Supplementary result for

"A refined extreme quantile estimator for Weibull tail-distributions"

JONATHAN EL METHNI & STÉPHANE GIRARD

A.3. Proofs of auxiliary results

Proof of Lemma 1.1. Let $\theta = 1/v$ and x > 0. A second-order Taylor expansion yields, as $t \to \infty$,

$$U(tx) - U(t) = \lambda (\log t)^{\theta} \left(\left(1 + \frac{\log x}{\log t} \right)^{\theta} - 1 \right)$$
$$= \lambda \theta (\log x) (\log t)^{\theta - 1} \left(1 + \frac{\theta - 1}{2} \frac{\log x}{\log t} (1 + o(1)) \right).$$

Remarking that $K_0(x) = \log x$ and letting $a(t) = \lambda \theta (\log t)^{\theta-1}$, it follows

$$\frac{U(tx) - U(t)}{a(t)} - \log x = \frac{\theta - 1}{2} \frac{(\log x)^2}{\log t} (1 + o(1)) = A(t) \int_1^x \frac{\log s}{s} ds \ (1 + o(1)),$$

where $A(t) := (\theta - 1) / \log t$, the result is thus proved.

Proof of Lemma 1.2. The result is straightforwardly true for $\beta = 0$. Let us then focus on the case where $\beta \in (0, 1/2]$ and consider $u \in (0, 1]$. Differentiating three times, one gets

$$\begin{split} g'_{\beta}(u) &= \frac{1}{u} (1 - 2u + u^{\beta} (1 + \beta \log(u))) =: \frac{\tilde{g}_{\beta}(u)}{u}, \\ \tilde{g}'_{\beta}(u) &= -2 + \beta u^{\beta - 1} (2 + \beta \log(u)), \\ \tilde{g}''_{\beta}(u) &= \beta u^{\beta - 2} (3\beta - 2 + (\beta^2 - \beta) \log(u)). \end{split}$$

Let $u_0(\beta) = \exp\left(\frac{2-3\beta}{\beta(\beta-1)}\right)$ be the unique point in $u \in (0,1]$ such that $\tilde{g}''_{\beta}(u) = 0$ when $\beta \in (0,1/2]$. It is easily checked that $\tilde{g}''_{\beta}(u) \ge 0$ when $u \in (0, u_0(\beta)]$ while $\tilde{g}''_{\beta}(u) \le 0$ when $u \in [u_0(\beta), 1]$. As a consequence, $\tilde{g}'_{\beta}(\cdot)$ has a global maxima $m(\beta)$ on (0,1] at $u_0(\beta)$ given by

$$m_0(\beta) := \tilde{g}'_{\beta}(u_0(\beta)) = -2 - \frac{\beta^2}{\beta - 1} \exp\left(\frac{2 - 3\beta}{\beta}\right)$$

The sign of $m_0(\beta)$ depends on $\beta \in (0, 1/2]$. Observe that $m_0(\beta) \to +\infty$ as $\beta \to 0$, $m_0(1/2) = -2 + e/2 < 0$ and

$$m_0'(\beta) = -\frac{\beta^2 - 4\beta + 2}{(\beta - 1)^2} \exp\left(\frac{2 - 3\beta}{\beta}\right) < 0,$$

for all $\beta \in (0, 1/2]$. As a consequence, there exists a unique $\beta_0 \in (0, 1/2]$ such that $m_0(\beta) = 0$ and $m_0(\beta) \ge 0$ for all $\beta \in (0, \beta_0]$ while $m_0(\beta) \le 0$ when $\beta \in [\beta_0, 1/2]$.

Two cases appear:

- If $\beta \in [\beta_0, 1/2]$, then $m_0(\beta) \leq 0$ and consequently $\tilde{g}'_{\beta}(u) \leq 0$ for all $u \in [0, 1]$. The function $\tilde{g}_{\beta}(\cdot)$ is thus decreasing on (0, 1], and taking account of $\tilde{g}_{\beta}(1) = 0$ yields $\tilde{g}_{\beta}(u) > 0$ for all $u \in (0, 1)$.
- If $\beta \in (0, \beta_0]$, then $m_0(\beta) \ge 0$ and there exist two unique points $u_1(\beta) \in (0, u_0(\beta)]$ and $u_2(\beta) \in [u_0(\beta), 1]$ such that $\tilde{g}'_{\beta}(u) = 0$. The function $\tilde{g}_{\beta}(\cdot)$ is thus decreasing on $(0, u_1(\beta)]$, increasing on $[u_1(\beta), u_2(\beta)]$ and decreasing on $[u_2(\beta), 1]$ see Figure 5 for an illustration. It has two local minima given by

$$\tilde{g}_{\beta}(u_1(\beta)) = 1 - u_1^{\beta}(\beta) + 2u_1(\beta) \left(\frac{1-\beta}{\beta}\right) > 0,$$

and $\tilde{g}_{\beta}(1) = 0$. This proves that $\tilde{g}_{\beta}(u) > 0$ for all $u \in (0, 1)$.

As a conclusion, in both cases, $\tilde{g}_{\beta}(u) > 0$ and $g'_{\beta}(u) > 0$ for all $u \in (0,1)$ which implies that $g_{\beta}(\cdot)$ is an increasing function on (0,1). Since $g_{\beta}(1) = 0$ then $g_{\beta}(u) < 0$ for all $u \in (0,1)$ and $\beta \in (0,1/2]$.

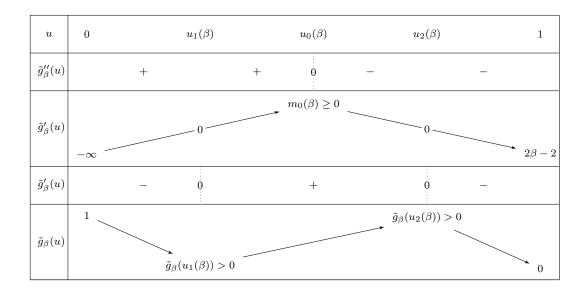


Figure 5: Variations of the function $\tilde{g}_{\beta}(\cdot), \beta \in (0, 1/2]$ studied in the proof of Lemma 1.2.

Proof of Lemma 1.3. (i) A first-order Taylor expansion shows that $h_y(\cdot)$ can be extended by continuity letting $h_y(1) = 1$ for all $y \le 0$. (ii) Differentiating twice, one gets for all y < 0 and $\tau > 1$:

$$\begin{aligned} h'_y(\tau) &= \frac{y}{(\tau^y - 1)^2} \left(\frac{\tau^y - 1}{\tau} - y\tau^{y-1}\log(\tau) \right) = \frac{y}{\tau(\tau^y - 1)^2} \left(\tau^y - 1 - y\tau^y\log(\tau) \right) \\ &=: \frac{y}{\tau(\tau^y - 1)^2} \tilde{h}_y(\tau). \end{aligned}$$

with $\tilde{h}'_y(\tau) = -y^2 \tau^{y-1} \log(\tau) < 0$, for all y < 0 and $\tau > 1$. As a consequence $\tilde{h}_y(\cdot)$ is a decreasing function for all y < 0. Besides, since $\tilde{h}_y(1) = 0$, it follows that $\tilde{h}_y(\tau) < 0$ and $a'_y(\tau) > 0$ for all y < 0 and $\tau > 1$. This proves that $h_y(\cdot)$ is an increasing function for all y < 0.

(iii) $h_y(\tau) > 1$ for all $\tau > 1$ and y < 0 is a direct consequence of Lemma 1.3(i,ii). To prove the second inequality, let $\Delta_y(\tau) := h_y(\tau)\tau^{y/2} - 1$ for all $\tau > 1$ and y < 0. Differentiating three times yields

$$\begin{split} \Delta'_{y}(\tau) &= \frac{y\tau^{y/2-1}}{(\tau^{y}-1)^{2}} \left(\tau^{y}-1-\frac{1}{2}y\log\tau(\tau^{y}+1)\right) =: \frac{y\tau^{y/2-1}}{(\tau^{y}-1)^{2}}\tilde{\Delta}_{y}(\tau),\\ \tilde{\Delta}'_{y}(\tau) &= \frac{y}{2\tau} \left(\tau^{y}(1-y\log\tau)-1\right) =: \frac{y}{2\tau}\tilde{\Delta}_{y}(\tau),\\ \tilde{\Delta}'_{y}(\tau) &= -y^{2}(\log\tau)\tau^{y-1} < 0. \end{split}$$

It thus appears that $\tilde{\Delta}_y(\cdot)$ is a decreasing function on $(1,\infty)$ with $\tilde{\Delta}_y(1) = 0$ so that $\tilde{\Delta}_y(\tau) < 0$ for all $\tau > 1$. As a consequence $\tilde{\Delta}'_y(\tau) > 0$ and $\tilde{\Delta}_y(\cdot)$ is an increasing function on $(1,\infty)$ with $\tilde{\Delta}_y(1) = 0$ so that $\tilde{\Delta}_y(\tau) > 0$ for all $\tau > 1$. Finally, $\Delta'_y(\tau) < 0$ and $\Delta_y(\cdot)$ is thus a decreasing function on $(1,\infty)$ with $\Delta_y(1) = 0$ so that $\Delta_y(\tau) < 0$ for all $\tau > 1$. The result is proved.

Proof of Lemma 1.4. (i) A second-order Taylor expansion shows that $f_y(\cdot)$ can be extended by continuity letting $f_y(1) = 1/2$ for all $y \le 0$. (ii) Let y < 0 and $\tau > 1$. Differentiating twice, one has:

$$\begin{aligned} f'_y(\tau) &= -\frac{1}{\tau y \log(\tau)^2} \left(1 - \log h_y(\tau) - \tau^y h_y(\tau) \right) =: -\frac{f_y(\tau)}{\tau y \log(\tau)^2}, \\ \tilde{f}'_y(\tau) &= \frac{h_y^2(\tau) \tau^y - 1}{\tau \log \tau} < 0, \end{aligned}$$

in view of Lemma 1.3(iii). This implies that $\tilde{f}_y(\cdot)$ is a decreasing function on $(1,\infty)$. Besides $\tilde{f}_y(1) = 0$ since $h_y(1) = 1$ from Lemma 1.3(i), and therefore $\tilde{f}_y(\tau) < 0$ and $f'_y(\tau) < 0$ for all $\tau > 1$ which implies that $f_y(\cdot)$ is a decreasing function on $(1,\infty)$.

(iii) $f_y(\tau) < 1/2$ for all y < 0 and $\tau > 1$ is a direct consequence of Lemma 1.4(i,ii) while $f_y(\tau) > 0$ follows from Lemma 1.3(iii).

Proof of Proposition 1.1. First, note that for all $\tau > 1$, $\rho \leq 0$ and $y \leq 0$, one has

$$B(1,\tau,\rho) - B(\beta^{\star}(\tau,y),\tau,\rho) = \log(\tau) - K_{\rho}(\tau) - \log(\tau) \left(\frac{K_{y}(\tau)}{\log(\tau)}\right)^{\rho/y} + K_{\rho}(\tau)$$

= log(\tau)(1 - h_{y}(\tau)^{-\rho/y}).

Clearly, $B(1, \tau, 0) - B(\beta^*(\tau, y), \tau, 0) = 0$ and $B(1, \tau, 0) = 0$ in view of (2.6). Let us thus focus on the case where $\tau > 1$, $\rho < 0$ and $y \le 0$. Combining $\log(\tau) > 0$, $\rho/y > 0$ and Lemma 1.3(iii) yields

(1.6)
$$B(1,\tau,\rho) - B(\beta^{\star}(\tau,y),\tau,\rho) > 0.$$

Second,

$$\rho\{B(1,\tau,\rho) + B(\beta^{\star}(\tau,y),\tau,\rho)\} = \rho\left(\log(\tau) + \log(\tau)\left(\frac{K_y(\tau)}{\log(\tau)}\right)^{\rho/y} - 2K_\rho(\tau)\right),$$

for all $\tau > 1$, $\rho < 0$ and $y \le 0$. The change of variable $\rho \mapsto u = \tau^{\rho}$ yields

$$\begin{split} \rho\{B(1,\tau,\rho) + B(\beta^{\star}(\tau,y),\tau,\rho)\} &= \log(u) + \log(u) \left(\frac{K_y(\tau)}{\log(\tau)}\right)^{\log(u)/(y\log(\tau))} - 2(u-1) \\ &= \log(u) \left(1 + u^{f_y(\tau)}\right) - 2(u-1), \\ &= g_{f_y(\tau)}(u), \end{split}$$

with

$$g_{\beta}(u) = \log(u)(1+u^{\beta}) - 2(u-1), \qquad \text{(see Lemma 1.2)},$$

$$h_{y}(\tau) = \frac{K_{0}(\tau)}{K_{y}(\tau)}, \qquad \text{(see Lemma 1.3)},$$

$$f_{y}(\tau) = \frac{1}{y\log(\tau)}\log\left(\frac{K_{y}(\tau)}{\log(\tau)}\right) = -\frac{\log(h(\tau))}{y\log(\tau)}, \qquad \text{(see Lemma 1.4)}.$$

Lemma 1.4(iii) shows that $0 < f_y(\tau) \le 1/2$ for all $y \le 0, \tau > 1$ and thus one can apply Lemma 1.2 to obtain $g_{f_y(\tau)}(u) < 0$ and consequently

(1.7)
$$B(1,\tau,\rho) + B(\beta^{\star}(\tau,y),\tau,\rho) = \frac{g_{f_y(\tau)}(\tau^{\rho})}{\rho} > 0.$$

Collecting (1.6) and (1.7) concludes the proof.