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1. INTRODUCTION

Statistical Information Theory is a branch of mathematics, probability and statistics,

statistical mechanics, information engineering and other research fields which has many con-

tacts with a lot of research areas in science and engineering, such as statistical inference,

information transmission, source coding, cryptography, pattern recognition, among many

others. This field provides with numerous measures that quantify the amount of information,

where the word information is used in several conceptual frameworks and contexts. Several

meanings of the word information, appeared in the early literature, was motivated Ferentinos

and Papaioannou (1981), Papaioannou (1985, 2001) to classify the measures of information

into three broad categories, namely, entropy, divergence and Fisher’s type measures of infor-

mation (cf. Zografos (2023) and references appeared therein for details). The characterization

of the measures of information and their applications is also included in the main activities of

the field of statistical information theory and the introduction in Zografos (2023) is gathering

the respective literature.

The classical measures of information, like Shannon entropy, Kullback-Leibler diver-

gence, Fisher’s measure of information have been initially defined and applied by means of

the probability density function that governs the experimental data. The last two decades,

measures of information are defined in terms of the distribution function and they comple-

ment and strengthen the respective literature. This research activity has been developed on

the basis of the seminal paper by Rao et al. (2004) and a timely elaboration of Rao’s et al.

measure by Zografos and Nadarajah (2005). The use of the cumulative distribution function

or the survival function for the definition of measures of information is motivated by the

fact that the distribution function is always existing while the density function is not always

present. Moreover, the cumulative distribution function is easily estimated by the empirical

respective model, in case where the distribution function that drives the data is unknown.

The recent paper by Zografos (2023) provides with a review of the classical measures of

information and their cumulative counterparts.

On the other hand, the notion of copula and the respective theory of copulas has

received significant attention in the literature of the last decades. However, copulas are

cumulative distribution functions themselves, defined on [0, 1]d, with uniform marginals on the

interval [0, 1]. Hence, measures of information defined by means of the cumulative distribution

function can be formulated in terms of copulas and, then, to provide in this way entropy type

measures of a copula or divergence or quasi-distance type measures between two copulas.

This is exactly the point that motivates the present paper which aims to create a bridge

between information theory and copula theory with an ultimate goal: information theoretic

methods to be used for the formulation and solution of problems from the area of copula

theory.

In the general framework, described above, this paper concentrates in the bivariate case

and it focuses in a specific type of copulas, the bivariate extreme value copulas. The main

aim is the derivation of the analytic expressions of cumulative entropies and divergences in

the case of bivariate extreme value copulas and the study of some of the properties of the

introduced here measures. Similar work is maybe of interest for other classes of copulas such

as Archimedean or elliptical copulas and this line of work is open to the best our knowledge.
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In the context described above, the next section concentrates on some preliminary concepts

and the notation. More specifically it presents the definition of some entropy and divergence

measures, defined in terms of distribution functions. The bivariate extreme value copula is

also presented in section 2. Closed-form expressions for entropy type measures of bivariate

extreme value copulas are obtained in section 3 and some fundamental properties of the said

entropies are studied. In the same frame, section 4 is devoted to the analytic expressions

for some divergence measures in the case of bivariate extreme value copulas. The paper is

completed with some conclusions.

2. Preliminaries and notation

The first part of this section closely follows the exposition in Zografos (2023) and

it is devoted to the presentation of a broad family of entropy type measures and a direct

analog of Csiszár’s type ϕ-divergences, in terms of the cumulative distribution functions.

The cumulative counterpart of the density power divergence is also presented in the same

setup. The said entropy and divergence type measures, introduced and defined in Zografos

(2023), are reproduced here, not only for the sake of completeness but mainly because they

will be the basis in the investigations of the subsequent sections.

Based on this last paper, in order to formulate entropy type and divergence type mea-

sures defined in terms of cumulative distribution functions, following standards arguments

(cf. Billingsley (1986)), consider two d-dimensional random vectors X = (X1, ..., Xd)
t and

Y = (Y1, ..., Yd)
t. Let F and G denote, respectively, the joint distribution functions of X

and Y , defined by, F (x1, ..., xd) = Pr(X1 ≤ x1, ..., Xd ≤ xd) and G(y1, ..., yd) = Pr(Y1 ≤
y1, ..., Yd ≤ yd), for (x1, ..., xd) ∈ Rd and (y1, ..., yd) ∈ Rd. In this context and following the

exposition in Zografos (2023), a broad family of entropy type measures has been defined in

Chen et al. (2012), in a somewhat different setup, and some years later in the papers by Klein

et al. (2016); Klein and Doll (2020) by

(2.1) CEφ(F ) =

+∞∫
−∞

φ(F (x))dx,

where the entropy generating function φ is a non-negative and concave real valued function

defined on [0, 1]. This measure is the direct analog of Burbea and Rao (1982) φ-entropy,

which was defined by means of a probability density function, while for special choices of

the concave function φ it leads to interesting particular entropy type measures, like that

appeared in Table 3 of p. 13, in Klein and Doll (2020). The measure CEφ(F ), defined in (2.1)

above, is an entropy type measure defined in terms of the cumulative distribution function

F and this definition is immediately extended to the multivariate case. Shannon’s type and

Tsallis’ type cumulative entropies are obtained from (2.1) for φ(x) = −x lnx, x ∈ [0, 1], by

the convention 0 ln 0 = 0 and φ(x) = x−xλ

λ−1 , λ > 0, λ ̸= 1, x ∈ [0, 1], respectively. Based on

(Klein et al., 2016, p. 2), entropy type measures, like that for φ(x) = −x lnx, x ∈ [0, 1],

”can rather be interpreted as measures of dispersion than as measures of information.”.

Moreover, following (Asadi et al., 2017, p. 1030), Tsallis’ type cumulative entropy, obtained

from (2.1) for φ(x) = x−xλ

λ−1 , λ > 0, λ ̸= 1, x ∈ [0, 1], is a measure of concentration of the

distribution. That is, Tsallis’ type entropy is non-negative and equals zero if and only if the
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underline distribution is degenerate. The proof of this assertion is immediately obtained by

a straightforward application of the proof in page 1030 in Asadi et al. (2017) and taking into

account that φ(x) = x−xλ

λ−1 = −xλLλ(x), λ > 0, λ ̸= 1, x ∈ (0, 1], where Lλ(x) = x1−λ−1
1−λ is

defined by (2.3), p. 1029 in Asadi et al. (2017).

In spite of entropy, a divergence type measure is defined in terms of two probability dis-

tribution functions and it usually serves as a measure of quasi-distance or statistical distance

between the underlined probability distributions. A broad family of divergence type measures

between two cumulative probability distributions was defined recently in Zografos (2023) as a

direct analog of Csiszár’s ϕ-divergences. The cumulative Csiszár’s type ϕ-divergence between

the distribution functions F and G is defined by

(2.2) CDϕ(F,G) =

∫
Rd

G(x)ϕ

(
F (x)

G(x)

)
dx−

∫
Rd

G(x)dx

ϕ


∫
Rd

F (x)dx

∫
Rd

G(x)dx

 ,

where ϕ : (0,∞) → R is a real valued convex function and ϕ ∈ Φ, defined by

(2.3) Φ =

{
ϕ : ϕ is strictly convex at 1, with ϕ(1) = 0, 0ϕ

(
0

0

)
= 0, 0ϕ

(u
0

)
= lim

v→∞

ϕ(v)

v

}
.

This measure satisfies the next non-negativity property (cf. Zografos (2023))

CDϕ(F,G) ≥ 0 with equality if and only if F (x) = G(x), on Rd,

which ensures the application of this measure as a quasi-distance in formulating and solving

problems in probability and statistics. Specific choices of the convex function ϕ lead to

particular cumulative type divergences, which are products of Csiszár’s type cumulative ϕ-

divergence, defined by (2.2) and (2.3). In this frame, Cressie and Read’s type cumulative

divergence (cf. Cressie and Read (1984); Read and Cressie (1988)) is directly obtained from

(2.2) for ϕ(u) = ϕλ(u) =
uλ+1−u−λ(u−1)

λ(λ+1) , λ ̸= 0,−1, u > 0, and it is defined as follows

(2.4)

CDλ(F,G)

= 1
λ(λ+1)

∫
Rd

G(x)
(
F (x)
G(x)

)λ+1
dx−

(∫
Rd

G(x)dx

)(∫
Rd

F (x)dx/
∫
Rd

G(x)dx

)λ+1
 ,

for λ ̸= 0,−1. Kullback-Leibler type cumulative divergence (cf. Zografos (2023))

(2.5) CDKL(F,G) =

∫
Rd

F (x) ln

(
F (x)

G(x)

)
dx−

∫
Rd

F (x)dx

 ln

∫
Rd

F (x)dx/

∫
Rd

G(x)dx

 ,

is directly obtained from (2.2) for ϕ(u) = u log u, u > 0, or ϕ(u) = u log u+ u− 1, u > 0. It is

related with CDλ(F,G) in the limiting sense, that follows,

lim
λ→0

CDλ(F,G) = CDKL(F,G) and lim
λ→−1

CDλ(F,G) = CDKL(G,F ).

The cumulative analog of the density power divergence, is introduced in Zografos (2023)

by,

(2.6) Cda(F,G) =
∫
Rd

{
G(x)1+a −

(
1 +

1

a

)
G(x)aF (x) +

1

a
F (x)1+a

}
dx, a > 0,
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and it is a straightforward extension of Basu et al. (1998) and Basu et al. (2011), Chapter 9,

density power divergence measure. Following the steps of the proof of Theorem 9.1 of Basu

et al. (2011), p. 301, it can be seen that Cda(F,G) is non-negative, for all a > 0 and it is

equal to 0 if and only if the underlined cumulative distributions F and G are coincide. Hence,

Cda(F,G) can also serve as a quasi-distance between the underlined distributions F and G.

It is seen that the case a = 0 is excluded from the definition of Cda(F,G). It can be easily

shown that

lim
a→0

Cda(F,G) = CKL(F,G),

where

(2.7) CKL(F,G) =

∫
Rd

F (x) ln

(
F (x)

G(x)

)
dx+

∫
Rd

[G(x)− F (x)]dx,

has been defined, in the univariate case d = 1, as an alternative cumulative type Kullback-

Leibler divergence by Baratpour and Rad (2012) and Park et al. (2012). Moreover, motivated

from the mutual information which was defined in terms of cumulative functions in Zografos

(2023), pp. 308-310, a broad class of distance type measures between the joint distribution

function and the respective one under the assumption of independence can be defined, in

view of (2.6), if the distribution function G is used to represent the product of the marginal

distribution functions FXi(xi), i = 1, ..., d, of the components of the random vector X =

(X1, ..., Xd)
t, that is if G(x) =

∏d
i=1 FXi(xi). It is clear that such a measure can be exploited

to define a broad class of measures of dependence and its empirical version can be also serve as

a test statistic to develop tests of independence (cf. Zografos (2023) and references therein).

The cumulative type measures of entropy and divergence, defined above, are developed

on the basis of cumulative distribution functions. Hence, it is clear that copulas can be used to

replace the underline cumulative distribution functions of the above measures. To describe the

way, let’s concentrate, without loss of generality, in the bivariate case and let (X,Y ) be a pair

of continuous random variables with joint distribution function H and marginal distribution

functions F and G. Then, Sklar’s Theorem (cf. Nelsen (2006), pp. 18-22) proves that there

is a unique copula C associated with H such that H(x, y) = C(F (x), G(y)), for x, y in R.
On the other hand, C is the distribution function of the pair of random variables (U, V ) =

(F (X), G(Y )), with margins uniform on the interval (0, 1) and C(u, v) = H(F−1(u), G−1(v)),

u, v ∈ (0, 1). In this setting the entropy type measure (2.1) is formulated as follows,

CEφ(C) =

1∫
0

1∫
0

φ (C(u, v)) dudv,

and all the measures presented above on the basis of distributions functions can be expressed

in a similar way as information theoretic indices between copulas. For example, if C1 and

C2 are two copula functions defined on (0, 1)2 and satisfying the standard conditions (cf.,

among many others, subsection 2.2 in Nelsen (2006), p. 10), then the cumulative analog of

the density power divergence between copulas C1 and C2 is defined, in view of (2.6), by

(2.8)

Cda(C1, C2) =

1∫
0

1∫
0

{
C1+a
2 (u, v)−

(
1 +

1

a

)
Ca
2 (u, v)C1(u, v) +

1

a
C1+a
1 (u, v)

}
dudv, a > 0,

and it can also serve as a quasi-distance between the underlined copulas C1 and C2. Based on

the above discussion, (2.8) can be used to define a broad class of measures of dependence if C1
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denotes a copula function, say C, and C2 is used to denote the independence copula, which

is usually denoted by Π and it is defined by Π(u, v) = uv, 0 < u, v ≤ 1, (u, v) ̸= (1, 1). The

empirical version of Cda(C,Π) can be the basis of the test statistic for the development of a

test of independence. Gathering the recent literature, Klein et al. (2016) provide with copula

representations of correlations defined in terms of cumulative entropies, while Ma and Sun

(2008) and De Keyser and Gijbels (2024) present dependence measures by means of copula

densities. Recently, Nair and Sunoj (2023) propose survival copula entropy as alternative to

various entropy measures.

Let now turn ourselves again to the bivariate case and consider the extreme value copula

(cf. Beirlant et al. (2004), p. 273, 314, Nelsen (2006), p. 98, Drouet Mari and Kotz (2001),

p. 95, Joe (2015), p. 148, 382, Ghoudi et al. (1998)). A bivariate copula is an extreme value

copula if and only if

(2.9) CA(u, v) = exp

[
ln(uv) ·A

{
ln v

ln(uv)

}]
, 0 < u, v ≤ 1, (u, v) ̸= (1, 1),

where A : [0, 1] → [1/2, 1] is a convex function which satisfies A(0) = A(1) = 1,max{t, 1−t} ≤
A(t) ≤ 1, for each t ∈ [0, 1]. The function A(t), defined above, is the well known Pickands

dependence function while the plot of A(t) = max{t, 1 − t} (line) and the plot of A(t) = 1

(dash) are given in Figure 1,

Figure 1: Pickands dependence function A(t).

Based on Nelsen (2006) or Gudendorf and Segers (2010), p. 131, the value A(t) = 1 cor-

responds to independence, while the value A(t) = max{t, 1 − t} refers to complete positive

dependence, in the sense of comonotonicity, rather, instead of that of the functional relation-

ship of the coordinates of the underlying random vectors.

3. Extreme Value Copula Entropies

Consider now the cumulative entropy of the extreme value copula CA, which is defined,

in view of (2.1), as follows

(3.1) CEφ(CA) =

∫
[0,1]2

φ (CA(u, v)) dudv,

in terms of the extreme value copula CA, where the entropy generating function φ is a non-

negative and concave real valued function defined on [0, 1] (cf. Klein et al. (2016)). CEφ(CA)
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above, will be called the extreme value copula φ-entropy. The next subsection focuses in

particular cases of (3.1).

3.1. Shannon, Tsallis and generating type extreme value copula measures

The proposition that follows provides with analytic expressions for CEφ(CA) and special

cases, obtained for particular choices of the concave function φ. The proof of the Proposition

3.1 is given in the Appendix A, subsection A.1.

Proposition 3.1. Let the extreme value copula (2.9) and the extreme value copula

φ-entropy (3.1). Then,

(a) For the non-negative and concave real valued function φ defined on [0, 1],

CEφ(CA) = −
∫

[0,1]2

v
1−t
t
ln v

t2
φ

{
exp

[
ln v

t
A(t)

]}
dvdt.

(b) For φ(x) = −x lnx, x ∈ [0, 1], 0 ln 0 = 0, CEφ leads to the Shannon’s type extreme value

copula entropy,

(3.2) CESh(CA) = −
∫

[0,1]2

CA(u, v) lnCA(u, v)dudv = 2

1∫
0

A(t)

[1 +A(t)]3
dt.

(c) For φ(x) = x−xλ

λ−1 , λ > 0, λ ̸= 1, x ∈ [0, 1], CEφ leads to the Tsallis’ type extreme value

copula entropy,

(3.3) CETs,λ(CA) =
1

λ− 1

∫
[0,1]2

[
CA(u, v)− Cλ

A(u, v)
]
dudv, λ > 0, λ ̸= 1,

where the generating type function,
∫
[0,1]2 C

λ
A(u, v)dudv, λ > 0, is given by

(3.4) CIλ(CA) =

∫
[0,1]2

Cλ
A(u, v)dudv =

1∫
0

1

[1 + λA(t)]2
dt, λ > 0.

Remark 1. (a) The expression for CEφ(CA) is quite general. However, for specific choices of

φ, like that of cases (b) and (c) of the proposition, the respective expressions are quite neat and

they depend on Pickands dependence function A(t). Therefore CESh(CA) and CETs,λ(CA)

can be thought as indices which are strongly related to the dependence in the bivariate

extreme value case and more precisely they are more related to concordance measures, such

as Spearman’s rho, mentioned below.

(b) It is easy to see that extreme value copula Shannon and Tsallis type entropies are

connected by a limiting behaviour, as follows,

(3.5) lim
λ→1

CETs,λ(CA) = CESh(CA).

Tsallis type measure is motivated, in essence, by similar measures defined in Asadi et al.

(2017), Rajesh and Sunoj (2019), Klein and Doll (2020), which are recently discussed in
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Zografos (2023).

(c) For λ = 1, the generating type function CIλ(CA) is simplified as follows,

(3.6) CI1(CA) =

∫
[0,1]2

CA(u, v)dudv =

1∫
0

1

[1 +A(t)]2
dt.

However, it is well known (cf. Nelsen (2006), p. 167) that Spearman’s rho correlation

coefficient is given by

(3.7) ρS(A) = 12

∫
[0,1]2

CA(u, v)dudv − 3 = 12CI1(CA)− 3 = 12

1∫
0

1

[1 +A(t)]2
dt− 3,

and therefore

(3.8) CI1(CA) =
ρS(A) + 3

12
.

(d) The measure CIλ(CA) is a type of generating function because its derivative, in respect

to λ, at λ = 1, generates CESh(CA) in the sense that (d/dλ)CIλ(CA)|λ=1 = −CESh(CA).

This is motivated by the papers of Golomb (1966) and Guiasu and Reischer (1985).

(e) It is also the basis for the definition of Rényi’s type extreme value copula entropy of the

form

CER(CA) = (1− λ)−1 log CIλ(CA), λ > 0, λ ̸= 1.

The example that follows concentrates on the bivariate Tawn extreme value copula and

it illustrates on how the above defined measures are applied in this specific family of extreme

value copulas.

Example 1. Asymmetric Tawn extreme value copula

Let consider, in this example, a broad family of extreme value copulas with Pickands

dependence functions of the form

(3.9) A(t) = (1− ψ1)(1− t) + (1− ψ2)t+
[
(ψ1(1− t))θ + (ψ2t)

θ
]1/θ

,

for 0 ≤ ψ1, ψ2 ≤ 1, θ ≥ 1, by following the notation in p. 49 of Eschenburg (2013). This

wide family of dependence functions has been introduced by equation (3.1) in Tawn (1990),

where an asymmetric extension of the logistic model has been presented and studied. Based

on Eschenburg (2013), p. 56, the symmetric version of Tawn copula is obtained from (3.9) if

ψ1 = ψ2 = Ψ, with 0 ≤ Ψ ≤ 1. In this case, the Pickands dependence function A(t) in (3.9)

is related with the respective function of the Gumbel copula by the formula,

A(t) = 1 + Ψ
(
AG(t)− 1

)
,

with AG(t) the Pickands dependence function of the Gumbel copula, given by AG(t) =[
(1− t)θ + tθ

]1/θ
, θ ≥ 1.

This example evaluates Shannon type extreme-value copula entropy (3.2) in case of

Pickands dependence functions of the form (3.9) for various values of ψ1, ψ2 and θ = 20.
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Table 1 evaluates Shannon type measure (3.2) of Tawn copula with A(t) defined in (3.9),

with θ = 20, ψ2 = 1, for different values of ψ1 while the figure that follows presents the

associated Pickends function A(t), in (3.9), with the same choices of the parameters. Figure

1 includes the plots of A(t) for ψ1 = 0.1 (black-solid), ψ1 = 0.2 (blue-dash), ψ1 = 0.5 (red-

dots), ψ1 = 0.8 (brown-dash) and ψ1 = 1 (green-solid), the last one is corresponding to

symmetry (ψ1 = ψ2 = 1, Gumbel copula).

CESh for θ = 20, ψ2 = 1 and different ψ1

ψ1 0.001 0.1 0.2 0.5 0.8 1

CESh(CA) 0.25006 0.25566 0.26032 0.26997 0.27549 0.27777

Table 1: Shannon type entropy of Tawn copula with θ = 20, ψ2 = 1, for
different values of ψ1.

Figure 2: Pickands dependence function A(t) in (3.9) with θ = 20, ψ2 = 1
and ψ1 = 0.1, 0.2, 0.5, 0.8, 1.

We observe that for the specific values of the parameters θ = 20 and ψ2 = 1, Shannon’s

type entropy CESh(CA) increases as the value of the parameter ψ1 increases and the Pickands

dependence function is moving from the case of independence to the case of comonotonicity

and symmetry.

Table 2 and Figure 3 that follows are the analogs of Table 1 and Figure 2 when the

parameters of the model (3.9) are chosen to be θ = 20, ψ1 = 1, for different values of ψ2.

CESh for θ = 20, ψ1 = 1 and different ψ2

ψ2 0.001 0.1 0.2 0.5 0.8 1

CESh(CA) 0.25006 0.25566 0.26032 0.26997 0.27549 0.27777

Table 2: Shannon type entropy of Tawn copula with θ = 20, ψ1 = 1, for
different values of ψ2.

The figure that follows includes the plots of A(t) for ψ2 = 0.1 (black-solid), ψ2 = 0.2

(blue-dash), ψ2 = 0.5 (red-dots), ψ2 = 0.8 (brown-dash) and ψ2 = 1 (green-solid), the last

one is corresponding to symmetry (ψ1 = ψ2 = 1, Gumbel copula).

Again, for θ = 20 and ψ1 = 1, Shannon type entropy CESh(CA) increases as the value of

the parameter ψ2 increases and the Pickands dependence function is moving from the case of

independence to the case of comonotonicity and symmetry.

We note at this point that Tables 1 and 2 are the same. This is due to the fact that

the integral on the right hand side of (3.2), for A(t) defined by (3.9), is invariant under the
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Figure 3: Pickands dependence function A(t) in (3.9) with θ = 20, ψ1 = 1
and ψ2 = 0.1, 0.2, 0.5, 0.8, 1.

transformation z = 1 − t, 0 < t < 1, which reverses the role of the parameters ψ1 and ψ2

in (3.9), that is under a transformation which moves the dependence function A(t), in (3.9),

from right asymmetry to left asymmetry. Hence, a comparison of the tables and figures

leads to the conclusion that Shannon type entropy of Tawn copula does not recognize the

type of asymmetry of the said copula. Indeed, the values of CESh for copulas of Figure 2

which correspond to right asymmetry are coincide with the similar ones of Figure 3 which

correspond to left asymmetry. ■

We will now concentrate to the Marshall-Olkin bivariate extreme value copula and we

will investigate the behaviour of Tsallis type entropy, defined by (3.3) and (3.4), for this

family of extreme value copulas. Explicit expressions of the measures of Proposition 3.1 are

derived for a specific case of Marshall-Olkin extreme value copula.

Example 2. Marshall-Olkin Extreme-Value Copula

The Pickands dependence function of the Marshall-Olkin extreme-value copula is de-

fined by A(t) = max{1−α1(1− t), 1−α2t}, for 0 ≤ α1, α2 ≤ 1. Based on Eschenburg (2013),

p. 35, it is symmetric for α1 = α2 and it leads to the independence copula if α1 or α2 = 0.

Moreover, if α1 = α2 = 1, then A(t) = max{t, 1− t} and the respective extreme-value copula

is CA(u, v) = u ∧ v = min{u, v} (cf. Gudendorf and Segers (2010), p. 131).

Figure 4 includes the plots of A(t) for α1 =
1
2 , α2 = 1 (blue-dash) which corresponds to

right asymmetry, the plot for α1 = 1, α2 =
1
2 (red-dots) which corresponds to left asymmetry

and the plot for α1 = α2 = 1 (black–solid) which corresponds to symmetry of A(t).

Table 3 evaluates Tsallis’ type extreme-value copula entropy (3.3) in case of Pickands de-

pendence functions A(t) = max{1 − α1(1 − t), 1 − α2t} of the Marshall-Olkin copula, for

various values of α1, α2. This table includes also the approximate value of Shannon type

extreme-value copula entropy, based on the limiting behaviour (3.5) of Tsallis’ type measure.

This approximation corresponds to the case λ = 0.99 of the table.

We observe that Tsallis’ type entropy CETs,λ(CA) increases as the Pickands dependence

function is moving from the case of independence (α1 or α2 = 0) to the case of comonotonicity

and symmetry (α1 = α2 = 1), except for λ = 0.1. Tsallis’ type measure CETs,λ decreases in

respect to λ in case of right asymmetry (α1 = 1/2 and α2 = 1) and the same is happen in
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Figure 4: Pickand dependence function A(t) of Marshall-Olkin copula
with different values of α1, α2.

α1= 0 α1= 1/4

α2 0 1/4 1/2 1 0 1/4 1/2 1

λ = 0.1 0.640 49 0.640 49 0.640 49 0.640 49 0.640 49 0.632 53 0.629 37 0.626 64

λ = 0.5 0.388 89 0.388 89 0.388 89 0.388 89 0.388 89 0.394 21 0.395 73 0.396 82

λ = 0.99 0.252 0.252 0.252 0.252 0.252 0.259 0.262 0.264

λ = 1.5 0.18 0.18 0.18 0.18 0.18 0.187 38 0.189 89 0.191 92

λ = 2 0.138 89 0.138 89 0.138 892 0.138 89 0.138 89 0.145 46 0.147 73 0.149 57

α1= 1/2 α1= 1

α2 0 1/4 1/2 1 0 1/4 1/2 1

λ = 0.1 0.640 49 0.629 37 0.622 17 0.613 64 0.640 49 0.626 64 0.613 64 0.591 63

λ = 0.5 0.388 89 0.395 73 0.398 27 0.4 0.388 89 0.396 82 0.4 0.400 03

λ = 0.99 0.252 0.262 0.268 0.272 0.252 0.264 0.272 0.28

λ = 1.5 0.18 0.189 89 0.194 96 0.2 0.18 0.191 92 0.2 0.209 53

λ = 2 0.138 89 0.147 73 0.152 38 0.157 14 0.138 89 0.149 57 0.157 14 0.166 66

Table 3: Tsallis’ type entropy of Marshall-Olkin copula for different val-
ues of α1, α2 and λ.

case of left asymmetry (α1 = 1 and α2 = 1/2).

Table 3 provides with numerical evaluation of Shannon and Tsallis type measures of

Marshall-Olkin extreme-value copula with Pickands dependence function defined by A(t) =

max{1 − α1(1 − t), 1 − α2t}, for 0 ≤ α1, α2 ≤ 1. In the sequel, explicit expressions of these

measures are derived for the case α1 = α2 = α, for 0 ≤ α ≤ 1. In this case,

A(t) = max{1− α(1− t), 1− αt}, for 0 ≤ α ≤ 1.

Based on (3.4), (3.6), (3.3), (3.5) and detailed algebraic manipulations, given at the last
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section of the proofs of the statements, Appendix A.2, we obtain,

CIλ(CA) =
2

(1 + λ)[2− λ(α− 2)]
, λ > 0,

CI1(CA) =
1

4− α
,

CETs,λ(CA) =
1

λ− 1

[
1

4− α
− 2

(1 + λ)[2− λ(α− 2)]

]
, λ > 0, λ ̸= 1,

CESh(CA) =
8− 3α

2(4− α)2
,

for 0 ≤ α ≤ 1, while for α = 0,

CETs,λ(CA) =
λ+ 3

4(λ+ 1)2
.

The numerical results of Table 3 coincide with the similar ones obtained by an application

of the previous explicit expressions of the measures for the specific values of α = α1 = α2

and λ. To complete this example, we have to point out and to explain why several columns

in Table 3 are equal. This is the case when at least one of the parameters α1 or α2 is equal

to zero. However, in such a case, the Pickands dependence function of the Marshall-Olkin

extreme value copula coincides with the independence copula A(t) = 1 and then, equations

(3.3) and (3.4), entail that the respective Tsallis’ type extreme value copula depends only on

λ, λ > 0, λ ̸= 1, something which is moreover confirmed by the last formula for CETs,λ(CA)

above, for α = 0. ■

3.2. Properties of the measures

The interest is now focused in the investigation of some of the properties of the measures

which are presented in Proposition 3.1. In this context, a more systematic investigation of the

presented entropy measures is attempted, in the sequel, by incorporating basic properties such

as monotonicity and continuity, among others. The said properties support the conclusion

that the measures introduced here are more related to concordance measures (like Spearman’s

rho) than to extent of information they contain.

The first property investigates the range of values of the measures CESh(CA), CIλ(CA)

and CI1(CA) for Pickands dependence function A. Following the formulation of Kamnitui

et al. (2019), p. 923, let A be the class of Pickands dependence functions A, defined above.

Based on this paper, for Ai ∈ A, i = 1, 2, we write A1 ≤ A2 if A1(t) ≤ A2(t), for all t ∈ [0, 1]

and A1 < A2 if the inequality is strict in at least one point and hence, by continuity, on an

interval. Taking into account this ordering, the proposition that follows states the range of

values of the above mentioned measures. The proof is provided in the Appendix A.3 and

it is shown there that CESh(CA) and CIλ(CA) are decreasing functions of A in the sense

of Kamnitui et al. (2019), p. 923, mentioned above. Similar discussion is also provided in

Theorem 3.4 in Ansari and Rockel (2023).

Proposition 3.2. The measures CESh(CA), CIλ(CA) and CI1(CA) are maximized

for A(t) = max{t, 1− t} and they are minimized for A(t) = 1, for t ∈ [0, 1], while their range
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of values is as follows,

0.25 ≤ CESh(CA) ≤
5

18
,

1

(1 + λ)2
≤ CIλ(CA) ≤

2

(1 + λ)(2 + λ)
, λ > 0,

1

4
≤ CI1(CA) ≤

1

3
.

In the sequel, the interest is focused on the study of some properties of Shannon’s and

Tsallis’ extreme value copula entropies or the generating type function CIλ(CA). The said

properties are related to that of monotonicity with respect to the concordance ordering of

copulas, continuity with respect to pointwise convergence of copulas, in the spirit of Definition

5.1.7 of Nelsen (2006), p. 168, or the Definition 2.8 in Joe (2015), p. 54. These properties are

based on Scarsini (1984) axioms that should be obeyed by a measure of concordance, while

similar properties of measures of concordance are also discussed in Nelsen (2002), Edwards

et al. (2005), Liebscher (2014), Fuchs (2016) and references appeared therein.

The next proposition formulates monotonicity of the measures with respect to the

concordance ordering of copulas. To proceed in this direction, let CA1 and CA2 are extreme

value copulas with CA1 ≺ CA2 which means that CA1(u, v) ≤ CA2(u, v), 0 < u, v ≤ 1,

(u, v) ̸= (1, 1), in view of Definition 2.8.1 of Nelsen (2006), p. 39. In this setting, following

the formulation of Kamnitui et al. (2019), p. 923, mentioned above, if CA1 ≺ CA2 , that is if

CA1(u, v) ≤ CA2(u, v), 0 < u, v ≤ 1, (u, v) ̸= (1, 1), then A2 ≤ A1, taking into account that

ln(uv) < 0 in (2.9). Then, the monotonicity property is formulated as follows.

Proposition 3.3. If CA1 and CA2 are extreme value copulas with CA1 ≺ CA2 , then,

CESh(CA1) ≤ CESh(CA2) and CIλ(CA1) ≤ CIλ(CA2), λ > 0, λ ̸= 1.

The proof is straightforward. The ordering CA1 ≺ CA2 leads to A2 ≤ A1 and the result

follows immediately from Proposition 3.1, by taking into account the fact that the non-

negative function z1(w) =
2w

(1+w)3
, is decreasing for w ∈ [1/2, 1] and the same is happen for

the function z2(w) =
1

(1+λw)2
, for w ≥ 0, λ > 0, λ ̸= 1. Moreover, in view of (3.2) and (3.4),

CESh and CIλ are related with the functions z1 and z2 as follows,

CESh(CA) =

1∫
0

z1(A(t))dt and CIλ(CA) =

1∫
0

z2(A(t))dt, λ > 0,

which completes the proof.

The next property of the measures proposed here is related to their continuity with

respect to pointwise convergence of copulas. In this frame, let (Xn, Yn), n = 1, 2, ... be a

sequence of continuous random variables with extreme value copula CAn which converges

pointwise to an extreme value copula CA. In this setting,

CAn(u, v) = exp

[
ln(uv) ·An

{
ln v

ln(uv)

}]
, 0 < u, v ≤ 1, (u, v) ̸= (1, 1),

and

CA(u, v) = exp

[
ln(uv) ·A

{
ln v

ln(uv)

}]
, 0 < u, v ≤ 1, (u, v) ̸= (1, 1),
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for Pickands dependence functions An and A, where An, A : [0, 1] → [1/2, 1] are convex

functions which satisfy An(0) = A(0) = An(1) = A(1) = 1, max{t, 1 − t} ≤ An(t), A(t) ≤ 1,

for each t ∈ [0, 1].Given that copulas CAn converge pointwise to the copula CA, it is immediate

to see that

lim
n→∞

An(t) = A(t), t ∈ [0, 1],

on the condition that the limits exist. Based on above formulation, the next proposition

states that Shannon and Tsallis’ type extreme value copula entropies are continuous with

respect to pointwise convergence of copulas. The proof is outlined in the Appendix A.4.

Proposition 3.4. If (Xn, Yn), n = 1, 2, ... is a sequence of continuous random vari-

ables with extreme value copula CAn which converges pointwise to an extreme value copula

CA, then

lim
n→∞

CESh(CAn) = CESh(CA),

lim
n→∞

CIλ(CAn) = CIλ(CA), λ ≥ 1,

lim
n→∞

CETs,λ(CAn) = CETs,λ(CA), λ ≥ 1.

It should be mentioned at this point that similar continuity property is obeyed by

Spearman’s rho (cf. Nelsen (2006), Theorem 5.1.9, p. 169) which is directly connected with

CIλ(CAn) and CIλ(CA), for λ = 1, in view of Remark 1(c).

Invariance of copulas, under strictly increasing transformations of the corresponding

continuous random variables, is an important property of copulas with particular usefulness

in nonparametric statistics (cf. Nelsen (2006), p. 25). Based on Theorem 2.4.3, p. 25 in

Nelsen (2006), if X and Y are two continuous random variables with copula CXY and α, β are

strictly increasing functions on the range of X and Y , respectively, then CXY = Cα(X)β(Y ),

that is, CXY is invariant under strictly increasing transformations of X and Y . The same is

also happen in the case of extreme value bivariate copulas and the question which is raised

at this point is related to the invariance of the corresponding measures of Proposition 3.1,

namely the invariance of CESh, CETs,λ and CIλ, under strictly increasing transformations

of the underling random variables. Invariance is a characteristic property of a measure of

concordance, stated in the paper by Scarsini (1984) and Theorem 5.1.8, p. 169 and Definition

2.8, p. 54 of Nelsen (2006) and Joe (2015), respectively. Spearman’s rank correlation ρS ,

defined by (3.7), obeys invariance, in the sense described above, according to the previous

citations. Motivated by Theorem 5.1.8, p. 169 in Nelsen (2006), next proposition formulates

invariance of CESh, CETs,λ and CIλ, under strictly increasing transformations of the underling

random variables. The proof is immediately obtained in view of invariance of copulas, under

strictly increasing transformations of the underlined continuous random variables.

Proposition 3.5. If α(X) and β(Y ) are almost surely strictly monotone functions

on range of X and Y respectively, then,

CESh

(
Cα,β
A

)
= CESh(CA), CETs,λ

(
Cα,β
A

)
= CETs,λ(CA), CIλ

(
Cα,β
A

)
= CIλ(CA),

where the superscript α, β in the notation of Cα,β
A in the measures is used to denote the

respective measure based on the extreme value copula of α(X) and β(Y ).
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Remark 2. (a) Proposition 3.3 shows that Shannon type extreme value copula CESh(CA)

and the generating type function CIλ(CA) are monotone with respect to the concordance

ordering of the respective extreme value copulas. On the other hand, extreme value copulas

are positively quadrant dependent (PQD) in view of Gudendorf and Segers (2010), p. 131.

In this context, suppose that CA2 is more concordant than CA1 (CA1 ≺ CA2), or CA2 is more

PQD than CA1 . Then, according to the Definition 5.7.2 on p. 223 in Nelsen (2006) and the

discussion provided just before this definition, CESh(CA1) ≤ CESh(CA2) and CIλ(CA1) ≤
CIλ(CA2). Hence, small values of these measures correspond to less concordant or less PQD

extreme value copulas. Rényi’s type extreme value copula obeys a similar ordering because

this measure is related with CIλ by the formula CER(CA) = (1 − λ)−1 log CIλ(CA), λ >

0, λ ̸= 1. In particular if the order λ of the measure is less than 1, then the ordering of CER

is preserved. For λ > 1 the ordering of CER is reversed. Hence, the measures CESh, CIλ,

λ > 0, λ ̸= 1 and CER, 0 < λ < 1, quantify the degree of PQD of an extreme value copula

with small values of these measures to correspond to less PQD copulas. It was not possible

to derive a similar behavior of Tsallis’ type entropy (3.3) because the function that generates

this type of entropy, φ(x) = x−xλ

λ−1 = −xλLλ(x), λ > 0, λ ̸= 1, x ∈ (0, 1], is not decreasing in

general, with Lλ(x) =
x1−λ−1
1−λ to be the function which was defined by (2.3), p. 1029 in Asadi

et al. (2017).

(b) In view of Proposition 3.2, CESh(CA) is maximized for A(t) = max{t, 1 − t} and the

maximum value of CESh is

2

1∫
0

max{t, 1− t}
[1 + max{t, 1− t}]3

dt = 0.277778.

That is, CESh(CA) is maximized in the case of complete dependence (comonotonicity) CA(u, v) =

u ∧ v = min{u, v} (cf. Gudendorf and Segers (2010), p. 131).

(c) In a similar manner, CESh(CA) is minimized for A(t) = 1, that is in the case of in-

dependence, with independence copula Π(u, v) = uv and the minimum value of CESh is

2
∫ 1
0 (1/8)dt = 0.25. This is in harmony with part (a) of this remark, in view of the claim that

if two random variables are PQD, then the graph of the copula of the said random variables

”lies on or above the graph of the independence copula”, cf. Nelsen (2006), p. 188. On the

basis of this discussion, Shannon’s type entropy of extreme value copula quantifies, in this

sense, the degree of the PQD of the associated random variables. The smaller CESh is, the

less PQD the associated random variables would be.

(d) CESh(CA) does not recognize between right or left skew copulas, something which was

observed in Example 1. It is also confirmed, for example, in the case A(t) = max
{
x+1
2 , 1− x

}
which is right skew and the case A(t) = max

{
x, 1− x

2

}
which is left skew (cf. Eschenburg

(2013), p. 76 and the cited there paper by Durante and Mesiar (2010)). In both cases the

common value of CESh(CA) is 0.27.

(e) Proposition 3.5 formulates the invariance of the considered here measures under strictly

increasing transformations of the underling random variables. Invariance is a characteristic

property of a measure of concordance. Moreover, the definition and the study of a more

general group of transformations on the collection of all bivariate copulas has been provided

in the papers by Fuchs (2014) and Fuchs and Schmidt (2014).
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4. Extreme Value Copula Divergences

The interest is focused, in this subsection, on the divergence between two bivariate

extreme value copulas, that is on pseudo-distances of the form (2.2) or (2.4)-(2.7) between two

bivariate extreme value copulas of the form (2.9). In this context, following the formulation of

Kamnitui et al. (2019), p. 923, let A be the class of Pickands dependence functions, i.e., the

set of functions A, defined above by (2.9). Let Ai ∈ A, i = 1, 2, be two Pickands dependence

functions with associated bivariate extreme value copulas

(4.1) CAi(u, v) = exp

[
ln(uv) ·Ai

{
ln v

ln(uv)

}]
, 0 < u, v ≤ 1, (u, v) ̸= (1, 1), i = 1, 2.

Then, it is of interest to define a distance type measure between CA1 and CA2 . In this frame,

based on the measures (2.2) and (2.4)-(2.7) and on the fact that

CI1(CAi) =

∫
[0,1]2

CAi(u, v)dudv =

1∫
0

1

[1 +Ai(t)]
2dt =

ρS(Ai) + 3

12
, i = 1, 2,

(cf. (3.6), (3.7) and (3.8)) we consider the following divergence type measures between CA1

and CA2 :

Csiszár type extreme value copulas ϕ-divergences,

(4.2) CDϕ(CA1 , CA2) =

∫
[0,1]2

CA2(u, v)ϕ

(
CA1(u, v)

CA2(u, v)

)
dudv − CI1(CA2)ϕ

(
CI1(CA1)

CI1(CA2)

)
,

where ϕ : (0,∞) → R is a real valued convex function and ϕ ∈ Φ, defined by (2.3).

Kullback-Leibler type extreme value copulas divergence,

(4.3) CDKL(CA1 , CA2) =

∫
[0,1]2

CA1(u, v) ln

(
CA1(u, v)

CA2(u, v)

)
dudv − CI1(CA1) ln

(
CI1(CA1)

CI1(CA2)

)
,

and

Cressie-Read λ-power type extreme value copulas divergence,

(4.4)

CDλ(CA1 , CA2)

= 1
λ(λ+1)

( ∫
[0,1]2

CA2(u, v)
(
CA1

(u,v)

CA2
(u,v)

)λ+1
dudv − CI1(CA2)

(
CI1(CA1

)

CI1(CA2
)

)λ+1
)
,

where λ ∈ R, λ ̸= 0,−1.

Moreover, let’s define a copula type version of the density power divergence of Basu et al.

(1998), namely, the density power type extreme value copulas divergence, which is

defined, in view of (2.6) and (2.8), by,

(4.5)

Cda(CA1 , CA2)

=
∫

[0,1]2

{
C1+a
A2

(u, v)−
(
1 + 1

a

)
Ca
A2

(u, v)CA1(u, v) +
1
a C

1+a
A1

(u, v)
}
dudv, a > 0.
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Cda is not obtained from (4.2) for a particular choice of the convex function ϕ while its

limiting case, lima→0 Cda(CA1 , CA2) = CKL(CA1 , CA2), cf. (2.7), is defined by

(4.6) CKL(CA1 , CA2) =

∫
[0,1]2

CA1(u, v) ln

(
CA1(u, v)

CA2(u, v)

)
dudv + CI1(CA2)− CI1(CA1).

Next proposition provides with explicit expressions of the above divergence type measures.

Proposition 4.1. Let the extreme value copulas (4.1). Then, based on (3.8) and

(4.2)-(4.6),

(a) For a real valued convex function ϕ : (0,∞) → R, with ϕ ∈ Φ, defined by (2.3),

(4.7)

CDϕ(CA1 , CA2) =

∫
[0,1]2

(
ln

1

v

)
v

1−t+A2(t)
t

1

t2
ϕ
(
v

A1(t)−A2(t)
t

)
dvdt−ρS(A2) + 3

12
ϕ

(
ρS(A1) + 3

ρS(A2) + 3

)
.

(b) The Kullback-Leibler type extreme value copulas divergence is given by,

(4.8) CDKL(CA1 , CA2) = 2

1∫
0

A2(t)−A1(t)

[1 +A1(t)]
3 dt− ρS(A1) + 3

12
ln

(
ρS(A1) + 3

ρS(A2) + 3

)
.

(c) For λ ∈ R, λ ̸= 0,−1, the Cressie-Read λ-power type extreme value copulas divergence is

given by

(4.9)

CDλ(CA1 , CA2)

= 1
λ(λ+1)

(
1∫
0

1
[1+A1(t)+λ(A1(t)−A2(t))]

2dt− ρS(A2)+3
12

(
ρS(A1)+3
ρS(A2)+3

)λ+1
)
.

(d) For a > 0, the density power type extreme value copulas divergence is given by,

Cda(CA1 , CA2) =

1∫
0

1

[1 + (1 + a)A2(t)]
2dt+

1

a

1∫
0

1

[1 + (1 + a)A1(t)]
2dt

−
(
1 +

1

a

) 1∫
0

1

[1 +A1(t) + aA2(t)]
2dt.(4.10)

(e) The CKL(CA1 , CA2) extreme value copulas divergence is given by,

(4.11) CKL(CA1 , CA2) = 2

1∫
0

A2(t)−A1(t)

[1 +A1(t)]
3 dt+

1

12
(ρS(A2)− ρS(A1)) .

The proof of parts (c) and (d) of the proposition is outlined in subsection A.5, in the Appendix

A. The proof of the remaining parts is quite similar and they are, therefore, omitted. ▲

Remark 3. (a) All the measures of the previous proposition obey the non-negativity and

identity of indiscernibles property, a terminology which is conveyed by Weller-Fahy et al.

(2015) and it means that the said measures are non-negative and they attain their minimum
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value if and only if the underline copulas are coincide. Hence, all these divergence type

measures can by considered as quasi-distances or statistical distances between the underlined

copulas.

(b) It is well known (cf. Nelsen (2006) or Gudendorf and Segers (2010), p. 131), that the

value A(t) = 1 corresponds to independence. Then, based on (a), it is clear that if anyone

of the five measures of the above proposition is applied for A2(t) = 1, then they lead to a

measure of the distance from independence. That is, they formulate on how close stands the

copula CA1 from the copula that expresses independence of the associated random variables.

In this setting, they can be maybe applied to develop tests of independence.

(c) The cases (b) and (e) of the proposition concentrate to two different forms of Kullback-

Leibler’s type extreme value copulas divergences CDKL(CA1 , CA2) and CKL(CA1 , CA2). The

logic of the construction of these two forms of Kullback-Leibler’s type divergences between

two extreme value copulas is discussed in detail in the first paragraph of p. 303 in Zografos

(2023) for distribution functions in place of copulas. Based now in a well-known property

of the logarithmic function, namely x ln(x/y) ≥ x − y, for x, y > 0, we can easily see that

CDKL(CA1 , CA2) ≤ CKL(CA1 , CA2), comparing (4.8) and (4.11). Following Zografos (2023),

p. 306, it is clear, in view of the previous inequality, that the measure CKL(CA1 , CA2) over es-

timate the divergence or the quasi-distance between the respective copulas in comparison with

the respective Kullback-Leibler’s type extreme value copulas divergence CDKL(CA1 , CA2), de-

fined by (4.8).

Example 3. Gumbel extreme value copula

Let’s complete this section with an example which concentrates on Gumbel copula

and its divergence, in the Kullback-Leibler sense of Proposition 4.1(b), from the copula that

corresponds to independence. In this context, the Pickands dependence function of Gumbel

copula is defined (cf. Nelsen (2006), p. 98, Example 3.23) by A1(t) = [tθ + (1 − t)θ]1/θ,

θ ≥ 1, while the Pickands dependence function of the independence copula Π(u, v) = uv is

A2(t) = 1. In this framework, Kullback-Leibler type extreme value copulas divergence (cf.

Proposition 4.1(b)) is defined by,

CDKL(CA1 ,Π) = 2

1∫
0

1−A1(t)

[1 +A1(t)]
3dt−

ρS(A1) + 3

12
ln

(
ρS(A1) + 3

ρS(A2) + 3

)

= 2

1∫
0

1− [tθ + (1− t)θ]1/θ[
1 + [tθ + (1− t)θ]1/θ

]3dt− ρS(A1) + 3

12
ln

(
ρS(A1) + 3

3

)
,

where

ρS(Ai) = 12

∫
[0,1]2

CAi(u, v)dudv − 3 = 12CI1(CAi)− 3 = 12

1∫
0

1

[1 +Ai(t)]
2dt− 3, i = 1, 2,

with

ρS(A2) = 0.



On entropy and divergence type measures of bivariate extreme value copulas 19

Table 4 presents the values of CDKL for several values of the dependence parameter θ. We

observe that the minimum value of CDKL, equal to 0, is attained in the case of independence,

θ = 1, which is expected in view of Remark 3(b).

CDKL for values of θ

θ = 1 θ = 1.5 θ = 2 θ = 3 θ = 8 θ = 15 θ = 50

CESh(CA) 0 0.0025 0.0056 0.0095 0.0141 0.0149 0.0152

Table 4: Kullback-Leibler divergence between Gumbel and independence
copula.

5. Conclusions

The main aim is focused on cumulative entropies and cumulative divergences in the

light of bivariate extreme value copulas. In this way it is developed a bridge between infor-

mation theory and copula theory. On the other hand, based on the conclusions in the paper

by Zografos (2023), divergences or statistical distances have been recently extensively used

(cf. Pardo (2006) and Basu et al. (2011)) to present again and to rebuild robust statistical

inference by means of distance type or divergence type measures. Hence, it is expected that

the entropy and divergence measures between copulas, discussed above, can be used in this

direction. This will maybe be the subject of a future work. Moreover, broad classes of cop-

ulas include the classes of elliptical or Archimedean copulas and it would be of interest to

developed similar investigations and studies on the basis of these classes of copulas.

A. Appendix: Proofs of the statements

A.1. Proof of Proposition 3.1

(a) For the extreme value copula (2.9), the extreme value copula φ-entropy (3.1) is

(1.1) CEφ(CA) =

∫
[01]2

φ

{
exp

[
ln(uv) ·A

{
ln v

ln(uv)

}]}
dudv.

Let, t = ln v
ln(uv) , (u, v) ∈ (0, 1]2, (u, v) ̸= (1, 1). Then, t ∈ [0, 1) and

(1.2) ln(uv) =
ln v

t
.

Moreover,

(1.3)
dt

du
= − ln v

u(ln(uv))2
= − (ln v)2

u(ln(uv))2 ln v
and

dt

du
= − t2

u(ln v)
or du = −u ln v

t2
dt.
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On the other hand,

t =
ln v

ln(uv)
, or lnu =

(1− t) ln v

t
, or u = v(1−t)/t,

and taking into account (1.3),

(1.4) du = −v(1−t)/t ln v

t2
dt.

Then, equations (1.1), (1.2) and (1.4), lead to the general formula for CEφ(CA),

CEφ(CA) = −
∫

[0,1]2

v
1−t
t
ln v

t2
φ

{
exp

[
ln v

t
A(t)

]}
dvdt.

(b) Based on u = v(1−t)/t, (1.2) and (1.4),

CESh(CA) = −
∫

[0,1]2

exp

[
ln(uv) ·A

{
ln v

ln(uv)

}]
ln

{
exp

[
ln(uv) ·A

{
ln v

ln(uv)

}]}
dudv

= −
∫

[0,1]2

ln(uv) ·A
{

ln v

ln(uv)

}
exp

[
ln(uv) ·A

{
ln v

ln(uv)

}]
dudv

=

∫
[0,1]2

1

t3
v

1−t
t (ln v)2A(t) exp

{
ln vA(t)/t

}
dvdt,

and after standard manipulations,

(1.5) CESh(CA) =

1∫
0

1

t3
A(t)


1∫

0

v
1+A(t)

t
−1(ln v)2dv

 dt.

Based on formula 4.272-6, on p. 550 in Gradshteyn and Ryzhik (2007),

(1.6)

1∫
0

(
log

1

x

)µ−1

xν−1dx =
1

νµ
Γ(µ), Re µ > 0, Re ν > 0.

Applying this formula for µ = 3 and ν = 1+A(t)
t , we obtain

(1.7)

1∫
0

v
1+A(t)

t
−1(ln v)2du =

1(
1+A(t)

t

)3Γ(3) = 2t3

[1 +A(t)]3
.

Then, (1.5) and (1.7) lead to the desired result,

CESh(CA) =

1∫
0

1

t3
A(t)

2t3

[1 +A(t)]3
dt = 2

1∫
0

A(t)

[1 +A(t)]3
dt.
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(c) It is enough to obtain the expression for CIλ(CA), which is obtained by following exactly

the same steps. For each λ > 0, based again on (1.2) and (1.4),

CIλ(CA) =

∫
[0,1]2

Cλ
A(u, v)dudv =

∫
[0,1]2

exp

[
λ ln(uv) ·A

{
ln v

ln(uv)

}]
dudv

= −
∫

[0,1]2

v
1−t
t
ln v

t2
exp

[
λA(t)

t
ln v

]
dvdt

= −
∫

[0,1]2

v
1−t
t
ln v

t2
exp

[
ln v

λA(t)
t

]
dvdt

= −
∫

[0,1]2

v
1−t
t
ln v

t2
v

λA(t)
t dvdt,

and therefore

(1.8) CIλ(CA) =

1∫
0

1

t2


1∫

0

(
ln

1

v

)
v

1+λA(t)
t

−1dv

 dt.

Applying again formula 4.272-6, on p. 550 in Gradshteyn and Ryzhik (2007), (1.6), for µ = 2

and ν = 1+λA(t)
t , we obtain

(1.9)

1∫
0

(
ln

1

v

)
v

1+λA(t)
t

−1dv =
t2

[1 + λA(t)]2
.

Equations (1.8) and (1.9) lead to the desired result

CIλ(CA) =

1∫
0

1

t2
t2

[1 + λA(t)]2
dt =

1∫
0

1

[1 + λA(t)]2
dt, λ > 0.

▲

A.2. Evaluation of the measures for Marshall-Olkin extreme value copula of Ex-

ample 2

Based on (3.4)

CIλ(CA) =

1∫
0

1

[1 + λA(t)]2
dt =

1/2∫
0

1

[1 + λA(t)]2
dt+

1∫
1/2

1

[1 + λA(t)]2
dt, λ > 0

=

1/2∫
0

1

[1 + λ(1− αt)]2
dt+

1∫
1/2

1

[1 + λ(1− α(1− t))]2
dt

=

1/2∫
0

1

[1 + λ− λαt)]2
dt+

1∫
1/2

1

[1 + λ− λα+ λαt]2
dt.
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Based on formula 2.113, p. 69 in Gradshteyn and Ryzhik (2007),
∫

1
[a+bx]2

dx = − 1
b[a+bx] , thus

1/2∫
0

1

[1 + λ− λαt)]2
dt =

1

λα(1 + λ− λαt)

∣∣∣∣1/2
0

= − 1

λα(1 + λ)
+

1

λα(1 + λ− λα/2)

=
1

(1 + λ)(2 + 2λ− λα)
,

and the same is the explicit expression of the second integral
1∫

1/2

1
[1+λ−λα+λαt]2

dt. Hence,

CIλ(CA) =
2

(1 + λ)(2 + 2λ− λα)
.

For λ = 1 it is immediate to see that,

CI1(CA) =
1

4− α
,

and then, based on (3.3),

CETs,λ(CA) =
1

λ− 1

[
1

4− α
− 2

(1 + λ)[2− λ(α− 2)]

]
.

Shannon type Marshall-Olkin extreme value copula is given, in view of (3.5), by

CESh(CA) = lim
λ→1

CETs,λ(CA) =
8− 3α

2(4− α)2
.

▲

A.3. Proof of Proposition 3.2

The measures considered in this proposition are maximized for A(t) = max(t, 1 − t)

and they are minimized for A(t) = 1 because the non-negative function z1(w) = 2w
(1+w)3

, is

decreasing for w ∈ [1/2, 1] and the same is happen for the function z2(w) = 1
(1+λw)2

, for

w ≥ 0, λ > 0, λ ̸= 1, while CESh and CIλ are related with the functions z1 and z2 as follows,

CESh(CAn) =

1∫
0

z1(A(t))dt and CIλ(CAn) =

1∫
0

z2(A(t))dt, λ > 0,

for Pickands dependence function A with max(t, 1− t) ≤ A(t) ≤ 1, for each t ∈ [0, 1].

The range of values is outlined for CIλ. The proof for the other measures are derived

in a similar manner. For A(t) = max(t, 1− t), the maximum value of CIλ(CA) is,

CIλ(Cmax(t,1−t)) =

1∫
0

1

[1 + λmax(t, 1− t)]2
dt =

1/2∫
0

1

[1 + λ(1− t)]2
dt+

1∫
1/2

1

[1 + λt]2
dt,
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and applying the transformation y = 1− t in the first integral

CIλ(Cmax(t,1−t)) = 2

1∫
1/2

1

[1 + λt]2
dt.

Based on 2.113, p. 69 in Gradshteyn and Ryzhik (2007),

∫
1

[a+ bx]2
dx = − 1

b[a+ bx]
, thus

CIλ(Cmax(t,1−t)) = 2

1∫
1/2

1

[1 + λt]2
dt =

2

(1 + λ)(2 + λ)
.

For A(t) = 1, the minimum value of CIλ(CA) is,

CIλ(C1) =

1∫
0

1

[1 + λ]2
dt =

1

(1 + λ)2
,

and the proof is completed. ▲

A.4. Proof of Proposition 3.4

The proof follows the proof of Theorem 5.1.9 of Nelsen (2006), p. 169. Let’s start

with the limn→∞ CIλ(CAn). The main part of the proof shows that a positive power of an

extreme value copula satisfies a Lipschitz type condition. In this direction, let CA(u, v) =

exp
[
ln(uv) ·A

{
ln v

ln(uv)

}]
, 0 < u, v ≤ 1, (u, v) ̸= (1, 1), be an extreme value copula. Then,

for λ > 0,

Cλ
A(u, v) = exp

[
λ ln(uv) ·A

{
λ ln v

λ ln(uv)

}]
= exp

[
ln(uλvλ) ·A

{
ln vλ

ln(uλvλ)

}]
= CA(u

λ, vλ).

Theorem 2.2.4 of Nelsen (2006), p. 11, states that a subcopula, and hence a copula C, satisfies

a Lipschitz condition, that is,

|C(u2, v2)− C(u1, v1)| ≤ |u2 − u1|+ |v2 − v1| .

Based on them, ∣∣∣Cλ
A(u2, v2)− Cλ

A(u1, v1)
∣∣∣ = ∣∣∣CA(u

λ
2 , v

λ
2 )− CA(u

λ
1 , v

λ
1 )
∣∣∣

≤
∣∣∣uλ2 − uλ1

∣∣∣+ ∣∣∣vλ2 − vλ1

∣∣∣ ,
for λ > 0. Moreover, based on Lagrange mean value theorem, for each x, y ∈ (0, 1) with

x < y, without loss of generality, (xλ − yλ)/(x − y) = λξλ−1, with x < ξ < y. However, for

λ ≥ 1 and 0 < x < ξ < y < 1, ξλ−1 ≤ 1 and then |xλ − yλ| ≤ λ|x− y|, 0 < x < y < 1, λ ≥ 1.

Hence, the function h(u) = uλ, 0 < u < 1, satisfies a type of Lipschitz condition for λ ≥ 1 of

the form

|h(u2)− h(u1)| =
∣∣∣uλ2 − uλ1

∣∣∣ ≤ λ |u2 − u1| ,
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and the same is valid for
∣∣vλ2 − vλ1

∣∣ ≤ λ |v2 − v1|. Both of them entail that∣∣∣Cλ
A(u2, v2)− Cλ

A(u1, v1)
∣∣∣ ≤ λ |u2 − u1|+ λ |v2 − v1| , λ ≥ 1.

Therefore, a positive power of an extreme value copula, Cλ
A, λ ≥ 1, satisfies a Lipschitz

type condition. In a similar manner to that of the proof of Theorem 5.1.9 of Nelsen (2006),

p. 169, the above inequality means that the family Cλ
A, λ ≥ 1, is equicontinuous, thus the

convergence of
{
Cλ
An

}
to Cλ

A is uniform, which entails that

limn→∞ CIλ(CAn) = limn→∞
∫

[0,1]2
Cλ
An

(u, v)dudv =
∫

[0,1]2
limn→∞Cλ

An
(u, v)dudv

=
∫

[0,1]2
Cλ
A(u, v)dudv = CIλ(CA),

for λ ≥ 1. The proof for Tsallis’ type entropy is straightforward while the proof for Shannon’s

type entropy is immediate as, in view of (3.5),

lim
n→∞

CESh(CAn) = lim
n→∞

lim
λ→1

CETs,λ(CAn) = lim
λ→1

lim
n→∞

CETs,λ(CAn) = lim
λ→1

CETs,λ(CA)

= CESh(CA),

on the condition that the limits exist. ▲

A.5. Proof of Proposition 4.1(c) and 4.1(d)

(c) Based on (4.4), lets try to obtain the integral∫
[0,1]2

CA2(u, v)

(
CA1(u, v)

CA2(u, v)

)λ+1

dudv,

for

CAi(u, v) = exp

[
ln(uv) ·Ai

{
ln v

ln(uv)

}]
, 0 < u, v ≤ 1, (u, v) ̸= (1, 1), i = 1, 2.

Consider the transformation t = ln v
ln(uv) , (u, v) ∈ (0, 1]2, (u, v) ̸= (1, 1). Then, t ∈ [0, 1) and

taking into account (1.2) to (1.4),

∫
[0,1]2

CA2(u, v)

(
CA1(u, v)

CA2(u, v)

)λ+1

dudv = −
∫

[0,1]2

v
1−t
t
ln v

t2
exp

(
ln v

A2(t)
t

)
× exp

(
ln v

(λ+1)[A1(t)−A2(t)]
t

)
dvdt,

or ∫
[0,1]2

CA2(u, v)

(
CA1(u, v)

CA2(u, v)

)λ+1

dudv =

∫
[0,1]2

(
ln

1

v

)
1

t2
v

1+A1(t)+λ[A1(t)−A2(t)]
t

−1dvdt.
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Using again (1.6), for µ = 2 and ν = 1+A1(t)+λ[A1(t)−A2(t)]
t , we obtain

∫
[0,1]2

CA2(u, v)

(
CA1(u, v)

CA2(u, v)

)λ+1

dudv =

1∫
0

1

t2
t2

[1 +A1(t) + λ[A1(t)−A2(t)]]
2dt,

which completes the proof in view of (4.4). ▲

(d) For

CAi(u, v) = exp

[
ln(uv) ·Ai

{
ln v

ln(uv)

}]
, 0 < u, v ≤ 1, (u, v) ̸= (1, 1), i = 1, 2,

taking into account (4.5),

(1.10)

Cda(CA1 , CA2) =

∫
[0,1]2

{
CA2(u, v)

1+a −
(
1 +

1

a

)
CA2(u, v)

aCA1(u, v) +
1

a
CA1(u, v)

1+a

}
dudv,

a > 0. Based on (3.4),

(1.11)

∫
[0,1]2

CAi(u, v)
1+adudv =

1∫
0

1

[1 + (1 + a)Ai(t)]2
dt, i = 1, 2.

Hence, it is enough to obtain,

∫
[0,1]2

CA2(u, v)
aCA1(u, v)dudv. To proceed with the evaluation

of this integral, let’s make the change of variables, t = ln v
ln(uv) , (u, v) ∈ (0, 1]2,(u, v) ̸= (1, 1).

Then, t ∈ [0, 1) and ln(uv) = ln v
t , du = −v(1−t)/t ln v

t2
dt, in view of (1.2) and (1.4). Based on

them,∫
[0,1]2

CA2(u, v)
aCA1(u, v)dudv =

∫
[0,1]2

exp

{
ln(uv) ·

[
A1

(
ln v

ln(uv)

)
+ aA2

(
ln v

ln(uv)

)]}
dudv

=

∫
[0,1]2

exp

{
ln v

t
· [A1 (t) + aA2 (t)]

}(
−v(1−t)/t ln v

t2

)
dvdt

= −
∫

[0,1]2

1

t2
(ln v)v(1−t)/t exp

{
ln v[A1(t)+aA2(t)]/t

}
dvdt

=

∫
[0,1]2

1

t2

(
ln

1

v

)
v

1+A1(t)+aA2(t)
t

−1dvdt

=

1∫
0

1

t2


1∫

0

(
ln

1

v

)
v

1+A1(t)+aA2(t)
t

−1dv

 dt.(1.12)

Applying again formula 4.272-6, on p. 550 in Gradshteyn and Ryzhik (2007),

1∫
0

(
log

1

x

)µ−1

xν−1dx =
1

νµ
Γ(µ), Re µ > 0, Re ν > 0,
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for µ = 2 and ν = 1+A1(t)+aA2(t)
t , we obtain

(1.13)

1∫
0

(
ln

1

v

)
v

1+A1(t)+aA2(t)
t

−1dv =
t2

[1 +A1 (t) + aA2 (t)]2
.

Then, (1.12) and (1.13) entail that

(1.14)

∫
[0,1]2

CA2(u, v)
aCA1(u, v)dudv =

1∫
0

1

[1 +A1 (t) + aA2 (t)]2
dt,

and the proof of case (d) of Proposition 3.2 is integrated in view of (1.10), (1.11) and (1.14).

▲
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