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1. INTRODUCTION

Entropy, denoted as H, is a measure of uncertainty and information content
associated with a continuous random variable. It is a fundamental concept in
information theory and provides a measure of the average amount of information
required to describe or predict the outcomes of a random variable. Introduced by
Shannon in 1948 [24], entropy has been a subject of interest for many researchers
in the field of statistics. In statistics, entropy estimation is a method used to
quantify the uncertainty or information content associated with a random vari-
able or a probability distribution. Entropy estimation is particularly useful when
the underlying probability distribution is unknown or when it deviates signifi-
cantly from known parametric distributions. Non-parametric entropy estimation
methods offer a robust alternative for quantifying uncertainty in data without
imposing restrictive assumptions. Various estimators for entropy have been pro-
posed, including those by Vasicek (1976) [26], van Es (1992) [25], Ebrahimi et
al. (1994) [11], Correa (1995) [9], Wieczorkowski-Grzegorewski (1999) [28], and
Alizadeh (2010) [3].
Entropy estimation has various applications in statistics and related fields. It is
widely used in information theory, machine learning, data compression, pattern
recognition, and data mining. In statistical analysis, entropy estimation can help
identify the complexity or variability of a dataset, assess the amount of informa-
tion present in a random variable, and compare the uncertainty between different
datasets or probability distributions.
In summary, entropy estimation in statistics is a non-parametric method used to
quantify the uncertainty or information content associated with a random vari-
able or a probability distribution. It provides a measure of the average amount
of information required to describe or predict outcomes.
The entropy H(f), of a continuous random variable X with a density function
f(x) is defined as

H(f) = −
∫ ∞
−∞

f(x) log f(x) dx .

Consider a random sample X1, ..., Xn of size n, where the order statistics are
denoted as X(1) ≤ X(2) ≤ ... ≤ X(n). Vasicek (1976) [26] introduced an entropy
estimator defined as:

HVmn =
1

n

n∑
i=1

log
{ n

2m
(X(i+m) −X(i−m))

}
,

where the window size m is a positive integer smaller than n/2, X(i) = X(1) if
i < 1, X(i) = X(n) if i > n. He proved the consistency of HVmn as an estimator
for the population entropy H(f).
In statistics, a probability density function (pdf) is a function that describes the
probability distribution of a continuous random variable. It assigns probabili-
ties to different values or ranges of values that the random variable can take.
Traditional parametric pdfs, such as the normal (Gaussian) distribution or the
exponential distribution, are defined by a fixed set of parameters that determine
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their shape, location, and scale. On the other hand, non-parametric pdfs are
flexible alternatives that do not rely on specific parametric assumptions about
the underlying data distribution. Non-parametric pdf estimation methods aim
to estimate the shape and characteristics of the pdf directly from the observed
data, without imposing a predefined functional form.
Non-parametric pdf estimation provides several advantages. It allows for more
flexibility in modeling complex and diverse data distributions, as it does not re-
strict the shape of the pdf to a specific parametric form. It also provides a more
data-driven approach, relying solely on the observed data to estimate the pdf.
This makes non-parametric pdf estimation suitable for a wide range of applica-
tions, including exploratory data analysis, hypothesis testing, and modeling in
fields such as finance, ecology, and engineering.
Park and Park (2003) [21] derived the nonparametric pdf of Vasicek’s estimator
as

gv(x) =

{
0 x < ξ1 or x > ξn+1
1
n

2m
x(i+m)−x(i−m)

ξi < x ≤ ξi+1 i = 1, ..., n,

where ξi =
(
x(i−m) + ...+ x(i+m−1)

)
/2m, and x(i) = x(1) if i < 1, x(i) = x(n) if

i > n.
Ebrahimi et al. (1994) [11] modified the Vasicek’s estimator as

HEmn =
1

n

n∑
i=1

log

{
n

cim
(X(i+m) −X(i−m))

}
,

where

ci =


1 + i−1

m , 1 ≤ i ≤ m,
2, m+ 1 ≤ i ≤ n−m,
1 + n−i

m , n−m+ 1 ≤ i ≤ n.

They proved that HEmn → H(f) as n→∞ ,m→∞, m/n→ 0.
The nonparametric pdf of Ebrahimi et al.’s estimator was derived by Park and
Park (2003) [21] as:

ge(x) =

{
0 x < η1 or x > ηn+1
1
n

1
ηi+1−ηi ηi < x ≤ ηi+1 i = 1, ..., n,

where

ηi =


ξm+1 −

m∑
k=i

1
m+k−1

(
x(m+k) − x(1)

)
if 1 ≤ i ≤ m,

(x(i−m)+...+x(i+m−1))
2m if m+ 1 ≤ i ≤ n−m+ 1,

ξn−m+1 +
i∑

k=n−m+2

1
n+m−k+1

(
x(n) − x(k−m−1)

)
if n−m+ 2 ≤ i ≤ n+ 1,

Alizadeh and Arghami (2010) [4] proposed another entropy estimator as

HAmn =
1

n

n∑
i=1

log

{
n

aim
(X(i+m) −X(i−m))

}
,
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where

ai =


1 1 ≤ i ≤ m,
2 m+ 1 ≤ i ≤ n−m,
1 n−m+ 1 ≤ i ≤ n.

and X(i−m) = X(1) for i ≤ m and X(i+m) = X(n) for i ≥ n−m. They proved the
consistency of HAmn as an estimator for H(f). The nonparametric pdf of their
estimator was derived as:

ga(x) =

{
0 x < γ1 or x > γn+1
1
n

1
γi+1−γi γi < x ≤ γi+1 i = 1, ..., n,

where

γi =


ξm+1 − 1

m

m∑
k=i

(
x(m+k) − x(1)

)
if 1 ≤ i ≤ m,

(x(i−m)+...+x(i+m−1))
2m if m+ 1 ≤ i ≤ n−m+ 1,

ξn−m+1 + 1
m

i∑
k=n−m+2

(
x(n) − x(k−m−1)

)
if n−m+ 2 ≤ i ≤ n+ 1,

and ξi =
(
x(i−m) + ...+ x(i+m−1)

)
/2m, x(i) = x(1) if i < 1, and x(i) = x(n) if

i > n.
Park and Park (2003) [21] applied the moments of the nonparametric pdfs of
entropy estimators proposed by Vasicek (1976) [26] and Ebrahimi et al. (1994)
[11] to construct tests for normality and exponentiality. Additionally, Alizadeh
and Arghami (2013) [5] introduced other tests for normal and exponential distri-
butions based on the moments of the nonparametric pdfs of their estimators. In
this study, we utilize the nonparametric pdfs of entropy estimators and propose
goodness-of-fit tests for the Lindley distribution.
The Lindley distribution is an important statistical model for analyzing reliabil-
ity data with positive support. This distribution was proposed by Lindley (1958)
in the context of Bayesian statistics, as a counter example of fiducial statistics.
Its density is

f(x; θ) =
θ2

θ + 1
(1 + x)e−θx , x > 0, θ > 0.

The mean and variance of this distribution are

µ = E(X) =
θ + 2

θ(θ + 1)
,

and

σ2 = V ar(X) =
θ2 + 4θ + 2

θ2(θ + 1)2 ,

respectively.
Suppose X1, ..., Xn is a random sample from the Lindley distribution, both the
maximum likelihood estimate (MLE) and method of moments estimate of the
parameter θ coincides and is

θ̂ =
−
(
X̄ − 1

)
+
√(

X̄ − 1
)2

+ 8X̄

2X̄
, X̄ > 0.
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Ghitany et al. (2008) [13] conducted a detailed study about various properties
of Lindley distribution including skewness, kurtosis, hazard rate function, mean
residual life function, stochastic ordering, stress-strength reliability, among other
things; estimation of its parameter and application to model waiting time data in
a bank. They showed that the estimator θ̂ of θ is positively biased: E(θ̂)−θ > 0,

and it is consistent and asymptotically normal
√
n
(
θ̂ − θ

)
→ N(0, 1

/
σ2).

In the literature of survival analysis and reliability theory, the exponential dis-
tribution is widely used as a model of lifetime data. However, the exponential
distribution only provides a reasonable fit for modeling phenomenon with con-
stant failure rates. Distributions like gamma, Weibull and lognormal have become
suitable alternatives to the exponential distribution in many practical situations.
Ghitany et al. (2008) [13] found that the Lindley distribution can be a better
model than one based on the exponential distribution.
Shanker et al. (2015) [23] discussed a comparative study of Lindley and exponen-
tial distributions for modelling various lifetime data sets from biomedical science
and engineering, and concluded that even though there are lifetime data where
exponential distribution gives better fit than Lindley distribution and in majority
of data sets Lindley distribution gives better fit than exponential distribution.
In complete sample case, Ghitany et al. (2008) [13] developed different distri-
butional properties, reliability characteristics and some inferential procedures for
the Lindley distribution. Krishna and Kumar (2011) [16] discussed reliability es-
timation in Lindley distribution with progressively type II right censored sample.
Gupta and Singh (2013) [14] gave parameter estimation of Lindley distribution
with hybrid censored data. Also, Al-Mutairi et al. (2013) [6] studied inferences on
stress-strength reliability for Lindley distribution with complete sample informa-
tion. Kumar et al. (2015) [18] discussed estimation of stress-strength reliability
using progressively first failure censoring. These studies suggest that in many
real-life situations Lindley distribution serves as a better lifetime model than the
so far popular distributions like exponential, gamma, Rayleigh, Weibull etc. For
more applications of the Lindley distribution one can see Dey et al. (2019) [10],
Khan et al. (2020) [15], Nadarajah and Chan (2020) [19], Oliveira, et al. (2021)
[20], Al-Babtain, et al. (2021) [2], Ghitany and Wang (2022) [12], Alrasheedi, et
al. (2022) [7], Ahsan-ul-Haq et al. (2022) [1], Wang and Weib (2023) [27].
Constructing powerful goodness-of-fit tests for the Lindley distribution holds sig-
nificant importance. In line with this objective, we propose a set of distribution-
free goodness-of-fit tests based on the nonparametric pdfs of entropy estimators.
In Section 2, we introduce novel goodness-of-fit tests specifically designed for as-
sessing the composite Lindley hypothesis. We present the details of these tests,
including their formulation and statistical properties. Section 3 focuses on the
critical values and power analysis of the newly developed tests. We provide in-
sights into the determination of critical values and evaluate the statistical power
of the tests under different scenarios. To demonstrate the practical efficacy of the
proposed tests, we present two real data examples in Section 4. Through these
examples, we evaluate the performance and effectiveness of the tests in practice.
Finally, in Section 5, we summarize our findings and conclusions drawn from
the study. We discuss the implications of the proposed tests and highlight their
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potential applications in assessing the goodness of fit for the Lindley distribution.

2. The proposed tests

The Kullback-Leibler (KL) divergence is a measure that quantifies how close a
probability density f(x) is to a model density f0(x). For density functions f and
f0, the KL divergence of f from f0 is defined (Kullback and Leibler (1951) [17])
by

D(f, f0) =

∫
f(x) log

f(x)

f0(x)
dx .

Note that D(f, f0) = 0 if and only if f(x) = f0(x) almost everywhere.
Let f represents the true density and F0 = {f0(., θ) : θ ∈ Ω} represents a
parametric model for f , where Ω is a subset of Rp. If f ∈ F0, the minimum
value, min

θ∈Ω
D(f, f0(., θ)), of the KL divergence is zero and if f /∈ F0 the minimum

KL divergence is strictly positive.
Let X1, ..., Xn be a random sample from an unknown continuous cumulative
density function F (x) with a density f(x). We want to test the hypothesis

H0 : f(x) = f0(x; θ) =
θ2

θ + 1
(1 + x)e−θx, x > 0, for some θ ∈ Θ ,

where θ is unspecified and Θ = R+. The alternative to H0 is

H1 : f(x) 6= f0(x; θ) for any θ ∈ Θ .

Here, we construct tests for the Lindley based on the KL information and the
moments of nonparametric pdfs of the entropy estimators as follows.
The asymmetric KL distance of f from f0 is

D(f, f0) =
∫
f(x) log f(x)

f0(x;θ) dx

= −H(f)− 2 log(θ) + log(θ + 1)− Ef (log(1 +X)) + θEf (X) ,

D(f, f0) is minimum (zero) if and only if f = f0, where

D(f, f0) = −H(f)− 2 log(θ) + log(θ + 1)− Ef (log(1 +X)) + θ+2
θ+1

= log(θ + 1)− 2 log(θ)− Ef (log(1 +X)) + θ+2
θ+1 −H(f),

which can be estimated by

TVmn = log(θ̂v + 1)− 2 log(θ̂v)− Egv (log(1 +X)) +
θ̂v + 2

θ̂v + 1
−HVmn,

where

θ̂v =
− (Egv(X)− 1) +

√
(Egv(X)− 1)2 + 8Egv(X)

2Egv(X)
,
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and HVmn is Vasicek entropy estimator. We reject H0 for large values of TVmn.
Based on the other entropy estimators, different test statistics can be obtained.
We have the following test statistics.

TEmn = log(θ̂e + 1)− 2 log(θ̂e)− Ege (log(1 +X)) +
θ̂e + 2

θ̂e + 1
−HEmn,

TAmn = log(θ̂a + 1)− 2 log(θ̂a)− Ega (log(1 +X)) +
θ̂a + 2

θ̂a + 1
−HAmn,

where

θ̂e =
− (Ege(X)− 1) +

√
(Ege(X)− 1)2 + 8Ege(X)

2Ege(X)
,

θ̂a =
− (Ega(X)− 1) +

√
(Ega(X)− 1)2 + 8Ega(X)

2Ega(X)
,

and HEmn and HAmn are Ebrahimi et al. (1994) [11]’s and Alizadeh and
Arghami (2010) [4]’s entropy estimator, respectively. We reject H0 for large
values of test statistics.
Here, we obtain E(X) and E (log(1 +X)) under the distributions of gv, ge and
ga.

Lemma 2.1. For the distribution of ge, we have

Ege(X) =
1

n

(
η1

2
+

n∑
i=2

ηi +
ηn+1

2

)
,

and for gv and ga, ηi’s replace with ξi’s and γi’s, respectively.

Proof: Consider the distribution ge.

Ege(X) =
∫ ηn+1

η1
xge(x)dx

=
n∑
i=1

∫ ηi+1

ηi
1
n

x
ηi+1−ηidx =

n∑
i=1

1
n

(η2i+1−η2i )
2(ηi+1−ηi)

= 1
2n

n∑
i=1

(ηi+1 + ηi) = 1
n

(
η1
2 +

n∑
i=2

ηi + ηn+1

2

)
.

Similarly under other distributions E(X) can be computed.

Lemma 2.2. For the distribution of ge, we have

Ege (log(1 +X)) =
1

n

n∑
i=1

(
(ηi+1 + 1) log(ηi+1 + 1)− (ηi + 1) log(ηi + 1)

ηi+1 − ηi

)
− 1 ,

and for gv and ga, ηi’s replace with ξi’s and γi’s, respectively.
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Proof: Consider the distribution ge.

Ege (log(1 +X)) =
∫ ηn+1

η1
log(1 + x)ge(x)dx

=
n∑
i=1

∫ ηi+1

ηi
1
n

log(1+x)
ηi+1−ηi dx = 1

n

n∑
i=1

1
ηi+1−ηi

∫ ηi+1

ηi
log(1 + x)dx

= 1
n

n∑
i=1

1
ηi+1−ηi ((ηi+1 + 1) log(ηi+1 + 1)− (ηi+1 + 1)− (ηi + 1) log(ηi + 1) + (ηi + 1))

= 1
n

n∑
i=1

{
(ηi+1+1) log(ηi+1+1)−(ηi+1) log(ηi+1)

ηi+1−ηi − 1
}

= 1
n

n∑
i=1

{
(ηi+1+1) log(ηi+1+1)−(ηi+1) log(ηi+1)

ηi+1−ηi

}
− 1.

Similar to the above argument, the others can be computed.

Theorem 2.1. Let F be a distribution with a positive support and F0

be the Lindley distribution, with the unspecified parameter. Then, under H0,

TVmn → 0 , in probability as n→∞, m→∞ and m/n→ 0 ,

and, under H1, TVmn is a consistent test.

Proof: We note that under H0,

log(θ̂v + 1)− 2 log(θ̂v)− Egv (log(1 +X)) + θ̂v+2
θ̂v+1

→ log(θ + 1)− 2 log(θ)− Ef0 (log(1 +X)) + θ+2
θ+1 = H(f0),

and from Vasicek (1976) [26] when n→∞, m→∞, and m/n→ 0 , we have

HVmn → H(f0)

So
TVmn → 0.

Also, under H1,
HVmn → H(f),

Thus
TVmn → H(f0)−H(f) > 0.

(all limits are in probability).

The above theorem is indeed satisfied for the other tests.
Finally, we can write the proposed test statistics as follow.

TVmn = 2+log(
θ̂v + 1

θ̂2
v

)+
1

θ̂v + 1
− 1

n

n∑
i=1

{
(ξi+1 + 1) log(ξi+1 + 1)− (ξi + 1) log(ξi + 1)

ξi+1 − ξi

}
−HVmn,

TEmn = 2+log(
θ̂e + 1

θ̂2
e

)+
1

θ̂e + 1
− 1

n

n∑
i=1

{
(ηi+1 + 1) log(ηi+1 + 1)− (ηi + 1) log(ηi + 1)

ηi+1 − ηi

}
−HEmn,

TAmn = 2+log(
θ̂a + 1

θ̂2
a

)+
1

θ̂a + 1
− 1

n

n∑
i=1

{
(γi+1 + 1) log(γi+1 + 1)− (γi + 1) log(γi + 1)

γi+1 − γi

}
−HAmn.
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3. Critical values and power study

The null hypothesis H0, at the significance level α is rejected if

TVmn (TEmn, TAmn) ≥ C(α),

where the critical point C(α) is determined by the α−quantile of the distribution
of the test statistics under the null hypothesis.
In order to obtain the critical points of the test statistics, 100,000 samples of
size n were generated from the Lindley distribution with the parameter one. For
each sample (n = 10, 20, 30, 40, 50, 75, 100) the test statistics was computed and
by using these values the critical points C(α), were determined. The following
steps outline the methodology for determining the critical values:

1. Generate a random sample, denoted as X1, ..., Xn, of size n, drawn from
the Lindley(1) distribution.

2. Calculate the test statistic based on the sample X1, ..., Xn.

3. Repeat steps 1 and 2 a significant number of times, creating a large number
of simulated datasets and corresponding test statistic.

4. Determine the (1 − α)th quantile of the test statistic obtained from the
simulations. This quantile represents the critical value for the test at the
desired significance level α.

The critical points of the statistics TVmn, TEmn and TAmn are presented in
Table 1.

Table 1:
Critical values of the proposed test statistics for α = 0.05

n m TVmn TEmn TAmn
10 2 0.7007 0.5277 0.4824
20 3 0.4067 0.2999 0.2710
30 4 0.3012 0.2168 0.2009
40 5 0.2464 0.1729 0.1665
50 5 0.2109 0.1531 0.1497
75 6 0.1608 0.1176 0.1209
100 7 0.1330 0.0975 0.1053

Figures 1 and 2 show the empirical probability density functions of the test statis-
tics with Monte Carlo samples. From figures, TAmn have closer values to 0 than
the other statistics. Then the bias of TAmn is smallest.
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Figure 1: Empirical densities of the test statistics based on 100,000 simu-
lations under the Lindley hypothesis and n = 20.

Figure 2: Empirical densities of the test statistics based on 100,000 simu-
lations under the Lindley hypothesis and n = 50.



Testing the Validity of Lindley Model 11

We also evaluate in Table 2 the estimated type I error control using the 0.05
percentiles of the proposed test (α = 0.05). We generated random samples from
a spectrum of Lindley populations and then obtained the actual sizes of the tests.
The results are presented in Table 2.
It is evident, from Table 2, that the actual sizes of the tests are approximately
equal to the nominal size 0.05. Therefore, we can conclude that the empirical
percentiles presented in Table 1 provides an excellent type I error control.
In practice, a general guide for the choice of m for a fixed n is valuable to the
users. Our simulations show that the optimal m (in terms of power) depends
on the sample size and the alternative hypothesis. In other hand, there is no a
value m that is optimal against all alternatives. Therefore, if one wants to guard
against all alternatives a compromise should be made. Based our power study, we
recommend for all the test statistics m = 2 for n = 10, m = 3 for n = 20, m = 4
for n = 30, and m = 5 for n = 50 as the optimal values which the tests attain
good (not best) power values against all alternatives. Generally, with increasing
n, an optimal choice of m also increases, while the ratio m/n tends to zero.

Table 2:
Type I error control of the tests for the nominal significance
level α = 0.05.

Alternative n TVmn TEmn TAmn

Lindley(0.5) 10 0.0515 0.0529 0.0517

20 0.0495 0.0517 0.0524

30 0.0496 0.0524 0.0517

50 0.0482 0.0506 0.0491

Lindley(2) 10 0.0514 0.0508 0.0504

20 0.0485 0.0482 0.0489

30 0.0473 0.0466 0.0460

50 0.0491 0.0488 0.0483

Lindley(4) 10 0.0498 0.0493 0.0485

20 0.0508 0.0491 0.0478

30 0.0502 0.0490 0.0465

50 0.0512 0.0506 0.0461

Lindley(4) 10 0.0515 0.0509 0.0491

20 0.0526 0.0511 0.0463

30 0.0515 0.0491 0.0428

50 0.0531 0.0508 0.0416

For power comparison, we consider the well-known tests based on the empirical
distribution function (EDF) that used widely in practice. These tests are Cramer
von Mises W 2, Kolmogorov-Smirnov D, Anderson-Darling A2, Kuiper V , and
Watson U2. The test statistics of the EDF-tests are briefly described as follows.
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For more details about these tests, see D’Agostino and Stephens (1986). Let
X(1) ≤ X(2) ≤ ... ≤ X(n) are the order statistics based on the random sample
X1, ..., Xn.
1. The Cramer-von Mises statistic (1931):

W 2 =
1

12n
+

n∑
i=1

(
2i− 1

2n
− F0(X(i); θ̂)

)2

.

2. The Watson statistic (1961):

U2 = W 2 − n
(
P̄ − 0.5

)2
,

where P̄ is the mean of F0(X(i); θ̂), i = 1, ..., n. 3. The Kolmogorov-Smirnov
statistic (1933):

D = max(D+, D−),

where

D+ = max
1≤i≤n

{
i

n
− F0(X(i); θ̂)

}
; D− = max

1≤i≤n

{
F0(X(i); θ̂)−

i− 1

n

}
.

4. The Kuiper statistic (1960):

V = D+ +D−.

5. The Anderson-Darling statistic (1952):

A2 = −n− 1

n

n∑
i=1

(2i− 1)
{

logF0(X(i); θ̂) + log
[
1− F0(X(n−i+1); θ̂)

]}
.

In the above test statistics, F0(x) is the cumulative density distribution function
of the Lindley distribution and θ̂ is the maximum likelihood estimate of the pa-
rameter θ.
We compute the power of the considered tests and the proposed tests against var-
ious distributions. In power comparison, we considered the following alternatives.

• the Weibull distribution with density θxθ−1 exp
(
−xθ

)
, denoted by W (θ);

• the gamma distribution with density Γ(θ)−1xθ−1 exp (−x), denoted by Γ(θ);

• the lognormal distribution LN(θ) with density (θx)−1(2π)−1/2 exp
(
−(log x)2

/
(2θ2)

)
;

• the half-normal HN distribution with density Γ(2/π)1/2 exp
(
−x2

/
2
)
;

• the uniform distribution U with density 1, 0 ≤ x ≤ 1;

• the modified extreme value EV (θ), with distribution function 1−exp
(
θ−1(1− ex)

)
;

• the linear increasing failure rate law LF (θ) with density (1+θx) exp
(
−x− θx2

/
2
)
;
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• Dhillon’s (1981) distribution with distribution function 1−exp
(
−(log(x+ 1))θ+1

)
;

• Chen’s (2000) distribution CH(θ), with distribution function 1−exp
(

2
(

1− exθ
))

.

These alternatives include densities f with decreasing failure rates (DFR), in-
creasing failure rates (IFR) as well as models with unimodal failure rate (UFR)
functions and bathtub failure rate (BFR) functions.
To assess the power values of the tests, we generate 100,000 random samples from
the alternative hypothesis for different choices of sample sizes and then the test
statistics are calculated. Then power of the corresponding test is computed by
the frequency of the event ”the statistic is in the critical region”.
Here’s our algorithm for calculating the power of tests.

1. Set the desired significance level (α) for your hypothesis test.

2. Choose the alternative hypothesis you want to test against.

3. Specify the sample size (n) for the test.

4. Set the number of iterations (e.g., 100,000) for generating random samples.

5. Initialize a counter for the number of times the test statistic falls into the
critical region.

6. For each iteration:

• Simulate a random sample from the alternative hypothesis distribu-
tion, with the chosen sample size (n).

• Calculate the test statistic for the generated sample.

• Determine the critical value corresponding to the chosen significance
level (α) and the null hypothesis distribution.

• If the test statistic falls into the critical region, increment the counter.

7. Calculate the power as the ratio of the counter to the total number of
iterations.

8. Return the estimated power value.

By simulating random samples from the alternative hypothesis distribution and
comparing the test statistic to the critical value, the algorithm determines the
frequency at which the test statistic falls into the critical region, allowing for the
estimation of the power of the test.
Tables 3 and 4 display and compares the power values of the tests for sample
sizes n = 10, 20, 30, 50 at the significance level α = 0.05.
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Table 3:
Empirical powers of the tests against IFR alternatives at signif-
icance level 5%.

Alternative n W 2 D V U2 A2 TVmn TEmn TAmn
W (1.4) 10 0.1303 0.1174 0.1104 0.1170 0.0894 0.1445 0.1345 0.1183

20 0.2258 0.1966 0.1761 0.1884 0.1917 0.2171 0.1985 0.1456
30 0.3237 0.2691 0.2330 0.2635 0.2967 0.2920 0.2599 0.1486
50 0.5098 0.4231 0.3736 0.4167 0.5036 0.4088 0.3629 0.1786

Γ(2) 10 0.1175 0.1028 0.1101 0.1188 0.0810 0.1486 0.1452 0.1315
20 0.2011 0.1754 0.1772 0.1935 0.1800 0.2323 0.2226 0.1790
30 0.2879 0.2412 0.2369 0.2687 0.2827 0.3233 0.3072 0.2078
50 0.4745 0.4014 0.3875 0.4408 0.5104 0.4654 0.4460 0.2727

HN 10 0.0952 0.0887 0.0844 0.0875 0.0678 0.0970 0.0896 0.0773
20 0.1364 0.1234 0.1084 0.1149 0.1076 0.1286 0.1125 0.0735
30 0.1835 0.1552 0.1340 0.1446 0.1492 0.1579 0.1298 0.0583
50 0.2839 0.2321 0.1960 0.2139 0.2445 0.2124 0.1667 0.0526

U 10 0.3386 0.2647 0.3088 0.2957 0.2615 0.4008 0.3658 0.3110
20 0.6318 0.4888 0.6071 0.5477 0.5793 0.7798 0.7317 0.5952
30 0.8309 0.6764 0.8143 0.7416 0.8056 0.9494 0.9236 0.7780
50 0.9756 0.9000 0.9777 0.9417 0.9756 0.9987 0.9971 0.9649

CH(1) 10 0.0937 0.0868 0.0772 0.0789 0.0673 0.0967 0.0883 0.0750
20 0.1364 0.1220 0.0998 0.1061 0.1074 0.1264 0.1095 0.0689
30 0.1826 0.1557 0.1230 0.1332 0.1477 0.1596 0.1290 0.0563
50 0.2796 0.2301 0.1810 0.1933 0.2379 0.2145 0.1654 0.0472

CH(1.5) 10 0.4268 0.3505 0.3359 0.3553 0.3348 0.3993 0.3714 0.3251
20 0.7600 0.6343 0.6239 0.6480 0.7160 0.7109 0.6684 0.5439
30 0.9200 0.8205 0.8176 0.8370 0.9071 0.8898 0.8544 0.6785
50 0.9943 0.9684 0.9736 0.9763 0.9943 0.9880 0.9796 0.8865

LF (2) 10 0.1386 0.1235 0.1113 0.1187 0.0972 0.1366 0.1253 0.1069
20 0.2282 0.1943 0.1706 0.1802 0.1851 0.1937 0.1697 0.1141
30 0.3292 0.2723 0.2327 0.2527 0.2828 0.0.2573 0.2161 0.1053
50 0.5133 0.4204 0.3663 0.3955 0.4662 0.3645 0.3026 0.1185

LF (4) 10 0.2056 0.1790 0.1594 0.1700 0.1469 0.1879 0.1732 0.1485
20 0.3777 0.3160 0.2752 0.2980 0.3192 0.3016 0.2675 0.1884
30 0.5308 0.4386 0.3864 0.4204 0.4758 0.4157 0.3630 0.2032
50 0.7680 0.6595 0.6067 0.6401 0.7313 0.5868 0.5207 0.2643

EV (0.5) 10 0.0923 0.0861 0.0749 0.0782 0.0670 0.0951 0.0872 0.0744
20 0.1384 0.1221 0.1020 0.1074 0.1068 0.1293 0.1115 0.0713
30 0.1833 0.1557 0.1242 0.1345 0.1467 0.1591 0.1285 0.0537
50 0.2779 0.2262 0.1803 0.1933 0.2378 0.2153 0.1658 0.0454

EV (1.5) 10 0.1681 0.1456 0.1420 0.1547 0.1170 0.1745 0.1594 0.1344
20 0.3359 0.2706 0.2529 0.2634 0.2658 0.3060 0.2696 0.1771
30 0.4612 0.3645 0.3618 0.3805 0.4152 0.4370 0.3734 0.1929
50 0.7218 0.5906 0.5811 0.5943 0.6880 0.6424 0.5659 0.2656
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Table 4:
Empirical powers of the tests against UFR, DFR and BFR al-
ternatives at significance level 5%.

Alternative n W 2 D V U2 A2 TVmn TEmn TAmn

LN(0.8) 10 0.1413 0.1302 0.1279 0.1403 0.1068 0.1592 0.1710 0.1823

20 0.2221 0.1968 0.2204 0.2448 0.2110 0.3197 0.3549 0.3806

30 0.3180 0.2720 0.3268 0.3652 0.3440 0.4968 0.5451 0.5404

50 0.5147 0.4436 0.5541 0.6054 0.6131 0.7713 0.8079 0.7577

LN(1.5) 10 0.5140 0.4823 0.3849 0.4001 0.5544 0.2743 0.3490 0.4208

20 0.8027 0.7664 0.6690 0.6869 0.8197 0.6437 0.7177 0.7922

30 0.9257 0.9020 0.8342 0.8489 0.9306 0.8459 0.8892 0.9265

50 0.9900 0.9842 0.9642 0.9697 0.9905 0.9775 0.9861 0.9904

DL(1) 10 0.0877 0.0813 0.0809 0.0862 0.0629 0.1033 0.1096 0.1132

20 0.1185 0.1064 0.1139 0.1236 0.1041 0.1503 0.1694 0.1878

30 0.1486 0.1274 0.1445 0.1619 0.1445 0.2112 0.2433 0.2564

50 0.2123 0.1771 0.2245 0.2533 0.2394 0.3284 0.3734 0.3649

DL(1.5) 10 0.1999 0.1735 0.1751 0.1937 0.1462 0.2305 0.2242 0.2063

20 0.3844 0.3271 0.3228 0.3634 0.3601 0.3950 0.3849 0.3254

30 0.5568 0.4783 0.4598 0.5241 0.5677 0.5569 0.5479 0.4206

50 0.8123 0.7363 0.7129 0.7832 0.8509 0.7780 0.7685 0.6043

W (0.8) 10 0.1960 0.1750 0.1288 0.1366 0.2748 0.0471 0.0703 0.1019

20 0.3570 0.3095 0.2295 0.2438 0.4417 0.1259 0.1818 0.2693

30 0.4933 0.4319 0.3201 0.3476 0.5752 0.2312 0.3076 0.4151

50 0.7062 0.6330 0.5093 0.5395 0.7720 0.4505 0.5335 0.6151

Γ(0.4) 10 0.5137 0.4712 0.3701 0.3914 0.7163 0.1941 0.2425 0.2961

20 0.8109 0.7663 0.6579 0.6850 0.9222 0.5510 0.6146 0.6838

30 0.9354 0.9074 0.8310 0.8551 0.9810 0.7874 0.8304 0.8673

50 0.9943 0.9894 0.9697 0.9762 0.9990 0.9693 0.9766 0.9800

CH(0.5) 10 0.3912 0.3546 0.2711 0.2860 0.5728 0.1104 0.1449 0.1812

20 0.6670 0.6127 0.4979 0.5281 0.8141 0.3468 0.4061 0.4780

30 0.8331 0.7839 0.6733 0.7102 0.9251 0.5728 0.6320 0.6848

50 0.9669 0.9464 0.8924 0.9137 0.9903 0.8670 0.8927 0.8995

Based on the power values in Table 3, it is seen that the tests based on W 2 and
TVmn statistics have the most power against IFR alternatives. Although for this
type of alternatives the tests W 2 and TVmn have the most power but the power
differences of these tests with each other are small and we can select one of the
tests based on W 2 or TVmn statistic as a powerful test.
From Table 4, it is evident that the tests based on A2 or TAmn statistics have
the most power against UFR alternatives and power differences between these
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tests and the other tests are substantial.
Tables 4 reveals a superiority of the test based on A2 statistic to all other tests
as we can say that this test outperforms all other tests against DFR and BFR
alternatives.
Although there is no uniformly most powerful test against all alternatives, the
tests based on W 2, A2, TVmn and TAmn statistics can be recommended in prac-
tice. Depending on type of alternative, we can say that among EDF-based tests,
the tests W 2 and A2 have the most power and among entropy-based tests, the
tests TVmn, TEmn and TAmn have the most power. In general, we can conclude
that the tests W 2, A2, TVmn and TAmn have a good performance and therefore
can be used in practice.

4. Applications to real data

In this section, to show the behavior of the proposed tests in real cases, two
real data sets are analyzed. In Figures 3 and 4, we depict the histogram of these
data sets.

Example 4.1. The following data set gives data of the failure times of
25 ball bearings in endurance test presented by Caroni (2002) [8].
17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.48, 51.84, 51.96, 54.12, 55.56, 67.80,
67.80, 67.80, 68.64, 86.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92,
128.04, 173.40.
Our procedures can be used to investigate whether the data come from a Lindley
distribution. The values of the proposed test statistics are

TVmn = 0.2636, TEmn = 0.1822, TAmn = 0.1409,

and the critical values at the 5% are 0.3492, 0.2651, 0.2449, respectively.
Since the values of the test statistics are smaller than the corresponding critical
values, the Lindley assumption is not rejected at the significance level of 0.05.
Therefore, the null hypothesis that the failure times of ball bearings follow a
Lindley distribution is not rejected.

Example 4.2. The following data set is derived from days between air-
conditioning failure in Boeing 720 aircraft. These data are presented by Pearson
and Hartley (1972) [22].
0.013, 0.052, 0.143, 0.208, 0.234, 0.234, 0.234, 0.312, 0.404, 0.508, 0.599, 0.664,
0.703, 0.820, 0.885, 1.002, 1.041, 1.067, 1.263, 1.380, 1.445, 1.836, 1.849, 2.122,
2.486, 2.682, 2.812.
The proposed tests can be used to investigate whether these data come from a
Lindley distribution. The values of the test statistics are computed as

TVmn = 0.1842, TEmn = 0.0822, TAmn = 0.0311,
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and the critical values at the significance level 5% are obtained as 0.3285, 0.2176,
0.1993, respectively.
It is evident that the values of the test statistics are smaller than the correspond-
ing critical values and consequently the Lindley assumption is not rejected at the
significance level of 0.05. Therefore, the null hypothesis that the days between
air-conditioning failure in Boeing 720 aircraft follow a Lindley distribution is not
rejected.

Figure 3: Histogram of failure times of ball bearings and a fitted Lindley
density function.

Figure 4: Histogram of days between air-conditioning failure in Boeing
720 aircraft and a fitted Lindley density function.
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5. Conclusions

In this paper, we obtained the minimum discriminant information (MDI) loss
estimator for the unknown parameter of the Lindley distribution. Then, based on
the nonparametric distribution functions of the entropy estimators, we proposed
goodness of fit test statistics for the Lindley distribution. We obtained the power
values of the proposed test statistics with Monte Carlo simulation and compared
them with the competing test statistics against various alternatives. Generally, we
concluded that among the proposed and competing test statistics, the proposed
tests have a good performance against different alternatives. Therefore, these
tests can be confidently recommended in practice. Finally, we illustrated the
performance of the new test statistics in real cases.
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