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A.3. Proofs of auxiliary results

Proof of Lemma 1.1. Let θ = 1/υ and x > 0. A second-order Taylor
expansion yields, as t→∞,

U(tx)− U(t) = λ(log t)θ

((
1 +

log x

log t

)θ
− 1

)

= λθ(log x)(log t)θ−1
(

1 +
θ − 1

2

log x

log t
(1 + o(1))

)
.

Remarking that K0(x) = log x and letting a(t) = λθ(log t)θ−1, it follows

U(tx)− U(t)

a(t)
− log x =

θ − 1

2

(log x)2

log t
(1 + o(1)) = A(t)

∫ x

1

log s

s
ds (1 + o(1)),

where A(t) := (θ − 1)/ log t, the result is thus proved.

Proof of Lemma 1.2. The result is straightforwardly true for β = 0.
Let us then focus on the case where β ∈ (0, 1/2] and consider u ∈ (0, 1]. Differ-
entiating three times, one gets

g′β(u) =
1

u
(1− 2u+ uβ(1 + β log(u))) =:

g̃β(u)

u
,

g̃′β(u) = −2 + βuβ−1(2 + β log(u)),

g̃′′β(u) = βuβ−2(3β − 2 + (β2 − β) log(u)).

Let u0(β) = exp
(

2−3β
β(β−1)

)
be the unique point in u ∈ (0, 1] such that g̃′′β(u) = 0

when β ∈ (0, 1/2]. It is easily checked that g̃′′β(u) ≥ 0 when u ∈ (0, u0(β)] while
g̃′′β(u) ≤ 0 when u ∈ [u0(β), 1]. As a consequence, g̃′β(·) has a global maxima
m(β) on (0, 1] at u0(β) given by

m0(β) := g̃′β(u0(β)) = −2− β2

β − 1
exp

(
2− 3β

β

)
.

The sign of m0(β) depends on β ∈ (0, 1/2]. Observe that m0(β)→ +∞ as β → 0,
m0(1/2) = −2 + e/2 < 0 and

m′0(β) = −β
2 − 4β + 2

(β − 1)2
exp

(
2− 3β

β

)
< 0,

for all β ∈ (0, 1/2]. As a consequence, there exists a unique β0 ∈ (0, 1/2] such that
m0(β) = 0 and m0(β) ≥ 0 for all β ∈ (0, β0] while m0(β) ≤ 0 when β ∈ [β0, 1/2].
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Two cases appear:

• If β ∈ [β0, 1/2], then m0(β) ≤ 0 and consequently g̃′β(u) ≤ 0 for all u ∈
[0, 1]. The function g̃β(·) is thus decreasing on (0, 1], and taking account of
g̃β(1) = 0 yields g̃β(u) > 0 for all u ∈ (0, 1).

• If β ∈ (0, β0], then m0(β) ≥ 0 and there exist two unique points u1(β) ∈
(0, u0(β)] and u2(β) ∈ [u0(β), 1] such that g̃′β(u) = 0. The function g̃β(·)
is thus decreasing on (0, u1(β)], increasing on [u1(β), u2(β)] and decreasing
on [u2(β), 1] see Figure 5 for an illustration. It has two local minima given
by

g̃β(u1(β)) = 1− uβ1 (β) + 2u1(β)

(
1− β
β

)
> 0,

and g̃β(1) = 0. This proves that g̃β(u) > 0 for all u ∈ (0, 1).

As a conclusion, in both cases, g̃β(u) > 0 and g′β(u) > 0 for all u ∈ (0, 1)
which implies that gβ(·) is an increasing function on (0, 1). Since gβ(1) = 0 then
gβ(u) < 0 for all u ∈ (0, 1) and β ∈ (0, 1/2].
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Figure 5: Variations of the function g̃β(·), β ∈ (0, 1/2] studied in the proof
of Lemma 1.2.
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Proof of Lemma 1.3. (i) A first-order Taylor expansion shows that
hy(·) can be extended by continuity letting hy(1) = 1 for all y ≤ 0.
(ii) Differentiating twice, one gets for all y < 0 and τ > 1:

h′y(τ) =
y

(τy − 1)2

(
τy − 1

τ
− yτy−1 log(τ)

)
=

y

τ(τy − 1)2
(τy − 1− yτy log(τ))

=:
y

τ(τy − 1)2
h̃y(τ).

with h̃′y(τ) = −y2τy−1 log(τ) < 0, for all y < 0 and τ > 1. As a consequence

h̃y(·) is a decreasing function for all y < 0. Besides, since h̃y(1) = 0, it follows
that h̃y(τ) < 0 and a′y(τ) > 0 for all y < 0 and τ > 1. This proves that hy(·) is
an increasing function for all y < 0.
(iii) hy(τ) > 1 for all τ > 1 and y < 0 is a direct consequence of Lemma 1.3(i,ii).
To prove the second inequality, let ∆y(τ) := hy(τ)τy/2−1 for all τ > 1 and y < 0.
Differentiating three times yields

∆′y(τ) =
yτy/2−1

(τy − 1)2

(
τy − 1− 1

2
y log τ(τy + 1)

)
=:

yτy/2−1

(τy − 1)2
∆̃y(τ),

∆̃′y(τ) =
y

2τ
(τy(1− y log τ)− 1) =:

y

2τ

≈
∆y(τ),

≈
∆′y(τ) = −y2(log τ)τy−1 < 0.

It thus appears that
≈
∆y(·) is a decreasing function on (1,∞) with

≈
∆y(1) = 0

so that
≈
∆y(τ) < 0 for all τ > 1. As a consequence ∆̃′y(τ) > 0 and ∆̃y(·) is

an increasing function on (1,∞) with ∆̃y(1) = 0 so that ∆̃y(τ) > 0 for all
τ > 1. Finally, ∆′y(τ) < 0 and ∆y(·) is thus a decreasing function on (1,∞) with
∆y(1) = 0 so that ∆y(τ) < 0 for all τ > 1. The result is proved.

Proof of Lemma 1.4. (i) A second-order Taylor expansion shows that
fy(·) can be extended by continuity letting fy(1) = 1/2 for all y ≤ 0.
(ii) Let y < 0 and τ > 1. Differentiating twice, one has:

f ′y(τ) = − 1

τy log(τ)2
(1− log hy(τ)− τyhy(τ)) =: − f̃y(τ)

τy log(τ)2
,

f̃ ′y(τ) =
h2y(τ)τy − 1

τ log τ
< 0,

in view of Lemma 1.3(iii). This implies that f̃y(·) is a decreasing function on
(1,∞). Besides f̃y(1) = 0 since hy(1) = 1 from Lemma 1.3(i), and therefore
f̃y(τ) < 0 and f ′y(τ) < 0 for all τ > 1 which implies that fy(·) is a decreasing
function on (1,∞).
(iii) fy(τ) < 1/2 for all y < 0 and τ > 1 is a direct consequence of Lemma 1.4(i,ii)
while fy(τ) > 0 follows from Lemma 1.3(iii).
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Proof of Proposition 1.1. First, note that for all τ > 1, ρ ≤ 0 and
y ≤ 0, one has

B(1, τ, ρ)−B(β?(τ, y), τ, ρ) = log(τ)−Kρ(τ)− log(τ)

(
Ky(τ)

log(τ)

)ρ/y
+Kρ(τ)

= log(τ)(1− hy(τ)−ρ/y).

Clearly, B(1, τ, 0) − B(β?(τ, y), τ, 0) = 0 and B(1, τ, 0) = 0 in view of (2.6). Let
us thus focus on the case where τ > 1, ρ < 0 and y ≤ 0. Combining log(τ) > 0,
ρ/y > 0 and Lemma 1.3(iii) yields

(1.6) B(1, τ, ρ)−B(β?(τ, y), τ, ρ) > 0.

Second,

ρ{B(1, τ, ρ) +B(β?(τ, y), τ, ρ)} = ρ

(
log(τ) + log(τ)

(
Ky(τ)

log(τ)

)ρ/y
− 2Kρ(τ)

)
,

for all τ > 1, ρ < 0 and y ≤ 0. The change of variable ρ 7→ u = τρ yields

ρ{B(1, τ, ρ) +B(β?(τ, y), τ, ρ)} = log(u) + log(u)

(
Ky(τ)

log(τ)

)log(u)/(y log(τ))

− 2(u− 1)

= log(u)
(

1 + ufy(τ)
)
− 2(u− 1),

= gfy(τ)(u),

with

gβ(u) = log(u)(1 + uβ)− 2(u− 1), (see Lemma 1.2),

hy(τ) =
K0(τ)

Ky(τ)
, (see Lemma 1.3),

fy(τ) =
1

y log(τ)
log

(
Ky(τ)

log(τ)

)
= − log(h(τ))

y log(τ)
, (see Lemma 1.4).

Lemma 1.4(iii) shows that 0 < fy(τ) ≤ 1/2 for all y ≤ 0, τ > 1 and thus one can
apply Lemma 1.2 to obtain gfy(τ)(u) < 0 and consequently

(1.7) B(1, τ, ρ) +B(β?(τ, y), τ, ρ) =
gfy(τ)(τ

ρ)

ρ
> 0.

Collecting (1.6) and (1.7) concludes the proof.
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