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1. INTRODUCTION

The nature and strength of cross-sectional dependence is crucial for understanding

economic or environmental systems. One possible measure relies on copulas, which have

become popular over the last decades. In this paper, we shed new light on the formulation

of structural assumptions and introduce new statistics for certain testing problems.

Consider X1, . . . ,Xn a sample of d-variate observations where Xj stands for the vector

(Xj1, . . . , Xjd)
T . At first, one may think that this n-sample consists of independent copies

of a d-dimensional random vector X = (X1, . . . , Xd)
T . However, most of the results hold

true for some strictly stationary time series. We assume that the cumulative distribution

function (c.d.f.) F of the representative vector X has continuous univariate margins denoted

by F1, . . . , Fd. There exists then a unique copula C : [0, 1]d → [0, 1], that is a d-dimensional

c.d.f. with standard uniform margins such that F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) for all

x = (x1, . . . , xd) ∈ Rd. This representation, due to Sklar (1959), illustrates that the copula

C characterizes the dependence between the components of X.

The present work is concerned with testing structural hypotheses for the copula. There

exists indeed a large number of copula families, and testing procedures help guide the choice

of the most appropriate one. Tests based on empirical copula processes have been suc-

cessfully proposed in the literature. For instance, Deheuvels (1981), Beran et al. (2007),

Kojadinovic and Holmes (2009), Kojadinovic et al. (2011), Genest et al. (2019) or Bücher

and Pakzad (2022) have handled the independence, serial independence, independence by

blocks, or broader classes such as extreme value copulas. Whereas these references focus

on one hypothesis at a time, the aim of this paper is to demonstrate that several structural

hypotheses for dependence share a common pattern. The main intention is thus to illuminate

the connections between different statistical questions that seemed isolated, providing a key

to transition from one example to another.

Our procedure can be roughly illustrated by the pioneering idea of Deheuvels (1981),

which reveals independence through the Möbius decomposition of the empirical process. The

null hypothesis is thus equivalent to the intersection of a finite set of hypotheses since all

secondary terms of the decomposition vanish. We generalize this method by applying another

functional decomposition, chosen in accordance with the structural assumption being tested.

Again, a collection of sub-hypotheses holds true under the null hypothesis. In consequence,

new test statistics are defined by extracting and combining all the associated information.

The remainder of this paper is organized as follows. Section 2 recalls the functional de-

composition based on operators and makes it explicit in the context of dependence structures.

Section 3 is devoted to the theoretical definition of the testing process and the study of its

asymptotic behavior. New test statistics are introduced, and their practical implementation

is discussed. Several experiments based on simulations are provided in Section 4. Concluding

remarks are given in Section 5.
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2. DEPENDENCE STRUCTURES AND ASSOCIATED OPERATORS

Our aim in this section is to explain how a general functional decomposition, based

on commuting idempotent maps, allows us to address various null hypotheses of dependence

using a common mechanism. Such a null hypothesis is defined by the stability of the copula

under a composition of certain operators. The second part of this section provides a list of

examples. Finally, a collection of sub-hypotheses naturally emerges, leading to the definition

of new test statistics.

2.1. A general functional decomposition and the null hypothesis

Let F be the linear space of real-valued functions acting on [0, 1]d. Let I : F → F
denote the identity map. For i ∈ {1, . . . , d}, let Pi : F → F be an operator. We assume

that the collection of functionals P1, . . . ,Pd commutes. The composition of the maps Pi for

i ∈ A will be denoted as
∏

i∈APi and equals I in the case where A = ∅.

Every f ∈ F can be decomposed as

(2.1) f =

d∏
i=1

(I−Pi +Pi)(f) =
∑
A∈Pd

MA(f)

where Pd stands for the superset of {1, . . . , d} and where MA is defined as

(2.2) MA =
∏
i∈A

(I−Pi)
∏
i/∈A

Pi .

Another way of writing the equation (2.1) is

(2.3) f −M∅(f) =
∑
A∈P⋆

d

MA(f)

where P⋆
d = Pd \ ∅ and where M∅ =

∏d
i=1Pi from (2.2).

Consider now copula functions C associated with continuous random vectors X. The

main objective of this section is to identify, for some copula-based structural dependence, their

associated set of operators {P1, . . . ,Pd} that allows to write the dependence null hypothesis

as

(2.4) (H)C = M∅(C) =
d∏

i=1

Pi(C)

the composition of all functionals.

2.2. A first list of examples

Testing independence and independence by blocks. The complete independence

among all components of X, written in terms of copulas as (H0,1)C(x) = x1 × · · · × xd,
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corresponds to the map

(2.5) Pi(C)(x) = xi × C(x1, . . . , xi−1, 1, xi+1, . . . , xd).

Let us structure X as (X{1}, . . . ,X{p}) the concatenation of p subvectors of dimension

d1, . . . , dp. Therefore d = d1 + · · ·+ dp. The assertion (H0,2)X{1}, . . . ,X{p} are independent,

or equivalently

(H0,2)C(x) = C(x{1},1−{1})× · · · × C(x{i},1−{i})× · · · × C(x{p},1−{p})

is associated with

(2.6) Pi(C)(x) = C(x{i},1−{i})× C(1{i},x−{i}).

Testing specific Archimedean copula. Now, the independence assumptions are set aside

to focus on Archimedean copulas. Fix φ the generator of interest that is a non-negative,

continuous, strictly decreasing and convex function defined on [0, 1] satisfying φ(1) = 0.

Its pseudo-inverse, denoted φ[−1], is defined as the usual inverse on [0, φ(0)] and equals 0

elsewhere. Writing the specific Archimedean copula generated by φ

(H0,3;φ)C(x) = φ[−1] [φ(x1) + · · ·+ φ(xd)]

corresponds to the choice

(2.7) Pi(C)(x) = φ[−1] [φ (C(xi,1−i)) + φ (C(1i,x−i))] .

The symmetric logistic extreme value copula is a particular case. Let ℓ : [0,∞]d → [0,∞]

be a stable tail dependence function. Recall that an extreme value copula can be written as

C(x) = exp [−ℓ {− ln(x1), . . . ,− ln(xd)}]. See for instance Chapter 7 of de Haan and Ferreira

(2006) for more details on the ℓ function. It is called the symmetric logistic extreme value

copula model when there exists a real θ ∈ [1,∞[ such that ℓ(x1, . . . , xd) = (xθ1 + · · ·+ xθd)
1/θ.

Testing the symmetric logistic extreme value model

C(x) = exp

[
−
{
(− ln(x1))

θ + · · ·+ (− ln(xd))
θ
}1/θ

]
corresponds to the combination of the last expression (2.7) of the map with φθ(t) = (− ln(t))θ.

Testing specific Archimax copula. As before, consider φ a generator associated with an

Archimedean structure. And consider ℓ : [0,∞]d → [0,∞] a stable tail dependence function.

Recall from Charpentier et al. (2014) and Chatelain et al. (2020) that

C(x) = φ−1 [ℓ (φ(x1), . . . , φ(xd))]

is called an Archimax copula. We restrict here the form of ℓ as following

ℓ(x1, . . . , xd) = g−1
[
g{ℓ(x{1},0−{1})}+ · · ·+ g{ℓ(0−{p},x{p})}

]
where g is a continuous bijection from R+ to R+ satisfying g(1) = 1. From Theorem 6 in

Ressel (2022), one knows that g(x) = xθ for some θ ≥ 1. For the sake of simplicity, set

φx{i} =
∑

j∈{i} φ(xj)ej . For i ∈ {1, . . . , p}, let define Pi by

Pi(C)(x) = φ−1

[{(
ℓ
(
φx{i},0−{i}

))θ
+
(
φ ◦ C

(
1{i},x−{i}

))θ}1/θ
]
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completed by Pp+1 = . . . = Pd = I, to describe the null hypothesis

(H0,4;φ,ℓ,θ)C(x) = φ−1

[{(
ℓ(φx{1},0−{1})

)θ
+ · · ·+

(
ℓ(0−{p}, φx{p})

)θ}1/θ
]
.

This list concludes the enumeration of examples that completely characterize the cop-

ula. This point is important because it will be possible to make a decision for the test by using

parametric bootstrap, primarily, and somewhat non-parametric. Most of these examples will

be used numerically in Section 4 to illustrate the interest of the functional decomposition and

the new statistics that will be presented in the next section.

2.3. A list of hypotheses that do not completely characterize the copula

For now, we will continue the list of examples linking structure hypotheses and choice of

operator. However, these will not be used in the numerical section. This is purely a theoretical

presentation. The reason is simple. The following hypotheses do not completely characterize

the copula. Consequently, the use of more advanced numerical techniques (for example, the

multiplier bootstrap) is necessary to understand the law under the null hypothesis. This

point is not within the scope of this paper, which aims to lay the groundwork for the use of

functional decompositions in the definition of new test statistics.

Testing max-stability. For a given positive integer r, let us consider the null hypothesis

(H0,5;r)C(x) = Cr(x1/r) ∀x ∈ [0, 1]d .

The max-stability assumption, which is the intersection (H0,5) = ∩r∈N⋆(H0,5;r), corresponds

to the choice Pi(C)(x) = Cri(x1/ri) as functional. This null hypothesis has been handled in

Kojadinovic et al. (2011).

Testing symmetry. Similarly, let Sd be the set of all permutations of {1, . . . , d} and for

any σ ∈ Sd set xσ = (xσ(1), . . . , xσ(d)). Testing symmetry of the copula

(H0,6)C(x) = C(xσ) ∀x ∈ [0, 1]d and ∀σ ∈ Sd

can be handled in a very similar way to the previous one. Let T1,d denote the set consisting

of the d − 1 transpositions τi = (1i) for i = 2, . . . , d. Noting that T1,d generates Sd, it

is also possible to write here that (H0,6) =
⋂d

i=2(H0,6;τi). It is thus sufficient to consider

Pi(C)(x) = C(xτi).

Testing Archimedean structure by blocks. Recall that the random vector X might

be seen as the concatenation of p subvectors X{1}, . . . ,X{p}. The independence by blocks

could be replaced by an Archimedean structure by blocks associated with φ. Then the null

hypothesis

(H0,7;φ)C(x) = φ−1
[
φ(C(x{1},1−{1})) + · · ·+ φ(C(1−{p},x{p}))

]
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could be obtained using Pi(C)(x) = φ−1
[
φ(C(x{i},1−{i})) + φ(C(x−{i},1{i}))

]
. Copulas

which satisfy the corresponding null hypothesis have an easy interpretation. Only p-uplets of

variables, each belonging to one of the p blocks, are completely specified: Their dependence

structure follows the Archimedean copula generated by φ. The dependence within any groups

of variables belonging partially to the same block is not fixed. This differs from the notion

of nested or hierarchical copulas.

2.4. An associated collection of sub-hypotheses

The null hypothesis (2.4) can be written as following (H)C −M∅(C) = 0. From (2.3),

C −M∅(C) =
∑
A∈P⋆

d

MA(C)

so that the summation
∑

A∈P⋆
d
MA(C) vanishes when (H) holds true. It is thus interesting

to consider for any A ∈ P⋆
d the sub-hypothesis

(2.8) (HA)MA(C) = 0.

An immediate property is ∩A(HA) ⊆ (H). So that a relevant question is to analyze whether

any (HA) holds true under the null hypothesis (H). What is its link exactly with the inter-

section? In the next proposition, we answer part of the question.

Proposition 2.1. Let P1, . . . ,Pd be a commuting collection of idemptotent opera-

tors on F . Then, the null hypothesis (2.4) is linked to the sub-hypotheses (2.8) through the

equality

(H) =
⋂

A∈P⋆
d

(HA) .

Proof of Proposition 2.1: Suppose MA(C) ≡ 0 for any non-empty subset A of

{1, . . . , d}. By application of (2.1), one obtains C −M∅(C) ≡ 0 which is (H). Reciprocally,

if (H) holds true, then C = M∅(C) = (
∏d

j=1Pj)(C). Combined with (2.2), it yields by

commutativity,

MA(C) =

(∏
i∈A

(I−Pi)
∏
i/∈A

Pi

)
(C) =

(∏
i∈A

(I−Pi)
∏
i/∈A

Pi

)
(

d∏
j=1

Pj(C))

=

(∏
i∈A

(Pi −P2
i )
∏
i/∈A

Pi

)
(
∏
j ̸∈A

Pj(C))

which vanishes for A ≠ ∅, since Pi = P2
i by the idempotence assumption.

Naturally, one may wonder whether the list of examples satisfies these conditions or

not. More precisely, the question is as follows: under (H), are the associated operators

P1, . . . ,Pd commutative and idempotent? The answer is affirmative in each case presented

in Sections 2.2 and 2.3. Their commutativity property is evident. As for idempotence, we

regularly need to use the following: C(1) = 1 and φ(1) = 0.
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3. THE TESTING PROCEDURE

The purpose of this section is to introduce the empirical testing processes. Consider a

structural dependence hypothesis for copulas given by (2.4) that is

(H)C = M∅(C) =

d∏
i=1

Pi(C).

Starting from a copula estimator Cn, it is natural to construct the testing process as

(
√
n(Cn −M∅(Cn))(x),x ∈ [0, 1]d)

when considering (H). This is precisely what is done in the literature. Recall now that

{MA}A∈Pd
is the set depending, through Formula (2.2), on {P1, . . . ,Pd} a collection of

operators defined on F . It is assumed that {P1, . . . ,Pd} are commuting and idempotent

maps, at least when (H) holds true. From Proposition 2.1, (H) implies any sub-hypothesis

(HA)MA(C) = 0. As a consequence, another choice of empirical testing processes is possible.

In this section, these empirical processes will be studied and used to define new test statistics.

3.1. Weak convergence of the concatenated empirical process

Consider X1, . . . ,Xn a sample of d-variate observations of X where Xj stands for

(Xj1, . . . , Xjd)
T . Set Uj = (F1(Xj1), . . . , Fd(Xjd)) for j ∈ {1, . . . , n}. The empirical cumula-

tive distribution function based onU1, . . . ,Un is denoted byGn and we setGn =
√
n(Gn−C).

Under regular conditions, the empirical process Gn converges weakly in ℓ∞([0, 1]d) to a tight

centered Gaussian process GC concentrated on

C0 =
{
h : [0, 1]d → R continuous such thath(1) = 0 and

h(x) = 0 if some components of x are equal to 0} .(3.1)

Throughout the paper, we assume the existence and the paths continuity of

(3.2) WC(x) = GC(x)−
d∑

i=1

∂Ci(x)GC(xi,1−i), x ∈ [0, 1]d .

We introduce and study in this section the concatenated empirical testing process(√
n(Cn −M∅(Cn)),

{√
nMA(Cn)

}
A∈P⋆

d

)
.

Theorem 3.1. Assume, at least when (2.4) holds true, that

- The operators {P1, . . . ,Pd} are commuting and idempotent maps.

- The maps {MA}A∈Pd
derived from (2.2) are Hadamard-differentiable at C tangentially to

C0.
Consider an empirical copula Cn such that, as n tends to infinity, the empirical copula process√
n(Cn − C) converges weakly in ℓ∞([0, 1]d) to WC given in (3.2).
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Then, under (H) and as n tends to infinity, the joint empirical processes converge weakly in

{ℓ∞([0, 1]d)}2d as following(√
n(Cn −M∅(Cn)),

{√
nMA(Cn)

}
A∈P⋆

d

)
w−−−→

n→∞(
WC −M′

∅(C;WC),
{
M′

A(C;WC)
}
A∈P⋆

d

)
.(3.3)

Proof of Theorem 3.1: By assumption,
√
n(Cn−C)

w−−−→
n→∞

WC in ℓ∞([0, 1]d) and

any MA is Hadamard-differentiable at C. The functional version of the Delta method (see

Section 3.9 of van der Vaart and Wellner (1996)) applied to f 7→ (f,M∅(f), {MA(f)}A∈P⋆
d
)

yields(√
n(Cn − C),

√
n(M∅(Cn)−M∅(C)), {

√
n(MA(Cn)−MA(C))}A∈P⋆

d

)
w−−−→

n→∞(
WC ,M

′
∅(C;WC), {M′

A(C;WC)}A∈P⋆
d

)
in
{
ℓ∞([0, 1]d)

}2d+1
. From the continuous mapping theorem applied to the functional

T (f, g, {hA}A) = (f − g, {hA}A), we obtain the weak convergence of(√
n(Cn −M∅(Cn))−

√
n(C −M∅(C)), {

√
n(MA(Cn)−MA(C))}A∈P⋆

d

)
in
(
ℓ∞([0, 1]d)

)2d
to
(
WC −M′

∅(C;WC), {M′
A(C;WC)}A∈P⋆

d

)
. Now, recall the definition

of the sub-hypotheses (2.8). When (2.4) holds true, the collection of maps {Pi}i=1,...,d is

assumed to form an idempotent and commuting family. Consequentlty, Proposition 2.1 ap-

plies, ∩A∈P⋆
d
(HA) holds true so that C −M∅(C) = 0 as well as any sub-hypothesis, that is

MA(C) = 0 for any A ∈ P⋆
d . Then, the left hand side of the last convergence reduces to the

process under study.

Several copula estimates Cn satisfy the required convergence. The last lines of Section 2 in

Kojadinovic and Stemikovskaya (2019) list carefully the conditions under which
√
n(Cn −

C)
w−−−→

n→∞
WC in ℓ∞([0, 1]d) for the following list of well-known empirical copulas

- the non-parametric estimators C̃n(x) =
1
n

∑n
j=1

∏d
i=1 1{Fnj(Xji)≤xi} and

Ĉn(x) =
1
n

∑n
j=1

∏d
i=1 1{Rji,n/(n+1)≤xi} where Rji,n = rank of Xji among X1i, . . . , Xni,

- the checkerboard version C#
n (x) = 1

n

∑n
j=1

∏d
i=1min{max{nxi −Rji,n, 0}, 1},

- and the empirical beta copula, Cβ
n (x) =

1
n

∑n
j=1

∏d
i=1 Fn,Rji,n(xi) where Fn,r stands for

the probability distribution function of the Beta distribution B(r, n+ 1− r).

3.2. New collection of test statistics

Natural measures of departure from the null hypothesis are Cramér-von Mises statistics.

Consider the null hypothesis (H) described in (2.4) and depending through (2.2) on the
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operators P1, . . . ,Pd. It is assumed, at least when (H) holds true, that they are commuting

and idempotent maps.

For the sake of clearness, let us introduce some names for the empirical processes studied

in Theorem 3.1. When A = ∅, the definition of DA,n is specific since it is

D∅,n = Cn −M∅(Cn) = Cn − (
d∏

i=1

Pi)(Cn).

Whereas, if A ≠ ∅, the process is

DA,n = MA(Cn) = (
∏
i∈A

(I−Pi)
∏
i/∈A

Pi)(Cn).

Note that the empirical version of the functional decomposition is

(3.4) D∅,n =
∑
A∈P⋆

d

DA,n.

A new collection of 2d Cramér-von Mises (CvM) test statistics, indexed by the subsetsA ∈ Pd,

is now introduced as

(3.5) SA,n =

∫
[0,1]d

{DA,n(x)}2 dCn(x).

Except under (block) independence, this collection is new. Their asymptotic limit, under

assumptions of Theorem 3.1, can be characterized as

{nSA,n}A
d−−−→

n→∞

{
SA =

∫
[0,1]d

{DA(x)}2 dC(x)

}
A

where D∅ = WC −M′
∅(C;WC) and DA = M′

A(C;WC).

When Cn is taken as Ĉn, the notation SA,n becomes ŜA,n. Let Rji,n denote the rank

of Xji among X1i, . . . , Xni and set Ûj·,n = (Rj1,n/n, . . . , Rjd,n/n). Then

(3.6) ŜA,n =
1

n

n∑
j=1

{
DA,n(Ûj·,n)

}2
.

In some particular cases, it is possible to provide the expression of ŜA,n in terms of the

pseudo-observations only.

3.3. Linear combinations of the collection of test statistics

Under (H0,1) or (H0,2) the test statistics are asymptotically mutually independent

(with respect to A). As a consequence, individual critical values can be chosen to achieve an

asymptotic global significance level. Furthermore, it is possible to combine individual p-values

and get a global p-value thanks to the method à la Fisher (the resulting statistics is denoted

by Wn) as well as à la Tippett (denoted Tn). For more details, we refer to the discussion
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in Genest and Rémillard (2004) or the paragraph “Combining p-values” in Section 3 of

Kojadinovic and Holmes (2009).

In general, under other types of null hypotheses, the asymptotic mutual independence

is no more true. However, we propose to study some linear combinations of the previous col-

lection. Let w = (wA)A∈Pd
be a vector of positive weights. The latter reflects the importance

we put in the test (H)C = M∅(C) through w∅, or in the test (HA) MA(C) = 0 through wA.

We introduce the w-combined test statistics by

(3.7) Sw,n =
∑
A∈Pd

wASA,n

as well as its tractable version Ŝw,n =
∑

A∈Pd
wAŜA,n.

The focus on five weights. Only five distinct weights will be under study in the numerical

experiments. The first weight only measures the distance between Cn and C as it is specified

by (H). To summarise, one can write

w1 = ( 1︸︷︷︸
|A|=0

, 0, . . . , 0︸ ︷︷ ︸
|A|>0

).

Proposition 2.1 invites us to consider the weight

w2 = ( 0︸︷︷︸
|A|=0

, 1, . . . , 1︸ ︷︷ ︸
|A|>0

)

that assigns a similar weight to each sub-hypothesis. A natural question is whether the

mixture of both previous weights improves performance or not. Consequently, the weight

with ones everywhere

w3 = (1, 1, . . . , 1)

combines information from the original statistics with that derived from each term of the

decomposition.

On several examples, the first terms of the decomposition (those associated with singletons

A) are always zero. This is why the method becomes interesting when d > 2. For example,

under (H0,1), it simply reflects the fact that C(xi,1−i) = xi allowing for simplification.

Consequently, since singletons are uninformative, the focus here shifts to subsets A describing

pairs. Then

w4 = ( 0︸︷︷︸
|A|=0

, 0, . . . , 0︸ ︷︷ ︸
|A|=1

, 1, . . . , 1︸ ︷︷ ︸
|A|=2

, 0, . . . , 0︸ ︷︷ ︸
|A|>2

)

where the first d+1 components vanish, along with the terms from position d(d−1)/2+d+2.

Finally, the last weight under study in the next section measures the information of highest

order in the decomposition, that is

w5 = (0, . . . , 0︸ ︷︷ ︸
|A|<d

, 1︸︷︷︸
|A|=d

).

3.4. Additional empirical insights on the new statistics

The act of combining different statistics using a weight w can raise questions. It is

important to note that we are not asserting independence among individual contributions.
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In this manner, we construct a statistic, denoted as Ŝw,n, which is a linear combination of

individual contributions, where only the variability may be affected by this combination.

To illustrate this dependency practically, 1 000 decomposition statistics {SA,n=100}A
have been evaluated under (H0,1) and under (H0,3;φ0) where φ0 is the generator associated

with the Clayton copula having a high bivariate Kendall’s tau of 0.8. Statistics associated

with |A| = 1 are excluded because they are always zero. Heatmaps of the correlation matrices

are presented in Figure 1. As expected, the contributions obtained from the decomposition

outside the independence assumption reveal stronger dependence.

(H0,1) (H0,3;φ0)

Figure 1: Heatmap of the correlation matrix of {ŜA,n=100}|A|≠1 under
(H0,1) and (H0,3;φ0

) in a 5-dimensional setting based on 1 000
experiments.

The natural next question is whether this has a significant consequence on the vari-

ability of the w-linear combinations. This point is illustrated in Figure 2. On the contrary, a

slight contraction in the range of the boxplots is observed. We are not comparing the values

on the left graph with those on the right graph here. Instead, we are comparing the size of

the boxplots for the combined statistics Ŝw2,n, . . . , Ŝw5,n with that associated with w1, which

is the classical global statistic.

(H0,1) (H0,3;φ0)

Figure 2: Boxplots of {Ŝw1,n=100, . . . , Ŝw5,n=100} under (H0,1) and
(H0,3;φ0

) in a 5-dimensional setting based on 1 000 experiments.
The ordinate axis has been scaled logarithmically.
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4. NUMERICAL EXPERIMENTS

In this section, we shall consider the use of the functional decomposition in four ex-

periments and analyze the results. The studies encompass tests for independence, blockwise

independence, a hypothesis defined by a specific Archimedean copula, and a test for a given

class of copulas. The results demonstrate variability, although it is noted that incorporating

information from the right-hand member of the decomposition enhances statistical power.

When possible, the results are compared with those obtained using tools from the R package

copula.

The code for this section is available at the following address

http://math.univ-lyon1.fr/~mercadier/functionaldecomposition.html

Please contact the author if you encounter any access issues.

4.1. Complete independence

To begin, consider a simple example. Let X ∼ N5(0,Σ) with Σ = I + ρR, where the

off-diagonal elements of R equal 1 and the other ones are 0. The value ρ = 0 leads to the

null hypothesis (H0,1) of total independence. The significance level is arbitrarily set to 5%

and evaluated at ρ = 0. This empirical nominal level and the powers of the test statistics

Ŝw1,n, . . . , Ŝw5,n are assessed for ρ ∈ [0, 0.3]. Their performances are also compared to those

of tests available in the R copula package: In the global CvM statistics as well as Wn and Tn,

the Fisher and the Tippett combination. These procedures have been previously mentioned

in the beginning of Section 3.3.

First, we observe in Figure 3 that the weight leading to the most powerful test statistic

is w3, which evenly distributes weights on both sides of the equation (3.4) to construct Ŝw3,n.

Very close behind is the original statistic with weight w1, that measures the distance from

the left hand side of (3.4). Surprisingly, the information from second-order terms (associated

with weight w4) captures here all the information from the right-hand side, overlapping with

the values obtained with weight w2. The weight w5 leads to a weak performance under such

an experiment.

The graph also includes the global CvM statistic In, which, similar to Ŝw1,n, is derived from

the left-hand side of (3.4). The decision rule for In is computed using another procedure1,

explaining why it does not overlap with Ŝw1,n. We observe that Tn remains the least powerful

test for any ρ ≤ 0.2, performing even worse than Ŝw5,n whereas Wn’s performance remains

in between throughout the curve.

These conclusions do not provide a universal hierarchical order among these procedures.

These results are intrinsically linked to the framework considered, namely total independence

versus a specific alternative under the Gaussian assumption. However, this study illustrates

that several CvM statistics can be derived from the decomposition. Finally, the comparison

allows us to observe a slight benefit from combining both sides of the equation (3.4)

1R documentation of copula::indepTest “simulation step, which consists of simulating the distribution
of the test statistics under independence for the sample size under consideration”.

http://math.univ-lyon1.fr/~mercadier/functionaldecomposition.html
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Figure 3: Percentage of rejection of the null hypothesis (H0,1) with respect
to the value of ρ involved in the variance matrix Σ = I + ρR of
the simulated centered gaussian vector. The graph is obtained
for n = 100, d = 5 and from 10 000 repetitions of the non
parametric bootstrap with N = 1000.

4.2. Independence between sub random vectors

We adapt here Section 4 from Kojadinovic and Holmes (2009) that implements test-

ing procedures for block independence. Let X = (X1, . . . , X12) and consider the 3 groups

{X1, . . . , X4}, {X5, . . . , X8} and {X9, . . . , X12} so that p = 3 and d = 12 in (H0,2). The de-

pendence is described by the normal copula. The d× d correlation matrices Σ are structured

by block as follows

X1 . . . X4 X5 . . . X8 X9 . . . X12

X1 1 ρintra
... ρinter ρinter

X4 ρintra 1

X5 1 ρintra
... ρinter ρinter

X8 ρintra 1

X9 1 ρintra
... ρinter ρinter

X12 ρintra 1

The quantity ρinter (resp. ρintra) controls the amount of dependence among (resp. within) the

three random vectors. Under the normal copula, the values ρinter ∈ {0.000, 0.025, . . . , 0.300}
for ρintra = 0.5 are considered. We generate 1 000 samples composed of n = 100 independent

realizations of X. Note that, in all the simulations, the number of randomized samples is set

to N = 1000.
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Figure 4: Percentage of rejection of the null hypothesis (H0,2) with respect
to the value of ρinter involved in the variance matrix defined
by blocks. The graph is obtained for n = 100, d = 12, p = 3
and from 1 000 repetitions of the non parametric bootstrap with
N = 1000.

Figure 4 shows the proportion of times that the different tests reject (H0,2) with respect

to the value of ρinter. The significance level is arbitrarily set to 5% and measured at ρinter = 0.

The global CvM statistic In, as well asWn and Tn are those studied in Figure 3 of Kojadinovic

and Holmes (2009). The order of performance between Ŝ-type statistics is the same as for

the previous study. On the other hand, this is not the case for the statistics group In, Tn and

Wn. On the one hand Tn behaves better here, and on the other hand, the hierarchy between

In and Wn has been reversed. Ŝw3,n is again a slightly better choice.

4.3. Simple null Archimedean hypothesis

In this section, the aim is to compare the power of the statistics in discriminating a null

hypothesis (H0,3;φ0) C = Cφ0 against the alternative of the form (H1) C = (1−p)Cφ0 +pCφ1 .

The graphs summarize the resulting performances as a function of p. We set d = 4 and

n = 100. To avoid trivial powers, the copulas Cφ0 and Cφ1 share the same value of the

bivariate Kendall’s tau, arbitrarily set to 0.2.

For each graph among Figure 5, 6 and 7, there is 1 000 repetitions of each experiment

and the null distribution is learnt using N = 1000 parametric bootstrap replications. The

most efficient is the one based on the statistic Ŝw5,n, which measures the highest order term of

the decomposition (the fourth order here). And this is true in all three configurations studied.

Even though the order of the ordinates varies according to the graphs, and even though the

performance of the other estimators is more or less fluctuating, that of Ŝw5,n dominates. The

fact that some of the statistics fail to discriminate the hypotheses might be explained by the

small size of n and by the choice of the respective values of the copula parameters, so that

strength of dependence are identical. However, it is more difficult to understand why the
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highest order is so informative under Archimedean assumptions whereas it was not the case

in previous subsections while studying dependent alternatives.

Figure 5: Percentage of rejection of the null hypothesis (H0,3;φ0
) with re-

spect to the value of the probability mixture p. Here Cφ0
is

the Clayton copula with parameter 0.5 and Cφ1
is the Gumbel

copula with parameter 1.25.

Figure 6: Percentage of rejection of the null hypothesis (H0,3;φ0
) with re-

spect to the value of the probability mixture p. Here Cφ0
is

the Gumbel copula with parameter 1.25 and Cφ1
is the Frank

copula with parameter 1.860884.

4.4. Goodness-of-fit tests for Archimedean copulas

Turning to the Archimedean goodness-of-fit tests, we consider the Clayton or the Gum-

bel family in a 3-dimensional setting. These classes will both be used as the generator of

datasets or as the family being tested. The difference from the previous section is significant.

Here, the null hypothesis is not (H0,3;φ). Indeed, φ is not fully specified. We only know

the form of the generator φ, but the knowledge of its parameter is missing. Only a class of
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Figure 7: Percentage of rejection of the null hypothesis (H0,3;φ0
) with re-

spect to the value of the probability mixture p. Here Cφ0 is the
Frank copula with parameter 1.860884 and Cφ1 is the Clayton
copula with parameter 0.5.

Archimedean copulas is given. The parameter associated with the generator φ is estimated

at each step as the empirical mean of the Kendall’s τ estimates. The p-value is computed

using N = 500 parametric bootstrap evaluations from the estimated copula.

To generate the original samples, three values of the bivariate Kendall’s τ are chosen:

τ = .1, .15 and .2. The sample size is fixed to n = 200. The rejection rates are estimated

through 1 000 repetitions of each experiment.

The results are provided in Table 1. The nominal level is arbitrarily fixed at 0.05. The

first lines are dedicated to testing whether the dependence structure is given by the Clayton

copula. Similarly, Gumbel copula is tested in the last lines of the table. First, note that on

the right upper corner of the table, In
2 always dominates in discriminating true Gumbel from

supposed Clayton. Whereas Ŝw1,n and Ŝw3,n are more powerful in the left bottom corner.

5. CONCLUDING REMARKS

Identifying and modeling dependencies with copulas remain an important topic, which

has become very popular over the last decades since it has been applied in almost every

discipline. The aim in this paper is to unify various papers, as Deheuvels (1981), Genest and

Rémillard (2004), Genest et al. (2007), Beran et al. (2007), Kojadinovic and Holmes (2009),

Kojadinovic et al. (2011) among others, that derive copula-based tests of the structure of

dependence. The solution here is to dip them in a functional decomposition context in order

to reveal a common pattern.

The numerical section presents four simple studies. In the first one, which tests (H0,1),

our statistics provide a very slight improvement and also allow us to position their perfor-

2In is obtained from the R command copula::gofCopula with itau method.



Testing structural hypotheses for the copula 17

Simulated copulas
Clayton Gumbel

τ = .1 τ = .15 τ = .2 τ = .1 τ = .15 τ = .2

In 0.032 0.047 0.057 0.455 0.764 0.925

Ŝw1,n 0.031 0.050 0.052 0.322 0.645 0.866

Clayton Ŝw2,n 0.048 0.051 0.048 0.255 0.593 0.847

T
es
te
d
co
p
u
la
s Ŝw3,n 0.035 0.051 0.058 0.329 0.649 0.885

Ŝw4,n 0.048 0.050 0.051 0.204 0.517 0.782

Ŝw5,n 0.044 0.050 0.044 0.293 0.587 0.758

In 0.492 0.841 0.973 0.043 0.035 0.069

Ŝw1,n 0.610 0.898 0.985 0.047 0.040 0.064

Gumbel Ŝw2,n 0.483 0.816 0.972 0.046 0.043 0.065

Ŝw3,n 0.585 0.890 0.984 0.044 0.033 0.067

Ŝw4,n 0.397 0.731 0.944 0.051 0.052 0.068

Ŝw5,n 0.367 0.660 0.872 0.042 0.050 0.051

Table 1: Rejection rates of the null hypothesis of being in a given
Archimedean copula class. In the first lines, Clayton copula
is being tested, whereas Gumbel copula is tested in the last
lines of the table. The datasets are simulated for three different
bivariate Kendall’s τ . The sample size is set to n = 200, the
parametric bootstrap size is N = 500 and the number of repe-
titions of the experiment is 1 000.

mance relative to the statistics already available in the literature. Similar conclusions are

drawn from the study of the block independence hypothesis (H0,2). In the third one, as-

sociated with a simple Archimedean hypothesis (H0,3;φ0), we observe the high power of the

statistic that measures the higher-order term in the decomposition. In this context, we gain a

significant benefit from the fact that the copula is completely specified and thus the reference

law under (H0,3;φ0) is well learned numerically. This explains why this hierarchy is not found

in the last study, which again concerns Archimedean copulas but in the sense of an entire

class. Despite everything, in part of the results, we noted good performances of our statistics.

Providing insights into why certain tests performed well in specific situations, while others

did not, is a task that still needs further investigation.

In order to implement this methodological generalization to other test hypotheses, those

listed at the end of Section 2.2 but not tested in Section 4, it will be necessary to apply a

multiplier bootstrap procedure. It will then be interesting to see if the good qualities of the

statistic associated with the highest order term in the decomposition prove to be as effective

in an experiment similar to the one conducted in Section 4.4.

The dimensions d or p are small in our experiments. Nevertheless, the current paper

offers an interesting perspective on high dimensional problems. The practical implementation

of the tests relies indeed on a trade-off between exhaustivity (all subsets of Pd) and dimen-

sionality (exponential growth in d). When d becomes larger, it could be interesting to use

only part of the decomposition. With the help of the weight w introduced in the definition of

the combined test statistics, we can focus only on a given size of subsets or on all sizes that do

not exceed a given size. In this way, we can control the underlying complexity of the method.
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The question then becomes: to what extent does this selection affect the corresponding power

of the test procedure?
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