-dependent (see
Ashtari Nezhad et al. (2018) [3]). Using the central limit theorem for m-dependent variables, Elsinger
(2010) [19, Theorem 1] has shown that

√
K(P̂−P)

d−−−−−−−−→
K−→∞

N(0,Σ),

where P̂ = ( 1
K

∑K
t=1Wc1,t,

1
K

∑K
t=1Wc2,t, . . . ,

1
K

∑K
t=1WcR,t) and if qli,j = P (Wci,t+l = 1|Wcj ,t = 1),

Q(l) = {qli,j}i,j=1,2,...,R is the matrix of transform probability for the time distance of l, and when
1 ≤ l ≤ m,

(3.1) Σ = diag(P)− (2m+ 1)PPT + diag(P)

m∑
l=1

Q(l) +

m∑
l=1

Q(l)T diag(P).

The following theorem gives the asymptotic distribution of the test statistic.
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Theorem 3.2. Suppose m is a fixed number, A = diag(P0) is diagonal matrix with P0

in the diagonal and λi, i = 1, 2, ..., r are the eigenvalue of the matrix AΣ0. If {Z1, Z2, ..., Zn} are

independent and identically distributed, then Mn(P̂,P0) has an asymptotic distribution that can be

represented by
r∑

i=1
λi Y

2
i , where the random variables Y1, Y2, ..., Yr have a standard normal distribution.

Proof: The proof of the theorem can be found in A.2.

Remark 3.2. (Soon, 1996 [38], Theorem 1.1). The summation of the dependent Bernoulli
variables possesses the Binomial distribution when the dependence among the variables is insignificant,
and the probability of occurrence for each variable is low. In our study, the former and the latter condi-
tions might be satisfied, respectively, by controlling the overlaps among the variables and increasing the
symbols. Under these conditions, the vector KP̂ approximately possesses the multinomial distribution
and

Σ = diag(P0)−P0P0T ,(3.2)

when the variables {Zt; t = 1, 2, ..., n} are independent.

Given equation (3.2) and based on the assumptions of Remark 3.2, the next theorem is deduced.
The conditions of Remark 3.2 are held in most of the symbolizations, particularly in the quantile symbol-
ization, which is introduced in the next section. Turning these conditions, the asymptotic distribution
of the test statistic is obtained in the below theorem via Ferguson (1996) [20, Lemma 3, page 57].

Theorem 3.3. If the variables {Zt, t = 1, 2, ..., n} are independent and identically dis-

tributed and R is the number of symbols, then under non-overlapping of Zt(m)s, Mn(P̂,P0) is asymp-
totically χ2

R−1 distributed, where χ2
R−1 denotes the chi square distribution with R−1 degree of freedom.

Proof: The proof of the theorem can be found in A.3.

Theorem 3.3 is proven in PROOFS Section.

3.3. Consistency

One of the most important characteristics of a test is consistency. The consistency of a test
indicates that the test power is equal to 1 asymptotically. In other previous independence tests, such
as Robinson (1991) [34], Hong and White (2005) [24], and Matilla-Garćıa and Maŕın (2008) [31], the
consistency has been derived for stationary and (m− 1)-dependent variables. This assumption does not
seem to be unrealistic because the dependence until exact order is assumed in all models, and after those
orders, the observations are independent. The rest of this section includes (m− 1)-dependent variables
and studying the consistency of the proposed test. Meanwhile, before presenting this issue, we note that
the alternative hypothesis (variables are (m− 1)-dependent) could be considered as follows:

H1 : P ̸= P0.

Therefore, the value of P might be considered equal to P∗ under the alternative hypothesis H1. Bearing
in mind this issue, the following theorem is presented.

Theorem 3.4. Let {Zt; t = 1, 2, ..., n} to be (m− 1)-dependent, then

√
K(D(P̂,P0)−D(P∗,P0))

d−−−−−−−−→
n−→∞

N(0, σ2(P∗)),

where σ2(P∗) = STΣS, S =
(
log(

p∗c1
p0c1

), ..., log(
p∗cR
p0cR

)
)T

and Σ is defined in (3.1) replacing 2(m− 1) and

P∗ instead of m and P, respectively.
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Proof: The proof is given in A.4.

Theorem 3.5. Suppose that the stochastic process {Zt; t = 1, 2, ..., n} are (m−1)-dependent,
then it can be shown as follows:

lim
n−→∞

P (Mn(P̂ , P
0) > c) = 1, ∀c ∈ R+.

Proof: The proof of the theorem is given in A.5.

4. QUANTILE SYMBOLIZATION

In previous sections, we have provided a general setting by means of symbolic maps. In this
section, quantile symbolization is introduced as a special case of general symbolization.

4.1. Quantile symbolizing method

Suppose that Q 1
d
is the 1

d
-quantile of the distribution of the variables {Zt, t = 1, 2, 3, .., n}. Then,

Bi’s may be a member of the following set:

ϑ = {(−∞, Q 1
d
], (Q 1

d
, Q 2

d
], ..., (Q d−1

d
,∞)}.

Therefore, the null hypothesis, H0, can be represented by

H0 : P (Zt ∈ B1, Zt+1 ∈ B2, ..., Zt+m−1 ∈ Bm) = (
1

d
)m , Bi ∈ ϑ, i = 1, 2, ...,m.

Now, we need to apply the transformation:

δt =



1 Zt ∈ (−∞, Q 1
d
],

2 Zt ∈ (Q 1
d
, Q 2

d
],

. .

. .

. .
d Zt ∈ (Q d−1

d
,∞).

Afterward, using the δt, the symbolizing f forms the vectors (δt, δt+1, . . . , δt+m−1)T . Thus, the set
G = {c1, c2, . . . , cR} includes R = dm members, for which the probability of occurrence of the individual

i is indicated by pci . Now, applying the amounts of vectores P0 = (( 1
d
)m, ( 1

d
)m, ..., ( 1

d
)m) and P̂ =

(p̂c1 , p̂c2 , ..., p̂cR ) , the statistic Mn(P̂,P0) can be represented as

QS(m, d) = 2K

dm∑
i=1

p̂ci log(d
mp̂ci ).

Based on the result of Theorem 3.2, one can discern if the null hypothesis should be rejected or not.
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4.2. Determination of d and m

Although the parameters d and m are free, when n −→ ∞, the sample size in real applications is
fixed. So, the parameters need to be evaluated according to the sample size. The power of the proposed
test can be improved by a suitable choice of d (see Bagnato et al. (2010) [6]). In the previous studies,
such parameters were calculated via simulation studies. For instance, it is concluded by Agresti(1996)
[1] for the chi-square test that the average amount of observations in each category needs to be at least
5. Applying this strategy, Matilla-Garćıa and Maŕın (2008) [31] evaluated the optimal amount of m.
Turning to the BDS test, Kanzler (1999) [25] calculated the required parameters (m and ϵ) for different
sample sizes through a simulation study. Accordingly, we conducted a simulation study to evaluate the
optimal value for d and m. For this purpose, the performance of the test is illustrated under various
sample sizes. There separate nominal values (α = 0.01, 0.05, and 0.1) are considered for each sample
size, and the level of significance of the test are calculated based on 2000 iterations for each scenario.
If the empirical sizes for the proposed test is close to the nominal values, it indicates the accuracy of
the test. It can be deduced that when the empirical sizes are more than the nominal values, it could
be deduced that the test does not possess appropriate accuracy. This issue leads the power of the test
to climb wrongly. Similar situations seem to be observed in some other alternative tests, particularly
the BDS test Matilla-Garćıa et al. (2014) [32]. Contrastingly, if the empirical size is almost equal to
the nominal level (either equal or lower than the nominal level), it exhibits that the empirical size is
acceptable. Table 1 reveals the simulation result for various amounts of m and d (dm ≤ n) based on
data generated from independent normal distribution. According to this table, it can be observed that
for the sample size larger than 500, the amounts of d and m should satisfy the relation 5dm ≤ n, which
had been previously suggested in the Chi-square independence test and also the other tests based the
Chi-square statistic (Matilla-Garćıa and Maŕın, 2008 [31]). Also, for the sample size of fewer than 500,
the amounts of m and d are suggested according to Table 2.

5. OTHER ALTERNATIVE TESTS

This section includes alternative tests. The reason for using these tests is the different charac-
teristics of these tests. The run test has high power for time series with linear dependence. The G(m)
test for time series with non-linear dependence and moderate sample size has high power. The BDS test
for time series with non-linear dependence and large sample size has high power. LjungBox test is a
Portmanteau test that can complete the comparison of tests.

Run Test: The run test was initially introduced in Wald and Wolfowitz [40] for comparing two
populations with sample sizes n1 and n2. However, this test has been used for testing the independence of
a time series, in which the number of runs is introduced as a discrete random variable like U . To evaluate
the number of runs, various different methods have been represented. For example, let {zi, i = 1, ..., 7}
be observations of a time series. The following vector is reached by comparing the observations to the
median such that we indicate the observations lower and larger than the median by respective amounts
of A and B: (A,A,B,A,B,B,A). Accordingly, the number of runs (the number of made in situations
from A/B to the other.) is equal to 5 (u = 5). Wald and Wolfowitz [40] showed that under the null
hypothesis, if µu and σu are the mean and the standard deviation of U respectively, it can be observed
that

U − µu

σu

d−−−−−−−−→
n−→∞

N(0, 1).

Thus, when |U−µu
σu

| > z1−α/2, the hypothesis H0 is rejected. A comprehensive review can be found in

Mateus and Caeiro (2013) [30].

BDS Test: Broock et al. (1996) [9] studied an independence test called BDS for time series,
which is consisted in a correlation integral. The correlation integral used in BDS is reached from the
following equation:

Cm(ϵ) = P (||Z1 − Z2|| ≤ ϵ),

where the m-dimensional vectors Z1 and Z2 are identically distributed.

In BDS test, the estimation of Cm(ϵ) is a U -statistic which is introduced by Dehling (2006) [14]
and satisfies the equation

Cm,n(ϵ) =
2

(n−m+ 1)(n−m)

n−m+1∑
i=2

i∑
j=1

I{||Zi(m)− Zj(m)|| ≤ ϵ}.
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m = 5 m = 4 m = 3 m = 2
n d0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

0.030 0.012 0.000 0.023 0.013 0.000 0.011 0.009 0.001 0.008 0.003 0.000 50 2
− − − − − − 0.099 0.045 0.015 0.048 0.025 0.008 50 3
− − − − − − 0.032 0.017 0.002 0.100 0.055 0.020 50 4
− − − − − − − − − 0.158 0.097 0.041 50 5

0.155 0.105 0.043 0.067 0.050 0.016 0.043 0.021 0.009 0.015 0.006 0.000 80 2
− − − − − − 0.073 0.0456 0.009 0.014 0.005 0.001 80 3
− − − − − − 0.142 0.067 0.012 0.019 0.007 0.001 80 4
− − − − − − − − − 0.025 0.01 0.002 80 5

0.122 0.076 0.033 0.075 0.047 0.019 0.039 0.022 0.006 0.013 0.008 0.002 120 2
− − − 0.225 0.128 0.041 0.052 0.031 0.011 0.015 0.005 0.000 120 3
− − − − − − 0.131 0.076 0.017 0.013 0.005 0.001 120 4
− − − − − − − − − 0.019 0.004 0.000 120 5

0.123 0.076 0.027 0.072 0.043 0.015 0.041 0.019 0.007 0.007 0.004 0.000 200 2
0.377 0.245 0.064 0.185 0.120 0.050 0.048 0.028 0.008 0.011 0.007 0.000 200 3
− − − − − − 0.100 0.061 0.019 0.008 0.003 0.001 200 4
− − − − − − 0.220 0.126 0.039 0.012 0.006 0.000 200 5

0.101 0.064 0.027 0.068 0.044 0.017 0.032 0.021 0.005 0.017 0.008 0.001 250 2
0.49 0.359 0.157 0.162 0.099 0.034 0.046 0.026 0.006 0.006 0.004 0.000 250 3
− − − 0.461 0.304 0.096 0.069 0.041 0.009 0.007 0.003 0.001 250 4
− − − − − − 0.207 0.128 0.029 0.012 0.003 0.000 250 5

0.099 0.071 0.035 0.066 0.040 0.014 0.032 0.015 0.006 0.008 0.004 0.000 300 2
0.487 0.354 0.174 0.141 0.093 0.032 0.048 0.025 0.008 0.009 0.004 0.001 300 3
− − − 0.483 0.353 0.155 0.054 0.028 0.011 0.011 0.005 0.000 300 4
− − − − − − 0.177 0.107 0.028 0.004 0.002 0.000 300 5

0.092 0.055 0.021 0.068 0.043 0.013 0.026 0.013 0.003 0.011 0.005 0.000 400 2
0.488 0.376 0.182 0.109 0.070 0.031 0.043 0.021 0.004 0.011 0.004 0.000 400 3
− − − 0.503 0.374 0.165 0.056 0.029 0.008 0.009 0.006 0.001 400 4
− − − 0.320 0.173 0.025 0.123 0.073 0.017 0.010 0.003 0.000 400 5

0.088 0.052 0.022 0.062 0.037 0.012 0.044 0.027 0.008 0.009 0.005 0.000 500 2
0.426 0.309 0.146 0.088 0.052 0.019 0.040 0.018 0.005 0.009 0.004 0.000 500 3
− − − 0.428 0.306 0.137 0.044 0.023 0.007 0.007 0.003 0.000 500 4
− − − 0.689 0.517 0.219 0.089 0.054 0.013 0.006 0.003 0.000 500 5

0.091 0.059 0.023 0.068 0.036 0.012 0.034 0.019 0.008 0.012 0.007 0.001 700 2
0.331 0.232 0.113 0.082 0.047 0.017 0.036 0.021 0.006 0.011 0.007 0.002 700 3
− − − 0.299 0.208 0.088 0.039 0.022 0.007 0.005 0.002 0.000 700 4
− − − 0.859 0.745 0.469 0.073 0.040 0.007 0.007 0.002 0.000 700 5

0.089 0.059 0.027 0.060 0.039 0.014 0.033 0.019 0.005 0.016 0.007 0.002 900 2
0.234 0.175 0.079 0.073 0.041 0.016 0.039 0.018 0.006 0.011 0.004 0.000 900 3
− − − 0.232 0.147 0.056 0.047 0.024 0.004 0.011 0.004 0.000 900 4
− − − 0.831 0.732 0.491 0.061 0.033 0.009 0.008 0.004 0.000 900 5

0.085 0.058 0.028 0.062 0.035 0.014 0.038 0.022 0.004 0.013 0.005 0.000 1200 2
0.169 0.114 0.056 0.075 0.043 0.013 0.044 0.019 0.004 0.013 0.004 0.002 1200 3
0.974 0.936 0.801 0.155 0.100 0.036 0.037 0.022 0.006 0.007 0.003 0.000 1200 4
− − − 0.761 0.638 0.382 0.044 0.021 0.006 0.008 0.003 0.000 1200 5
− − − − − − 0.078 0.042 0.012 0.008 0.002 0.000 1200 6

0.091 0.059 0.022 0.066 0.041 0.016 0.033 0.016 0.007 0.013 0.004 0.000 1500 2
0.167 0.106 0.039 0.076 0.044 0.013 0.045 0.026 0.004 0.009 0.003 0.000 1500 3
0.954 0.912 0.779 0.126 0.076 0.029 0.041 0.021 0.005 0.008 0.005 0.000 1500 4
− − − 0.609 0.488 0.284 0.047 0.024 0.004 0.009 0.004 0.000 1500 5
− − − 0.991 0.973 0.892 0.067 0.034 0.007 0.011 0.005 0.000 1500 6
− − − − − − 0.140 0.085 0.022 0.008 0.002 0.000 1500 7

0.079 0.051 0.019 0.064 0.038 0.013 0.039 0.022 0.008 0.011 0.006 0.000 2000 2
0.135 0.082 0.031 0.059 0.033 0.008 0.034 0.017 0.003 0.004 0.004 0.000 2000 3
0.874 0.800 0.617 0.109 0.068 0.016 0.039 0.022 0.006 0.004 0.002 0.000 2000 4
0.968 0.909 0.656 0.434 0.331 0.165 0.045 0.022 0.005 0.008 0.003 0.00 2000 5
− − − 0.984 0.962 0.867 0.052 0.024 0.004 0.007 0.003 0.000 2000 6
− − − − − − 0.099 0.053 0.012 0.008 0.002 0.000 2000 7

Table 1: Empirical size of QS test

Broock et al. (1996) [9] asserted that under the hypothesis H0, Cm(ϵ) is equal to (C1(ϵ))m. Accordingly,
if σn,m is the standard deviation of Cm,n(ϵ)− (C1(ϵ))m, the test statistic of BDS test is evaluated by
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d = 5 d = 4 d = 3 d = 2 n

3dm ≤ n 2dm ≤ n 2dm ≤ n 3dm ≤ n n ≤ 50

4dm ≤ n 3dm ≤ n 3dm ≤ n 3dm ≤ n 50 < n ≤ 500

Table 2: Suitable values m and d

means of the following equation:
√
n
Cm,n(ϵ)− (C1(ϵ))m

σn,m
.

Considering the U statistics proven in Denker and Keller (1983) [15], it was shown by Broock et al.
(1996) [9] that the test statistic asymptotically possesses the standard normal distribution. Therefore,
when

|
√
n
Cm,n(ϵ)− (C1(ϵ))m

σn,m
| > z1−α/2,

the null hypothesis, H0, is rejected.

G(m) Test: Matilla-Garćıa and Maŕın (2008) [31] introduced the independence test consisting
in the permutation entropy, in which if Γ = {π1, π2, ..., πm!} is the set of all permutation symbols, the
vectors Zt(m) receive one of the permutations Γ under the relation ”≤”. In other words, the vectors
Zm(t) achieve one of the symbols in the set Γ, according to the sequence (bigger or smaller) of its
elements. Consequently, by ordering elements of Zm(t), if the relation Zt+i1 ≤ Zt+i2 ≤ . . . ≤ Zt+im is
held, the symbol of the vector Zm(t) will be (i1, i2, . . . , im). Consequently, the hypothesis H0 may be
represented as follows:

P (Zt+i1 ≤ Zt+i2 ≤ . . . ≤ Zt+im ) =
1

m!
, ∀(i1, i2, . . . , im) ∈ Γ, ∀t ∈ Z.

Matilla-Garćıa and Maŕın (2008) [31] has defined the test statisct as:

G(m) = −2K
[
ĥ(m)− log(m!)

]
,

where ĥ(m) = −
∑m!

i=1 p̂πi log(p̂πi ) is the reputation entropy given in Bandt and Pompe (2002) [8].
Matilla-Garćıa and Maŕın (2008) [31] showed that the statistic G(m) owns the chi-square distribution
with m! − 1 degrees of freedom under the null hypothesis. Thus, the null hypothesis, H0, is rejected
when the test statistic satisfies

G(m) > χ2
m!−1,1−α.

Ljung-Box Test (LB): Ljung and Box (1978) [28] introduced the independence test based on m
autocorrelations of the data. The Ljung-Box test statistic is:

LB(m) = n(n+ 2)

m∑
k=1

ρ̂2k
n− k

,

Where n is the sample size, ρ̂2k denotes the sample autocorrelation at lag k, and m is the number of lags
being tested. Under H0, the statistic LB(m) asymptotically follows a χ2

m. Thus, the null hypothesis,
H0, is rejected when the test statistic satisfies

LB(m) > χ2
m,1−α.

6. SIMULATION STUDY

Any decent comparison between different tests should include two topics which are the test
accuracy (the ability to preserve the nominal level) and power simultaneously. Thus, the simulation
study is conducted to compare the performance of the proposed test with other competing tests in terms
of power and accuracy. Furthermore, the tests are compared by size-corrected powers. To collate finite
sample performance of the tests, the sample size was chosen to be 50, 150, 250, and 500 in each scenario,
representing small, moderate, fairly large, and large sample sizes, respectively. To illustrate the BDS
test, the amounts of m = 3, 6 and ϵ = 2σ were selected as the model parameters for all sample sizes. To
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Data type Model’s name Model
In
d
ep

en
d
en
t
d
a
ta DGP1 : Zt = εt, εt

iid∼ N(0, 1)

DGP2 : Zt = εt, εt
iid∼ χ2(3)

DGP3 : Zt = εt, εt
iid∼ t(2)

DGP4 : Zt = εt, εt
iid∼ U(0, 1)

DGP5 : Zt = εt, εt
iid∼ Beta(0.5, 0.5)

DGP6 : Zt = εt, εt
iid∼ TN(0, 1,−1.75, 1.75)

D
ep

en
d
en
t
d
a
ta

DGP7
(
AR(2)

)
: Zt = 0.3Zt−1 + 0.4Zt−2 + εt

DGP8
(
ARMA(1, 2)

)
: Zt = 0.09Zt−1 + 0.1εt−1 + 0.5εt−2 + εt

DGP9
(
Bilinear

)
: Zt = 0.5εt−2 + 0.4εt−1Zt−2 + εt

DGP10
(
SignAR

)
: Zt = 0.3sign(Zt−2) + εt

DGP11
(
Logistic

)
: Zt = 4Zt−1(1− Zt−1), Zt ∼ U(0, 1)

DGP12
(
Non− linearMA

)
: Zt = 0.8ε2t−2 + εt

DGP13 : Zt = 0.8|Zt−2|0.5 + 0.6εt
DGP14

(
ARCH(1)

)
: Zt =

√
htεt, ht = (1 + 0.8Z2

t−1)
DGP15

(
GARCH(1, 1)

)
: Zt =

√
htεt, ht = (1 + 0.6Z2

t−1 + 0.3h2
t−1)

DGP16
(
Random walk

)
: Zt = Zt−1 + εt

DGP17 : Zt = 0.01 + 0.01t+ εt
DGP18 : Zt = 0.01 + t0.1 + εt

Table 3: Simulation models

G(m) and LB(m), the parameter m was picked to be 3 for the small sample size and 4 for the moderate
and large sample sizes. According to the Table 2, the amounts of (3, 3), (4, 2) and (3, 4) were selected
as the parameters (m, d) for the small sample size. Also, the respective (5, 2) and (4, 3) were chosen as
the parameters (m, d) for sample sizes 150 and 250.

Table 3 represents the data generated via DGP1 to DGP6 models, which were independent
and identically distributed from a standard normal, chi-square distribution with 3 degree of freedom,
t distribution with 2 degree of freedom, uniform distribution defining over (0, 1), truncated normal
distribution defining over [−1.75, 1.75], respectively. The proportion of the number of rejections of
the null hypothesis out of 2000 simulated data from DGP1 to DGP6 was considered as empirical size.
Similarly, the dependent data indicated by DGP7 to DGP15, with the trends named DGP16 to DGP18
, were generated. The percentage of rejecting the null hypothesis out of 2000 iterations was considered
the test power. Tables 4, 5, 6 and 7 reveal the simulation results. Furthermore, an efficiency measure
for each test is presented by size-corrected power

EFFn = βn − 2αn,

For each test and n, βn is the mean of empirical powers, and αn is the mean of empirical sizes.

Tables 4 illustrate that the BDS test does not preserve the nominal level based on the sample
size 50. However, this deviation decreased with the increase in the sample sizes, achieving the nominal
level for the sample size of 500. Also, the proposed test does not preserve the nominal level for the sample
size 250, and the QS(4, 3) test deviated enormously from the nominal level. Accordingly, the BDS and
QS(4, 3) tests do not possess the necessary accuracy at the significance level 0.05 for the sample sizes
n = 50, 150, 250.

In DGP7-DGP10 and DGP13 that are mostly linear or very similar to linear models, it seems
that simple tests, like runs and the Ljung-Box test, are better for making the diagnosis of the dependency.
Given these results and omitting the BDS test that does not preserve the nominal level of significance,
the runs test, QS(4, 2) and Ljung-Box demonstrate superiority for the small sample size. Turning this
sample size, the test QS(4, 2) exhibits superior power for the models DGP9, DGP10, and DGP13, which
are non-linear. The power of run tests has declined by growing in the sample size. Contrastingly, the
tests QS(4, 2) and QS(5, 2) owned the most tremendous powers for the moderate and large sample sizes.
Generally, it can be claimed that based on these results, QS(4, 2) possessed the strongest performance.
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Model Run test BDS(3, 2σ) BDS(6, 2σ) QS(3, 3) QS(3, 4) QS(4, 2) G(3) LB(3)

E
m
p
ir
ic
a
l
si
ze DGP1 0.0660 0.2490 0.2780 0.0505 0.0240 0.0640 0.0255 0.0545

DGP2 0.0575 0.1740 0.2080 0.0495 0.0250 0.0470 0.0225 0.0420
DGP3 0.0620 0.1520 0.1885 0.0480 0.0195 0.0445 0.0255 0.0380
DGP4 0.0640 0.3025 0.3315 0.0475 0.0230 0.0525 0.0340 0.0535
DGP5 0.0595 0.2835 0.3075 0.0380 0.0220 0.0575 0.0250 0.0495
DGP6 0.0705 0.2895 0.3205 0.0465 0.0235 0.0555 0.0265 0.0335

E
m
p
ir
ic
a
l
p
ow

er

DGP7 0.5320 0.6260 0.6060 0.4975 0.3410 0.5345 0.0320 0.3570
DGP8 0.2541 0.3790 0.3965 0.2005 0.1210 0.2545 0.0480 0.5225
DGP9 0.1645 0.3650 0.4070 0.1695 0.0815 0.2390 0.0525 0.3455
DGP10 0.2565 0.5595 0.5705 0.3600 0.1750 0.5570 0.1695 0.6310
DGP11 0.1880 0.8865 0.8210 1.0000 1.0000 0.2750 1.000 0.0525
DGP12 0.0680 0.2030 0.2740 0.0790 0.0420 0.0465 0.0370 0.0685
DGP13 0.1555 0.4800 0.4875 0.1340 0.0610 0.2105 0.0680 0.3505
DGP14 0.0610 0.5645 0.4875 0.0685 0.0355 0.0600 0.0305 0.1020
DGP15 0.0580 0.5705 0.5770 0.0770 0.061 0.0565 0.0275 0.1310
DGP16 0.9960 0.9930 0.9750 0.9965 0.9850 0.9885 0.4110 0.8910
DGP17 0.0705 0.2725 0.2905 0.0470 0.0270 0.0805 0.0280 0.0525
DGP18 0.0590 0.2540 0.2735 0.0440 0.0200 0.0605 0.0295 0.0490

Table 4: Empirical size and power for n = 50

Model Run test BDS(3, 2σ) BDS(6, 2σ) QS(3, 3) QS(3, 4) QS(4, 2) QS(5, 2) G(4) LB(4)

E
m
p
ir
ic
a
l
si
ze DGP1 0.0585 0.1335 0.1340 0.0235 0.0680 0.0440 0.0810 0.0585 0.0515

DGP2 0.0655 0.0995 0.0900 0.0255 0.0690 0.0440 0.0775 0.0605 0.0485
DGP3 0.0625 0.0805 0.0955 0.0255 0.0670 0.0430 0.0760 0.0575 0.0365
DGP4 0.0555 0.1580 0.1400 0.0225 0.0615 0.0385 0.0760 0.0520 0.054
DGP5 0.0585 0.1320 0.1340 0.0255 0.0740 0.0375 0.0665 0.0710 0.0465
DGP6 0.0570 0.1355 0.1385 0.0275 0.0620 0.0380 0.0775 0.0550 0.0445

E
m
p
ir
ic
a
l
p
ow

er

DGP7 0.9185 0.9590 0.9510 0.9515 0.9535 0.9740 0.9740 0.1700 0.6320
DGP8 0.4815 0.5975 0.6410 0.6175 0.6275 0.7585 0.8220 0.3395 0.8990
DGP9 0.1530 0.6765 0.7045 0.4815 0.5350 0.6680 0.7575 0.4920 0.6590
DGP10 0.2390 0.5395 0.6180 0.9100 0.9080 0.9885 0.9900 0.7915 0.7290
DGP11 0.1705 0.9810 0.9465 1.0000 1.0000 0.2950 0.4040 1.0000 0.0595
DGP12 0.0815 0.2110 0.2920 0.1405 0.3115 0.0645 0.1030 0.1735 0.0860
DGP13 0.1385 0.4000 0.4295 0.3485 0.3770 0.5970 0.6580 0.4350 0.6735
DGP14 0.0530 0.9250 0.8330 0.0870 0.2300 0.0470 0.0855 0.0800 0.2365
DGP15 0.0565 0.9640 0.9525 0.1565 0.3830 0.0360 0.0710 0.0690 0.3575
DGP16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9965 1.0000
DGP17 0.3040 0.1710 0.1850 0.1505 0.1950 0.2505 0.3170 0.0545 0.4105
DGP18 0.0645 0.1275 0.1175 0.0275 0.0570 0.0445 0.0790 0.0510 0.0620

Table 5: Empirical size and power for n = 150

It can be deduced that the dependency of the models with complicated dependence (DGP11-
DGP12 and DGP14-DGP18) could be discerned by increasing the parameter d in the QS(m, d) test.
Considering the models DGP11 and DGP12, the test QS(3, 3) for the small sample size, and QS(3, 4)
for the moderate and large scenarios (excluding the test QS(4, 3) due to not preserving the nominal level
of significance) exhibit superior power performance. As was expected, considering the previous studies
like Matilla-Garćıa et al. (2014) [32], the BDS test possesses huge power for the models ARCH and
GARCH (DGP14 and DGP15). The simulation results indicate that the performance of the QS(3, 4)
test is comparable with that of the BDS test. Furthermore, all the tests have similar power for discerning
the trend, particularly for the DGP17 model, except the G(m) test.

Table 8 illustrates amounts of EFFn for tests based on four separate sample sizes. Accordingly,
it is revealed in this Table that the proposed test has the most size-corrected power in comparison with
other tests.
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Model Run test BDS(3, 2σ) BDS(6, 2σ) QS(3, 3) QS(3, 4) QS(4, 2) QS(4, 3) QS(5, 2) G(4) LB(4)

E
m
p
ir
ic
a
l
si
ze DGP1 0.0545 0.0970 0.0930 0.0160 0.0520 0.0415 0.1040 0.0700 0.0495 0.0570

DGP2 0.0495 0.0740 0.0755 0.0230 0.0345 0.0435 0.0994 0.0755 0.0450 0.0425
DGP3 0.0435 0.0680 0.0680 0.0205 0.0425 0.0425 0.0915 0.0685 0.0380 0.0500
DGP4 0.0435 0.1045 0.1025 0.0245 0.0420 0.0355 0.0990 0.0640 0.0495 0.0505
DGP5 0.0455 0.0950 0.0970 0.0315 0.0475 0.0375 0.1020 0.0705 0.0555 0.0545
DGP6 0.0470 0.1050 0.0965 0.0245 0.0360 0.0435 0.0925 0.0685 0.0545 0.0515

E
m
p
ir
ic
a
l
p
ow

er

DGP7 0.9890 0.9970 0.9965 0.9990 0.9990 0.9990 1.0000 0.9990 0.2535 1.0000
DGP8 0.6435 0.8030 0.8555 0.9090 0.8665 0.9640 0.9650 0.9745 0.5725 1.0000
DGP9 0.1420 0.8550 0.8865 0.8245 0.7725 0.9340 0.9570 0.9575 0.7615 0.9990
DGP10 0.2485 0.5990 0.7055 0.9970 0.9975 1.0000 0.9990 0.9995 0.9430 1.0000
DGP11 0.1705 0.9960 0.9775 1.0000 1.0000 0.3015 1.0000 0.4460 1.0000 0.0585
DGP12 0.0590 0.3275 0.4180 0.2645 0.4325 0.0625 0.5195 0.0935 0.2640 0.1005
DGP13 0.1320 0.4285 0.4920 0.6395 0.5575 0.8590 0.8290 0.8750 0.6725 0.9870
DGP14 0.0430 0.9930 0.9635 0.1390 0.3140 0.0370 0.2655 0.0680 0.0905 0.2725
DGP15 0.0485 0.9995 0.9965 0.2625 0.5060 0.0385 0.3990 0.0665 0.0730 0.4475
DGP16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
DGP17 0.9625 0.8200 0.9320 0.9735 0.9550 0.9860 0.9915 0.9935 0.0540 1.0000
DGP18 0.0490 0.1145 0.1130 0.0265 0.0415 0.0330 0.0935 0.0655 0.0410 0.0720

Table 6: Empirical size and power for n = 250

Model Run test BDS(3, 2σ) BDS(6, 2σ) QS(3, 3) QS(3, 4) QS(4, 2) QS(4, 3) QS(5, 2) G(4) LB(4)

E
m
p
ir
ic
a
l
si
ze DGP1 0.0490 0.0660 0.0615 0.0610 0.0625 0.0245 0.0215 0.0300 0.0495 0.0500

DGP2 0.0600 0.0555 0.0555 0.0560 0.0520 0.0215 0.0255 0.0400 0.0420 0.0385
DGP3 0.0540 0.0515 0.0585 0.0610 0.0605 0.0240 0.0205 0.0335 0.0525 0.049
DGP4 0.0450 0.0650 0.0700 0.0695 0.0705 0.0150 0.0160 0.0305 0.0475 0.0555
DGP5 0.0535 0.0725 0.0765 0.0715 0.0690 0.0185 0.0245 0.0390 0.0415 0.0475
DGP6 0.0605 0.0665 0.0715 0.0740 0.0780 0.0255 0.0195 0.0420 0.0440 0.0515

E
m
p
ir
ic
a
l
p
ow

er

DGP7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.5575 1.0000
DGP8 0.8755 0.9755 0.9885 0.9900 0.9870 0.9995 0.9975 1.0000 0.9410 1.0000
DGP9 0.1740 0.9850 0.9925 0.9945 0.9945 0.9975 0.9940 0.9990 0.9910 0.9900
DGP10 0.2600 0.7650 0.8495 0.8910 0.9005 1.0000 1.0000 1.0000 0.9995 1.0000
DGP11 0.1845 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.3005 1.0000 0.0595
DGP12 0.0615 0.5545 0.7050 0.7310 0.7160 0.6985 0.8655 0.0915 0.5470 0.1140
DGP13 0.1445 0.5530 0.6465 0.6715 0.6590 0.9850 0.9500 0.9970 0.9600 0.9931
DGP14 0.0560 1.0000 0.9995 0.9995 0.9990 0.3250 0.6040 0.0425 0.1350 0.3090
DGP15 0.0490 1.0000 1.0000 1.0000 1.0000 0.5550 0.8405 0.0375 0.0885 0.5440
DGP16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
DGP17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0500 1.0000
DGP18 0.0690 0.0730 0.0665 0.0715 0.0785 0.0210 0.0230 0.0465 0.0515 0.1035

Table 7: Empirical size and power for n = 500

7. REAL DATA APPLICATION

The aim of economic units and investors in exchange is to prevent loss. Therefore, the most
important issue for investors is forecasting stock price changes. The predictability of the stock price is
closely related to the market’s efficiency theorem. Efficiency is a basic concept in financial markets that
is used for a market; the availability of information does not affect the predictability on which individual
supply and demand have an insignificance impact. In other words, efficiency consists of the principle
that information adjusts and affects the stock price so quickly. From Fama et al.’s perspective Fama et
al. (1969)[21], a market may be called efficient if it is very good at adjusting soon to new information.
Accordingly, it can be deduced that efficiency leads the market to the unpredictability of stock prices in
the future. Efficiency can be categorized into three different categories, namely weak efficiency, average
efficiency, and strong efficiency. Weak efficiency describes a situation in which the information belongs
to previous periods, and their impacts have been reflected in the stock and therefore do not affect
predictions anymore. Thus, the predictability rejects the hypothesis of weak efficiency (Sensoy et al.,
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Test n = 50 n = 150 n = 250 n = 500

Run test 0.112 0.186 0.279 0.299
BDS(3, 2σ) 0.029 0.383 0.563 0.700
BDS(6, 2σ) −0.031 0.395 0.601 0.723
QS(3, 3) 0.213 0.439 0.623 0.731
QS(3, 4) 0.200 0.414 0.619 0.730
QS(4, 2) 0.173 0.395 0.520 0.755
QS(4, 3) − − 0.556 0.814
QS(5, 2) − 0.370 0.489 0.555
G(m) 0.108 0.270 0.380 0.518
LB(m) 0.206 0.389 0.559 0.580

Table 8: Size-corrected power of the tests

2015 [36]). The index of Tehran stock price has been collected over the period of 32 months starting at
March 19th, 2014. The index of Tehran data, given in the official website of the Tehran Stock1, includes
639 data. Apparently, the data for the holidays have not been recorded. The Rt index is considered for
the dependence of the stock price exchanges (Matilla-Garćıa and Maŕın, 2008 [31]), defined as

Rt = ln(
Pt

Pt−1
),

where Pt and Pt−1 are price indexes for the current and the prior periods, respectively. Figure 1
illustrates this time series.
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Figure 1: Index of tehran stock price changes

We have applied the QS(3, 5) test for the variable Rt to test the independence. Additionally,

1www.irbourse.com
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another index defined by
IEF (Zt) = 1− exp{−D(P̂,P0)},

is used for dependence (inefficiency) of {Zt, t = 1, 2, 3, .., n}. It can be shown that D(P̂,P0) ∈ R+ and
it goes to infinity by climbing in the dependency. Consequently, as the IEF becomes closer to 1, much
more dependency (inefficiency) among observations is observed. Table 9 reveals the index IEF (Rt)
and the QS(3, 5) test results. According to this table, the QS(3, 5) test leads to rejecting the null
hypothesis, H0, against the alternative (P-value < 0.05). Rejecting the hypothesis H0, we could fit
a decent model for the variable Rt. As aforementioned, the residuals in different time series models
ought to be independent and identically distributed. Therefore, dependence tests may be regarded as
adequacy tests. Consequently, we applied the model ARMA(0, 1)−GARCH(1, 1) to the data Ruppert
and Matteson (2015) [35], employing the QS(3, 5) test as the adequacy test. The fitted model results
have been evaluated by means of the following equation:

Rt = 2.482× 10−5 + 0.4698ϵt−1 +

√
ĥtϵ̂t,

ĥt =
√

1.483× 10−6 + 0.2008ĥt−1ϵ̂2t−1 + 0.7714ĥt−1.

Moreover, the results of the QS(3, 5) test for the standard residuals are illustrated in Table 9. Given
the results for ϵ̂t, since P-value > 0.05 we conclude that the the null hypothesis is not rejected, i.e. The
residuals (ϵ̂t) are independent and identically distributed.

Variable QS(3, 5) Degrees of freedom P-value IEF

Rt 283.637 124 2.41× 10−14 0.199314

ϵ̂t 120.4158 124 0.5743 0.09019

Table 9: The QS(3, 5) test results for Rt and standardized residuals

8. CONCLUSION

This article developed a new powerful test with high accuracy for time series analysis. First,
the test construction was described using the introduced symbolization, and then the test statistic
was driven via Kullback and Leibler (1951) [26]. Considering the properties of the Kullback-Leibler
measure, a new method was obtained for the optimality of symbolization. The asymptotic distribution
of the test statistic under the hypothesis H0 (independent and identically distributed) was the sum
of weighted chi-square variables. It was deduced that the test statistic converges asymptotically to
chi-square distribution under the null hypothesis in certain circumstances. Furthermore, under the
dependence hypothesis, the asymptotic distribution of the test statistic and then the consistency for
the test were driven. We represented the test based on quantile symbolization. A simulation study
was carried out to inspect the proposed test’s power and accuracy (preserving the nominal level). The
proposed test results were compared with four alternative tests. The following statements result from the
simulation study. The quantile symbolization-based test possesses a decent accuracy in each sample size
scenario. In other words, the proposed test can preserve the nominal level of significance, and it exhibits
much better performance than the well-known BDS test. By comparison with four alternative tests, the
proposed test exhibits superior power. The proposed test possessed higher power in all cases to discern
the simple dependency. To diagnose the complex dependency, such as the GARCH model, the superior
power of the test suggested was proven in most scenarios compared to competing tests. It is revealed
by Table 8 that the proposed test had the highest size-corrected power in comparison with the other
tests. Ultimately, the stock price changes of the Tehran bourses were analyzed through the proposed
test. It was observed that there is a dependency between the data. Afterward, having fitted the model
ARMA(0, 1) − GARCH(1, 1) to the data, the adequacy test (independent and identically distributed)
was applied. So, it was shown through the quantile symbolization-based test that the residuals are
independent and identically distributed.
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[32] Matilla-Garćıa, M.; Maŕın, M.R.; Dore, M.I. and Ojeda, R.B. (2014).
Nonparametric correlation integral–based tests for linear and nonlinear stochastic
processes, Decisions in Economics and Finance, 37, 181–193.

[33] Pardo, L. (2006). Statistical Inference Based on Divergence Measures, Chapman
and Hall/CRC, Taylor & Francis Group.

[34] Robinson, P.M. (1991). Consistent nonparametric entropy-based testing, The
Review of Economic Studies, 58, 437–453.

[35] Ruppert, D. and Matteson, D.S. (2015). Statistics and Data Analysis for
Financial Engineering with R examples, New York: Springer.

[36] Sensoy, A.; Aras, G. and Hacihasanoglu, E. (2015). Predictability dynam-
ics of Islamic and conventional equity markets, The North American Journal of
Economics and Finance, 31, 222–248.

[37] Skaug, H.J. and Tjøstheim, D. (1993). A nonparametric test of serial inde-
pendence based on the empirical distribution function, Biometrika, 80, 591–602.

[38] Soon, S.Y.T. (1996). Binomial approximation for dependent indicators, Statis-
tica Sinica, 6, 703–714.

[39] Von Neumann, J. (1941). Distribution of the ratio of the mean square successive
difference to the variance, The Annals of Mathematical Statistics, 12, 367–395.

[40] Wald, A. and Wolfowitz, J. (1940). On a test whether two samples are from
the same population, The Annals of Mathematical Statistics, 11, 147–16.



18 Ashtari Nezhad et al.

A. PROOFS

A.1. Proof of Theorem 3.1.

By substituting Mϕ
n instead of Tϕ

n (P̂,P0) in the proof of Theorem 4.1 in Pardo (2006) [33, page
171], the proof is completed.

A.2. Proof of Theorem 3.2.

Suppose R is equal to number of symbols, ϕ(x) = xlog(x) − x + 1 and ψ(x1, x2, . . . , xR) =∑R
i=1 p

0
ci
ϕ( xi

p0ci
). Using Taylor’s expansion for the ψ in (p̂c1 , p̂c2 , . . . , p̂cR ) and aroundP = (pc1 , pc2 , . . . , pcR )T ,

we have

ψ(p̂c1 , p̂c2 , . . . , p̂cR ) = ψ(pc1 , pc2 , . . . , pcR )

+

R−1∑
i=1

∂ψ(pc1 , pc2 , . . . , pcR )

∂pci
(p̂ci − pci )

+
1

2

R−1∑
i,j=1

∂ψ(pc1 , pc2 , . . . , pcR )

∂pci∂pcj
(p̂ci − pci )(p̂cj − pcj )

+ o(Op(n
−1)),(1.1)

where c is a constant, and also
O(n)
n

−−−−−→
n−→∞

c,
o(n)
n

−−−−−→
n−→∞

0, in which
P−→ denotes convergence in

Probability. Now, under the hypothesis H0, the value of P = (pc1 , pc2 , . . . , pcR )T is equal to P0 =
(p0c1 , p

0
c2
, . . . , p0cR )T , and therefore

ψ(p0c1 , p
0
c2
, . . . , p0cR ) = 0.

Moreover, we have:

(∂ψ(pc1 , pc2 , . . . , pcR )

∂pci

)
P=P0

=
(
ϕ′(

pci
p0ci

)− ϕ′(
pcR
p0cR

)
)
P=P0

= 0,(1.2)

(∂2ψ(pc1 , pc2 , . . . , pcR )

∂pci∂pcj

)
P=P0

=
1

p0cR
, i ̸= j,(1.3)

(∂2ψ(pc1 , pc2 , . . . , pcR )

∂pci∂pcj

)
P=P0

=
1

p0ci
+

1

p0cR
i = j.(1.4)

Accordingly, the first and the second part of (1.1) are equal to zero. Given the equations (1.3) and (1.4),
the third part of (1.1) is calculated as follows:

1

2

[ R−1∑
i,j=1,i ̸=j

(
p̂ci − p0ci

)(
p̂cj − p0cj

)
p0cR

+

R−1∑
i=1

(
p̂ci − p0ci

)2

p0cR
+

R−1∑
i=1

(
p̂ci − p0ci

)2

p0ci

]

=
1

2

R∑
i=1

(
p̂ci − p0ci

)2

p0ci
.(1.5)

Therefore, using the equation (1.5), it may be deduced that
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Mn(P̂,P
0) = K

R∑
i=1

(
p̂ci − p0ci

)2

p0ci
+ 2Ko

(
Op(n

−1)
)
.(1.6)

Using Slutsky’s theorem (Gut, 2006 [23]), the right side of the equation (1.6) possesses the same

distribution as K
R∑

i=1

(
p̂ci−p0ci

)2

p0ci
. Now considering P0 = (p0c1 , p

0
c2
..., p0cR )T , the following asymptotic

distribution is reached by means of Elsinger (2010) [19, Theorem 1, page 8]:

√
K(P̂−P0)

d−−−−−−−−→
n−→∞

N(0,Σ0).

Thus, bearing in mind Dik and Gunst (1985) [16, Corollary 2.1], if A = diag(P0), we have

K(P̂−P0)TA(P̂−P0) = K
R∑

i=1

(
p̂ci − p0ci

)2

p0ci

d
≡

r∑
i=1

λi Z
2
i ,

and therefore, the proof is completed.

A.3. Proof of Theorem 3.3.

As mentioned in Theorem 3.2, Mn(P̂,P0) and K(P̂−P0)T diag(P0)(P̂−P0) possess the same
asymptotic distribution. Accordingly, for the conditions of Ferguson (1996) [20, Lemma 3, page 57], we
have

X =
√
Kdiag((P0)−

1
2 )(P̂−P0),

Σ = diag((P0)−
1
2 )

(
diag(P0)−P0(P0)T

)
diag((P0)−

1
2 ).

However,

ΣΣ = I − diag((P0)−
1
2 )P0(P0)T diag((P0)−

1
2 )− diag((P0)−

1
2 )P0(P0)T diag((P0)−

1
2 )

+ diag((P0)−
1
2 )P0(P0)T diag((P0)−

1
2 )diag((P0)−

1
2 )P0(P0)T diag((P0)−

1
2 ).

On the other hand, considering the fact that

(P0)T diag((P0)−
1
2 )diag((P0)−

1
2 )P0 = 1,

we have the following equation:

ΣΣ = I − diag((P0)−
1
2 )P0(P0)T diag((P0)−

1
2 ) = Σ.

(1.7)

Therefore, Σ is an idempotent matrix and also

rank(Σ) = trace
(
diag((P0)−

1
2 )

(
diag(P0)−P0(P0)T

)
diag((P0)−

1
2 )

)
= trace

(
diag((P0)−1)

(
diag(P0)−P0(P0)T

))
= R(1−

1

R
) = R− 1,

Where R is the number of symbols, rank(.) and trace(.) are the rank and trace of a matrix. Now,
considering Ferguson (1996) [20, Lemma 3, page 57], the proof is completed.
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A.4. Proof of Theorem 3.4.

Suppose R be the number of symbols and ϕ(x) = xlog(x) − x + 1. Taylor’s expansion of

ψ(x1, x2, . . . , xR) =
∑R

i=1 p
0
ci
ϕ( xi

p0ci
) in (p̂c1 , p̂c2 , . . . , p̂cR ) and around P = (pc1 , pc2 , ..., pcR ) leads to

ψ(p̂c1 , p̂c2 , . . . , p̂cR ) = ψ(pc1 , pc2 , . . . , pcR )

+

R−1∑
i=1

∂ψ(pc1 , pc2 , . . . , pcR )

∂pci
(p̂ci − pci )

+ o(Op(n
− 1

2 )).(1.8)

Now, by partial derivative of ψ(pc1 , pc2 , . . . , pcR ) at the point P∗ we have

(∂ψ(pc1 , pc2 , . . . , pcR )

∂pci

)
P=P∗

=
(∂(∑R−1

i=1 p0ciϕ(
pci
p0ci

) + p0cRϕ(
pcR
p0cR

)
)

∂pci

)
P=P∗

= ϕ′(
p∗ci
p0ci

)− ϕ′(
p∗cR
p0cR

).

Consequently, by replacing P with P∗ in (1.8), it can be observed that under the alternative hypothesis
(H1) we have

R−1∑
i=1

(
ϕ′(

p∗ci
p0ci

)− ϕ′(
p∗cR
p0cR

)
)
(p̂ci − pci ) =

R−1∑
i=1

ϕ′(
p∗ci
p0ci

)(p̂ci − p∗ci )−
R−1∑
i=1

ϕ′(
p∗cR
p0cR

)(p̂ci − p∗ci )

=

R−1∑
i=1

ϕ′(
p∗ci
p0ci

)(p̂ci − p∗ci )− ϕ′(
p∗cR
p0cR

)(

R−1∑
i=1

p̂ci −
R−1∑
i=1

p∗ci )

=

R−1∑
i=1

ϕ′(
p∗ci
p0ci

)(p̂ci − p∗ci )− ϕ′(
p∗cR
p0cR

)(1− p̂cR − (1− p∗cR ))

=

R∑
i=1

ϕ′(
p∗ci
p0ci

)(p̂ci − p∗ci ).

Considering equation (1.8), by multiplying
√
K we have

√
K
(
D(P̂,P0)−D(P∗,P0)

)
=

√
K

R∑
i=1

ϕ′(
p∗ci
p0ci

)(p̂ci − p∗ci) +
√
K
(
o(Op(n

− 1
2 ))

)
.(1.9)

On the other hand, using Slutsky’s theorem(Gut, 2006 [23]) it can be deduced that the equation (1.9)

and
√
K

∑R
i=1 ϕ

′(
p∗ci
p0ci

)(p̂ci − p∗ci ) possess the same asymptotic distribution. Given Elsinger (2010) [19,

Theorem 1, page 8] , if we set

S =
(
ϕ′(

p∗c1
p0c1

), . . . , ϕ′(
p∗cR
p0cR

)
)T

=
(
log(

p∗c1
p0c1

), . . . , log(
p∗cR
p0cR

)
)T
,

it can be shown that

√
K

R∑
i=1

ϕ′(
p∗ci
p0ci

)(p̂ci − p∗ci ) =
√
KST (P̂−P∗)

d−−−−−−−−→
K−→∞

N(0,STΣS),

and therefore, the proof is completed. It is worth mentioning that since K = n − m + 1, there is no
difference between K −→ ∞ and n −→ ∞ here.
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A.5. Proof of Theorem 3.5.

If σ2(P∗) is the variance given in Theorem 3.4,

P (Mn(P̂,P
0) > c)) = P (2KD(P̂,P0) > c)

= P
(√

K
(
D(P̂,P0)−D(P∗,P0)

)
σ(P∗)

>

√
K

σ(P∗)

( c

2K
−D(P∗,P0)

))
,

for any positive K. Given the theorem assumption, we have

P = P∗ ̸= P0,

and
D(P∗,P0) > 0.

Accordingly, it is observed that

√
K

σ(P∗)

( c

2K
−D(P∗,P0)

) d−−−−−−−−→
n−→∞

−∞.

On the other hand, considering Theorem 3.4, it could be claimed that
√
K
(
D(P̂,P0)−D(P∗,P0)

)
converges to normal distribution.

Now, using Slutsky’s theorem (see Lehmann (1999) [27], page 70.), we have

lim
n−→∞

P (Mn(P̂,P
0) > c)) = 1− lim

n−→∞
P
(√

K
(
D(P̂,P0)−D(P∗,P0)

)
σ(P∗)

<

√
K

σ(P∗)

( c

2K
−D(P∗,P0)

))
= 1− Φ(−∞) = 1,

where Φ is the standard normal distribution function, and so the proof is completed.
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