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1. INTRODUCTION

The proper interpretation of P-values in science has been debated for
decades [1, 6]. Widespread misinterpretation of this measure has even led some
academic journals to abandon its use [13]. However, Greenland et al. empha-
size that P-values can still provide valid information for making sound scientific
decisions if used as a measure of statistical compatibility instead of statistical
significance [10]. In this regard, there are some considerations to be made. Let’s
suppose we choose a specific statistical test and set a certain target assumption
(e.g., also called “target hypothesis”). Every statistical test is mathematically
built on the condition that all assumptions, including the target, are true. Then,
in a Fisherian sense, the P-value measures the degree of compatibility of the
statistical result (the test statistic) with the target and all the background as-
sumptions (e.g., linearity, normality, properly functioning measurement devices).
P-values close to 1 indicate high compatibility, while P-values close to 0 indi-
cate low compatibility. Thus, although we may be interested solely in the target
hypothesis, it is important to understand that the P-value does not privilege
said hypothesis over any other. Indeed, violating the background assumptions
can strongly influence P-values, making them uninformative for the fixed scien-
tific goal. Moreover, the reliability of the statistical outcome depends on the
scientist’s ability to conduct the whole experimental procedure (which cannot
be carried out without uncertainties). This means selecting a model capable
of providing useful information to analyze the scientific phenomenon (which in-
cludes choosing proper data collection methods, estimators or parameters, and
hypotheses) as well as guaranteeing human attributes like competence, honesty,
transparency, and collaboration [8]. Thus, in light of the interpretative uncertain-
ties that P-values entail, the practice of sharply distinguishing arbitrarily close
values (e.g., P = 0.049 and P = 0.051) is meaningless. According to this, from
now on, we will refer to the condition “all background assumptions are true”
using the expression “utopian scenario” (emphasizing the practical impossibility
of achieving it). Even in the utopian scenario, the P-value is mathematically pre-
cluded from providing information about the investigated scientific phenomenon:
at best, it can be understood as the probability that chance alone would produce
a discrepancy from the target hypothesis prediction as or more extreme than that
obtained in our experiment according to the performed test.1 The key point is
that the model assumes that chance is the sole factor at play. In other words,
under the target null assumption of zero effect, the statistical model mathemat-
ically excludes the occurrence of any scientific phenomenon other than chance
(e.g., if our objective is to investigate a drug’s effectiveness, under the target null
assumption of zero effect, the statistical model we implement mathematically ex-
cludes the existence of any pharmacological effect). Indeed, a statistical model
takes numbers and yields numbers; it is up to the scientist to interpret these

1The phrase “chance alone produces” is incomplete as it does not encompass fields of science
where randomness is the absence of any cause. Nevertheless, this expression has been chosen
because it was considered clearer and suitable for the context of public health.
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based on the research context. For this reason, it never makes sense to state
that the P-value is the probability that chance produced or would produce the
observed scientific effect. Even in the utopian scenario, the P-value never allows
the researcher to reject a target hypothesis (since absence of evidence is not ev-
idence of absence) or to confirm it (since even a P-value of .99 does not exclude
the presence of many other models with equal compatibility). In this regard, P-
values are not absolute measures of compatibility, as the data consistency with a
certain hypothesis could change drastically depending on the adopted test (e.g.,
the data may be highly consistent with the normality hypothesis via Shapiro-
Wilk, but not Kolmogorov-Smirnov). Alongside this, degrees of compatibility
that appear markedly different could be highly compatible with each other. As
shown by McShane et al., an original study with P = 0.005 and a replication
study with P = 0.194 were highly compatible with one another in the sense that
the P-value of the chosen comparison test, assuming no difference between them,
was P = 0.289 [15]. Therefore, the difference between “statistically significant”
and “statistically not significant” would be “statistically not significant” at the
0.05 level [5]. Nonetheless, the absurdity of adopting dichotomous thresholds
goes beyond this example, as it blends two incompatible approaches: the (neo)
Fisherian one, as described above, and the decision-theoretic Neyman-Pearson
one. The first is mathematically structured to provide information on individual
studies under the conditions mentioned above, while the second is mathematically
structured to provide information on groups of studies (but never on individuals
within that group) in numerous repetitions under the same scientific conditions
(utopian scenario). This even leads to two distinct mathematical definitions of
the P-value, which the reader can delve into by consulting other literature [8, 9].
Given that the overall goal of public health statistics is to inform decisions based
on individual studies (e.g., randomized control trials, systematic reviews with
meta-analysis, etc.), the (neo) Fisherian approach must be preferred. Neverthe-
less, in addition to what has already been discussed, there are further inherent
difficulties in the use of the P-value that could be addressed by adopting some
valid alternatives.

2. SURPRISAL AS AN ALTERNATIVE TO STATISTICAL SIG-
NIFICANCE AND COMPATIBILITY

2.1. Relationship between P-values and S-values

P-values exhibit some counterintuitive behaviors. For instance, even though
the pairs (P1 = 0.05, P2 = 0.10) and (P3 = 0.90, P4 = 0.95) are formed by P-
values that differ by the same amount, ∆P = 0.05, the information contained
in the regions identified by these two pairs differs substantially. This happens
because the area of the corresponding curve is geometrically distributed differ-
ently along the bell curve. For this reason, the use of Shannon information (also
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known as “surprisal” or “S-value”) has been proposed based on the following
reasoning: given the probability P of an event, this can be related to the prob-
ability of obtaining S consecutive heads by flipping an unbiased coin using the
formula P = 0.5S = 2−S [17]. It follows that S = −log2P . In the utopian
scenario, the S-value measures the degree of surprise of the test result (e.g., the
“t” statistic or the chi-squared statistic) compared to the target assumption.
The aim is to compare “statistical significance” with a phenomenon that we are
familiar with in everyday life. However, mathematically speaking, the S-value
measures continuous information (bits). It is up to the reader to interpret that
information in relation to the context. Values such as S = 4.3 cannot be un-
derstood as “4.3 consecutive heads”; however, this writing can be interpreted as
“in the utopian scenario, the statistical result is approximately as surprising as
4 consecutive heads - or slightly more than 4 consecutive heads - when tossing
a fair coin.” At the conventional threshold P = .05, S = 4.3 bits correspond.
Thus, when we evaluate the difference between P1 = .05 and P2 = .10, we obtain
∆S = |S2 − S1| = log2(0.10/0.05) = 1 bit, while between P3 = .90 and P4 = .95,
we obtain ∆S = |S3 − S4| = log2(0.95/0.90) = 0.08 bits. Hence, the difference in
statistical surprise now becomes evident. However, the philosophy underlying the
S-value goes beyond this simplification: the goal is to evaluate results in classes
of practical equivalence. Considering the uncertainties mentioned above, there
is no practical difference between P = .05 (S = 4.3) and P = .0625 (S = 4),
since both results are surprising by about as much as 4 consecutive heads. This
is why it is good practice to round S values to the nearest integer (although more
precise values should always be reported as supplementary material to allow for
multi-comparison adjustments or meta-analyses).

2.2. S-values don’t address the magnitude fallacy

Surprisals can be effective in properly evaluating statistical surprise, but
they cannot address the common confusion about the difference between statis-
tical surprise or compatibility and magnitude [11,12]. Therefore, this paragraph
will address the relationship between statistical compatibility and effect size, al-
lowing for a proper introduction of the relationship between surprisal and effect
size. A statistical phenomenon can be rare and unexpected (high surprise) but
weak (low magnitude), meaning it may have little practical impact. For example,
while following a weight-loss diet in accordance with the health recommendations
of their primary care physician, one may consistently lose about one gram per
day for 100 days (a scientific effect that is unlikely to be due to chance) but
still be far from their target weight (indeed, losing 100 grams in 100 days has a
negligible impact on physical health). If we were to statistically model such a
real-world situation using linear regression, we would obtain a very low P-value
(indicating a surprising result), but also a very low slope coefficient (indicating
that the trend’s intensity would be low compared to the predetermined objec-
tive) [18]. Nevertheless, the P-value is inherently linked to the concept of effect



S-values and Surprisal Intervals 5

size (ES), as it can be expressed, at least, as a function P = f(ES,N) where
N is the sample size. Considering a fixed N = N0, the P-value could be exclu-
sively linked to the effect size. The latter can be examined through the effect
size parameter (which can provide information on the intensity of the statisti-
cal phenomenon) but also through the width of confidence intervals (which can
provide information on how the statistical effect size changes in relation to the P-
value). However, the concept of confidence is commonly (mis)understood within
an inferential fashion, i.e., it does not probabilistically concern our single already
completed experiment. Indeed, a confidence interval can be obtained by selecting
an arbitrary threshold α and performing the operation 100 · (1− α)%; the most
well-known case is α = .05 with a 95% confidence interval. When testing continu-
ous data, by calculating 95% confidence intervals in infinite utopian applications,
95% of these intervals contain the true value (coverage probability) [2]. However,
even assuming that a sufficiently large number of repetitions of the experiment
is enough and assuming to work in the utopian scenario in each of these, such an
approach cannot mathematically tell us which intervals contain the true value.
Furthermore, the above definition of confidence interval conflicts with the aban-
donment of statistical significance thresholds. To solve these dilemmas, Rafi et
al. propose a terminological modification: give up the term “confidence” in fa-
vor of the Fisherian term “compatibility” [17]. In this framework, considering
the utopian scenario, a compatibility interval contains all the target assumption
predictions that, compared to certain threshold hypotheses and according to the
performed test, are more compatible with the calculated experimental result (e.g.,
the difference between two sample estimators or population parameters). In other
words, any model prediction that lies inside (resp. outside) the obtained com-
patibility interval will result in a P-value higher (resp. lower) than the selected
threshold. In order to address the problem of the arbitrary threshold choice, it
has been proposed to provide tables that relate various P-values to their respec-
tive compatibility intervals or to present multiple compatibility intervals (e.g.,
50%, 75%, 90%). A particularly interesting and information-rich solution is to
graphically represent all compatibility intervals from 1% to 99% [17]. However,
this may greatly increase the reading load or even be confusing in the case of
multiple results. Besides, there is currently a clear asymmetry in the definition
and application of the concepts of compatibility interval and statistical surprise
(S-value) since the former remains confined by definition within the scope of sta-
tistical significance (P-value). For these reasons, the present manuscript proposes
and discusses two points: 1) the concept of surprisal interval, which can address
the issues related to the obscured relationship between compatibility interval and
surprise, and 2) a novel convention to compress information on the relationship
between P/S-value and compatibility/surprisal intervals (based on the work of
Xie et al. concerning confidence distribution [21]) and allows the presentation of
these results in a single compact form.
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3. SURPRISAL-BASED APPROACH

3.1. Surprisal interval

The definition of surprisal interval is based on a specific partition of the
probability density function. Specifically, it consists of associating the natural
values S = 1, 2, . . . , n with their respective areas by exploiting the relationship
P = 2−S . The first ten results are shown in Table 1. Through this operation,
it is now possible to define surprisal intervals (S-I), analogous to confidence in-
tervals (CI). We consider the case of a normal distribution (Figure 1). Let’s
assume we want to find a 4-I (S = 4). The corresponding exact P-value is
P = 2−4 = 0.0625 ∼ 0.063. Therefore, the corresponding compatibility inter-
val is (1 − 0.063) · 100% CI = 93.7% CI. To calculate it in practice, we need
to ask ourselves: what is the value of z for which the area under the Gaussian
curve between −z and z is equal to 0.937 (i.e., 93.7% of the total unit area)?
The answer is reported in Table 1. Afterward, it is sufficient to calculate 93.7%
CI=(r − z · σ̄, r + z · σ̄) = (r − 1.86 · σ̄, r + 1.86 · σ̄), where r is the calculated
experimental result and σ̄ is the standard error.

S-value P -value z-value*** 100 · (1− P )% CI

1 0.500 0.67 50%
2 0.250 1.15 75%
3 0.125 1.53 87.5%
4 0.063 1.86 93.7%
5 0.031 2.16 96.9%
6 0.016 2.42 98.4%
7 0.008 2.66 99.2%
8 0.004 2.89 99.6%
9 0.002 3.10 99.8%
10 0.001 3.30 99.9%

Table 1: Association between surprisal (S-I) and compatibility intervals (CI). ***
the shown z-values are valid only for the Gaussian distribution; conversely, the
relationships between S-values, P-values, and compatibility intervals are general.

The interpretation of our 4-I is as follows: in the utopian scenario, all target
assumption predictions that lie inside (resp. outside) the 4-interval are less (resp.
more) surprising than getting 4 consecutive heads - when flipping a fair coin -
compared to the calculated experimental result according to the statistical test.
In other words, let’s suppose we choose a specific statistical test and consider
a target assumption predicting an effect h. Let’s also suppose we calculate an
experimental result r (e.g., the difference between two population mean values)
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Figure 1: Surprisal intervals for integer values of S from 1 to 10.

in the utopian scenario. The 4-I contains all and only the values h such that r−h
(i.e., the difference between r and h) is less surprising, according to the chosen
test, than 4 consecutive heads when tossing a fair coin. Therefore, a general
definition of surprisal interval is as follows:

Definition 3.1. If and only if all the background assumptions are true, a
surprisal interval (or S-interval) is the interval that contains all and only the target
assumption predictions that are less surprising than S consecutive heads - when
tossing a fair coin - compared to the calculated experimental result according to
the statistical test.

Let’s apply this new definition to evaluate a two-tailed one-sample t-test
for a sample mean value of x̄ = 10, with a standard error σ̄ = 5 and a population
mean value µ = 0 (such that r = x̄ − µ = 10 − 0 = 10). For simplicity, we
also assume that the degrees of freedom are greater than 30 (such that t ∼ z)
and all the background assumptions are sufficiently met. Let’s then calculate
the following S-intervals: 4-I, 5-I, and 6-I. According to Table 1, S = 4 implies
t = 1.86 (this happens because, in this specific example, t ∼ z). So, we have 4-I
= (r− t · σ̄, r+ t · σ̄) = (10− 1.86 · 5, 10 + 1.86 · 5) = (1, 19). Similarly, we obtain
5-I = (−1, 21) and 6-I = (−2, 22). It is now easy to observe that the difference
between r = 10 and the null hypothesis prediction (h = 0) is more surprising than
4 consecutive heads and less surprising than 5. In fact, the 4-I has a lower bound
equal to h = 1 while the 5-I has a lower bound equal to h = −1 (hence, h = 0
must be somewhere in the middle). Considering the 4-I, we can also observe that
r − h = 10− h is less surprising than 4 consecutive heads for all h ∈ (1, 19) and
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more surprising than 4 consecutive heads for all h < 1 or h > 19.2 To provide a
compact overview of the variation in the width of our S-intervals as a function
of the corresponding S-values, we can adopt the notation 5|4-I = (−1, 21|1, 19),
which can be easily extended to three or more surprisal intervals depending on
the needs of the authors and stakeholders (e.g., 6|5|4-I = (−2, 22| − 1, 21|1, 19)).
Thus, in general, we can define the convention as follows:

Definition 3.2. An n-tuple of surprisal intervals can be expressed as
S1| . . . |Sn-I = (S1-I| . . . |Sn-I).

Each Si represents a specific S-value and each Si-I represents the corre-
sponding surprisal interval. As an additional convention, it could be suggested
to report at least three surprisal intervals: the narrowest S-interval containing
the prediction of the null hypothesis, the narrowest S-interval not containing the
prediction of the null hypothesis, and the 4-interval. The first two serve to locate
the null hypothesis prediction, while the third serves as a general reference for
comparison with other surprisal intervals (as it covers about 94% of the area,
similarly to the classic 95% CI). In the previous example, the binary formulation
5|4-I = (−1, 21|1, 19) was sufficient.

3.2. Practical advantages of surprisal intervals

In general, the concept of surprisal as a measure of statistical surprise is
absolutely unnecessary from a purely mathematical, statistical, or computational
point of view. As a matter of fact, a correct use of P-value and compatibility
intervals could compensate for any criticality exposed in the introductory section
(although this would be much longer, subtle, and uneasy to present). However,
the world of hard sciences is forced to confront a very different reality linked to
the psychology and perception of the scientists who adopt and develop them. For
instance, Rafi et al. argue that the misuse of statistical significance is primarily a
cognitive and semantic problem rather than a statistical issue [2]. Greenland et
al. also suggest that the inability to find a straightforward interpretation of the
concept of P-value paradoxically favors the proliferation of oversimplified expla-
nations [11]. The same author of this paper has found, during his experience as
an editor and peer reviewer in public health-related topics, not only widespread
poor knowledge about the difference between the Fisherian and Neyman-Pearson
approaches but also a furious resistance to change despite the overwhelming evi-
dence provided. The authors’ motivations ranged from “We don’t want to make
reading complicated” to “We prefer to maintain the traditional use of signifi-
cance”. This scenario is strongly consistent with the concerns raised by interna-
tionally renowned statisticians as well as the official statements of the American
Statistical Association [22]. In 2014, Professor George Cobb openly denounced

2It must be clear that this scenario is valid for the chosen test; performing a different test
could substantially alter these outcomes.
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the pivotal role of academic journals and universities in the unwarranted suc-
cess of P = 0.05. Such illogical behaviors are compatible with some phenomena
of cognitive psychology whereby modifying a consolidated belief or behavior is
highly complex and often temporary when successful (even in scientists) [19,20].
As early as 1919, Boring emphasized the limitations of the mathematical ap-
proach in modeling scientific reality and stressed the impossibility of formulating
conclusions based solely on statistical approaches [3]. The fact that, over 100
years later, despite the knowledge accumulated over this period, such concepts
elude a significant fraction of the scientific community is signaling more than a
formative problem. Accordingly, McShane and Gal observed that dichotomiza-
tion decreases (but does not eliminate) when researchers are prompted to make
decisions based on the evidence, especially if the outcome has personal conse-
quences [16]. Still, that’s not all: diabolical academic dynamics such as publish
or perish and publication bias push authors to exploit fallacious interpretations
of P-values and compatibility intervals to voluntarily exaggerate the apparent
degree of evidence found in their studies, thus increasing their chances of be-
ing published and cited [4]. Based on this, the purely interpretative aspect of a
statistical measure can have very important practical consequences, especially in
sectors - such as public health - where errors and overstatements must be weighed
on the cost function for stakeholders. In particular, the main objective of this
approach is to complete the proposal for replacing P-values with S-values by also
requiring the replacement of “confidence” intervals with surprisal intervals. The
total abandonment of statistical significance also brings with it the abandonment
of all incorrect practices related to erroneous familiarity (e.g., judging a result as
non-significant when P < α or is included in the 100(1− α)% CI, or considering
α = 0.05 and 95% CIs as some sort of privileged options) and prevents such di-
chotomies and prejudices at the root. The same term “significance” is inevitably
and intrinsically replaced with the term “surprise”, thus avoiding unnecessary,
dangerous, as well as frequent confusion with practical significance (effect size)
or even clinical significance. In order to give the reader an idea of the proportion
of these errors in the medical field, a previous study found that only one out of
52 students was able to properly distinguish these concepts [12].

In addition to this, surprisal intervals make the relationship with the mea-
sure of surprise of the outcome much clearer and more direct than compatibility
intervals do with P-values. First, in addition to terminological consistency, the
presentation of results is based on the same statistical quantity, namely, the inte-
ger number of consecutive heads when tossing an unbiased coin (bits) rather than
a decimal measure of statistical compatibility and a percentage area. Second, the
relationship between different intervals is much more intuitive since S-values lin-
earize the behavior of the distribution. For example, an inexperienced user, as
often happens, may easily think that the 99|95|91-%CI situation is symmetrical
with respect to the central interval when, in fact, this includes very different
compatibility requests (since they correspond respectively to 7, 4, and 3 consec-
utive heads); this cannot happen if the 7|4|3-I notation is used. Third, instead of
setting arbitrary thresholds, the user can decide which intervals to show without
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exceeding confidence in the result. For example, if S = 8 is obtained, it may be
useful to show an 8-I in order to understand what is the range of least surprise as-
sociated. This solution is highly advantageous because it allows the presentation
of the result surprisal and the associated surprisal interval in a single compact
form. This also allows for simplifying, both conceptually and operationally, pro-
cedures such as adjustment for multicomparison since S-values and S-intervals
are no longer separable. Furthermore, while compatibility intervals consent to
choose very specific degrees of precision (e.g., 94% or 95% or 96%), in the case
of S-intervals the degree of precision is forced to be 1 bit. Ergo, the user is led
to evaluate the results in less clear-cut terms (e.g., about 8 consecutive heads).

4. CONCRETE APPLICATION EXAMPLES

4.1. Example 1

The design of this study is intentionally non-optimal for didactic purposes.
The aim is to show a proper application of the S-interval concept as well as the
potential and limitations of the statistical approach. Let’s suppose we have devel-
oped a long-term treatment to reduce blood pressure in hypertensive individuals.
We convince 10 patients with clinically similar conditions to adopt this treatment
for 3 months. We measure blood pressure levels before and after the treatment,
obtaining the data in Table 2.

Patient Before (mmHg) After (mmHg) Differences (mmHg)

1 140 132 -8
2 150 145 -5
3 130 128 -2
4 135 139 +4
5 145 140 -5
6 138 132 -6
7 142 143 +1
8 128 125 -3
9 152 148 -4
10 134 130 -4

Table 2: Hypothetical blood pressure data before and after treatment: case 1.

Since we are searching for a reduction, we decide to apply a one-sided one-
sample t-test. To do so, in addition to assuming that all experimental procedures
have been executed correctly (including random sampling), we need to check the
compatibility of the data with the following assumptions of the test: i) normal
distribution (including the absence of outliers), ii) independence of observations,
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iii) interval or ratio data. Since the data (column “Differences”) represents con-
tinuous real number values of blood pressure from independent patients, we can
reasonably consider assumptions ii) and iii) to be validated. To investigate the
compatibility of the data with the assumption of normality, we observe that the
data reasonably follows the Q-Q plot line (readers can easily verify this indepen-
dently). So, we can apply the one-sample t-test with reasonable confidence in its
interpretability. The mean value is x̄ = −3.2 (SD 3.5). By choosing the null one-
sided assumption h ≥ 0, the largest experimental result is r = x̄−min{h} = −3.2
and the associated test result is t9 = −2.9, which implies S = 6.8 (i.e., the test
result is as surprising as just under 7 consecutive heads). Can we conclude any-
thing? The quick answer is no. Indeed, we have no idea how the degree of surprise
of our result varies compared to other hypotheses. To remedy this, we construct
the following S-intervals: 6|5|4|3-I. The goal is to understand the “rapidity” at
which statistical surprise diminishes to less surprising levels. We obtain 6|5|4|3-
I = (−∞,−0.4| − ∞,−0.8| − ∞,−1.3| − ∞,−1.8). In practice, we lose 1 bit
(head) for every 0.5 mmHg, meaning statistical surprise diminishes very rapidly
in relation to target hypotheses that predict tiny variations in blood pressure.
This indicates that our results are highly unstable. Therefore, we cannot con-
clude anything other than “these results are too uncertain to properly inform a
scientific conclusion.”

4.2. Example 2

The scenario is supposed to be the same as the previous example, but in
this case, we refer to the data in Table 3. Let’s take all the statistical and non-
statistical background assumptions for granted (the statistical ones can be easily
investigated, as shown in the previous example).

Patient Before (mmHg) After (mmHg) Difference (mmHg)

1 140 127 -13
2 150 140 -10
3 130 123 -7
4 135 136 +1
5 145 135 -10
6 138 141 +3
7 142 138 -4
8 128 120 -8
9 152 143 -9
10 134 125 -9

Table 3: Hypothetical blood pressure data before and after treatment: case 2.

In this case, we have an average value x̄ = −6.6 (SD 5.1). By choosing
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the null one-sided assumption h ≥ 0, the largest experimental result is r = x̄ −
min{h} = −6.6 and the associated test result is t9 = −4.1, which implies S = 9.5
(i.e., the test result is more surprising than 9 consecutive heads). To assess the
surprise decrease rapidity against different target assumptions, we construct the
following S-intervals: 9|7|5|3-I = (−∞,−0.4| − ∞,−1.8| − ∞,−3.2| − ∞,−4.6).
In this case, the decrease could be acceptable. Thus, can we say we have proven
the effectiveness of the treatment? Absolutely not. As mentioned earlier, statis-
tics is a limited component of scientific inquiry. So, can we at least say we have
found evidence in favor of the treatment’s effectiveness? No. At best, we have
found evidence compatible with the effectiveness of the treatment. However, this
evidence is also compatible with other equally valid hypotheses. For example,
the absence of a control group prevents us from establishing the impact of at-
mospheric variations and changes in the patients’ physical activity and dietary
habits over these 3 months (e.g., with the onset of summer, patients might spend
more time outdoors and be inclined toward a more Mediterranean diet). Bias
analysis is extremely important in this regard [14]. Alongside this, the sample is
arguably too small to be representative of the entire population. At the ethical
and scientific level, we must assess the invasiveness of the therapy. For instance,
does the effect size justify any potential physical and/or psychological adverse
events? Not only that, statistics deals with numbers, i.e., it is unable to encom-
pass the clinical complexity of each individual patient. Indeed, patients 4 and 6
even recorded an increase in blood pressure that should be investigated clinically.
Furthermore, the dataset exhibited high variability (percentage variation coeffi-
cient=77%). Nonetheless, admitting that there are valid biochemical reasons to
suspect the effectiveness of the treatment, in the event that the latter has not
yielded negative consequences for the patients, these results could justify further
research.

5. Discussion

The adoption of surprisal intervals completes the evaluative approach of sta-
tistical surprise, avoiding any reliance on statistical significance and confidence
(topics that are much more complex and cryptic even for expert statisticians).
S-intervals finally make explicit the relationship between surprise and effect size
and, in light of the uncertainties that affect the testing of a statistical hypothe-
sis, prevent the adoption of excessively sharp and senseless statistical significance
thresholds. This interpretation is reinforced by the definition of S-intervals, which
only permits reporting intervals at least 1 bit apart. For this reason, the con-
ventions and methodologies suggested in this paper never allow for the statistical
rejection or acceptance of a single target hypothesis since the researcher is urged
to reason only in terms of greater or lesser surprise (also in relation to effect size
estimation intervals). Indeed, any concrete action of this type (e.g., to promote
a drug for commercialization) must be made solely based on a careful evaluation
of the quality of the evidence available and a detailed analysis of biases, costs,
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and benefits for stakeholders since no mere statistical criterion can ever auto-
matically demonstrate causation nor answer the question, “Is it worth it?” The
final decision must, therefore, be informed by the union of evidence of various
kinds (e.g., statistical tests, proven chemical-biological mechanisms, clinical re-
ports, etc.). Such scientific practice, known as decision analysis, is central for
public health [7, 11, 14, 18]. In addition to this, the compact formulation of mul-
tiple intervals can provide a much more complete and clearer overview than that
described by a traditional confidence/compatibility interval without excessively
burdening the reading, i.e., remaining suitable to be used in summary sections
such as the abstract. Although the problems related to statistical testing are
numerous and go beyond the scope of this manuscript (e.g., arbitrary multiple
comparisons adjustments, p-hacking, statistical power misconceptions, and pub-
lication bias), the interpretation of test results is fundamental or integral to each
of these [1–18, 22]. Surprisal intervals, in conjunction with surprisals, can pro-
vide great assistance to the scientific community in framing research problems,
especially in the field of public health where errors regarding statistical signifi-
cance are as frequent as they are dangerous. In fact, comparing test results to a
perceptually familiar phenomenon, such as the number of consecutive successes
(heads) when flipping an unbiased coin, not only greatly simplifies the evaluation
of the statistical weight of the event under consideration but also contributes to
avoiding overstatements. Consequently, it is highly recommended that surprisal
intervals be adopted in future scientific investigations based on statistical testing.
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