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A.3. Proofs of auxiliary results

Proof of Lemma 1.1. Let # = 1/v and = > 0. A second-order Taylor
expansion yields, as t — oo,

6
Ulte) — U(t) = Mlogt)® <<1+ llzggx> - 1)

— M(log z)(log 1)’ (1 + egulzggfa + 0(1))> .

Remarking that Ko(z) = logz and letting a(t) = A0(logt)?~!, it follows

Ul(tx) — U(t) 6 — 1 (log x)? /x log s
L ctoge = T2 BT (o) = Ate) [ B s (14 o),
where A(t) := (6 — 1)/logt, the result is thus proved. O

Proof of Lemma 1.2.  The result is straightforwardly true for 5 = 0.
Let us then focus on the case where 8 € (0,1/2] and consider u € (0,1]. Differ-
entiating three times, one gets

Ghlu) = L0~ 2u 4 u(1 + Blogu))) = P,

5(u) = =2+ pu’ ' (2 + Blog(u)),
Gh(u) = Bu’2(38 — 2+ (8> — B)log(u)).

Let up(8) = exp (%) be the unique point in u € (0, 1] such that g5(u) =0
when 8 € (0,1/2]. It is easily checked that gig(u) > 0 when u € (0,uo(3)] while
~

gs(u) < 0 when u € [ug(8),1]. As a consequence, gj(-) has a global maxima
m(B) on (0, 1] at ug(5) given by

. 2 2-3
mo(B) = dhua() = —2 = 5 exp (252,

The sign of m(8) depends on 8 € (0,1/2]. Observe that mo(8) — +oc as § — 0,
mo(1/2) = =2+ ¢/2 < 0 and

mi(8) =

pPoapt2 (2—3ﬂ> “0
(B—1)? B ’

for all 8 € (0,1/2]. As a consequence, there exists a unique 3y € (0,1/2] such that

mo(B) = 0 and mg(B) > 0 for all 5 € (0, 5] while mo(8) < 0 when 5 € [Bo, 1/2].
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Two cases appear:

As a

If B € [Bo,1/2], then mo(8) < 0 and consequently gi(u) < 0 for all u €
[0,1]. The function gs(-) is thus decreasing on (0, 1], and taking account of
gs(1) = 0 yields gg(u) > 0 for all u € (0,1).

If B € (0, Bp], then mo(B) > 0 and there exist two unique points ui(5) €
(0,u0(B)] and u2(B) € [uo(B), 1] such that gs(u) = 0. The function gg(-)
is thus decreasing on (0, u1(3)], increasing on [u;(8),u2(S)] and decreasing

on [ug2(f), 1] see Figure 5 for an illustration. It has two local minima given
by

(@) = 1-uf(3) + 2(9) (15F) >0

and gg(1) = 0. This proves that gg(u) > 0 for all u € (0, 1).

conclusion, in both cases, gg(u) > 0 and ggz(u) > 0 for all u € (0,1)

which implies that gg(-) is an increasing function on (0, 1). Since gg(1) = 0 then

g(u) <0 for all w € (0,1) and 5 € (0,1/2]. O
u 0 u1(8) uo(B) u2(B) 1
g (u) + + 0 - -
mo(B) = 0
5 (w) /o/ \o\
—o 28— 2
G5(w) - 0 + 0 -
1 gp(u2(B)) >0
Gp(u) \ / \
gp(u1(B)) >0 0

Figure 5: Variations of the function gs(-), 8 € (0,1/2] studied in the proof
of Lemma 1.2.
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Proof of Lemma 1.3. (i) A first-order Taylor expansion shows that
hy(-) can be extended by continuity letting h, (1) =1 for all y < 0.
(ii) Differentiating twice, one gets for all y < 0 and 7 > 1:

h;(T) = = g 7 <Ty -1 yr¥! 10g(7')> = ﬁ (7Y — 1 — y7r¥1og(7))

-
y ~
= ——h .
T(Tv — 1)2 y(7)
with ﬁ;(T) = —y?r¥log(r) < 0, for all y < 0 and 7 > 1. As a consequence

hy(-) is a decreasing function for all y < 0. Besides, since h,(1) = 0, it follows
that h,(7) < 0 and ay(7) > 0 for all y < 0 and 7 > 1. This proves that hy(-) is
an increasing function for all y < 0.

(iii) hy(7) > 1 for all 7 > 1 and y < 0 is a direct consequence of Lemma 1.3(i,ii).
To prove the second inequality, let A, (7) := hy (7)7%/2—1forall 7 > 1 and y < 0.
Differentiating three times yields

y/2-1 1 Fy/2-1
A _ vy Y _1— Zyl Y11) ) =: yiA
(1) G (T 5Y og (Y + )) v 1) y(T),

A(r) = 5= (1= ylogT) — 1) = -8, (r),

A’ (1) = —y*(log 7)7¥ "L < 0.

It thus appears that Zy() is a decreasing function on (1,00) with Zy(l) =0
so that A,(7) < 0 for all 7 > 1. As a consequence A;(T) > 0 and Ay(") is
an increasing function on (1,00) with A,(1) = 0 so that A,(r) > 0 for all

7 > 1. Finally, A} (1) <0 and Ay(-) is thus a decreasing function on (1, 00) with
Ay(1) =0 so that Ay(7) <0 for all 7 > 1. The result is proved. O

Proof of Lemma 1.4. (i) A second-order Taylor expansion shows that
fy(+) can be extended by continuity letting f, (1) = 1/2 for all y <O0.
(ii) Let y < 0 and 7 > 1. Differentiating twice, one has:
/ 1 f y(7)

fy(T) = _Ty 10g(7’)2 (1 - IOg hy(T) - Tyhy(T)) = _Ty 10g(7’)27
- h2 ()Y —1
fin =100 <o,

in view of Lemma 1.3(iii). This implies that f,(-) is a decreasing function on
(1,00). Besides f,(1) = 0 since hy(1) = 1 from Lemma 1.3(i), and therefore
fy(7) < 0 and fy(t) < 0 for all 7 > 1 which implies that f,(-) is a decreasing
function on (1, 00).

(iii) fy(r) <1/2forally < 0 and 7 > 1 is a direct consequence of Lemma 1.4(i,ii)
while f,(7) > 0 follows from Lemma 1.3(iii). O
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Proof of Proposition 1.1.  First, note that for all 7 > 1, p < 0 and
y < 0, one has

Ky(T)
log(7)

p/y
B(L7.p) — B3 (7.3).m.p) = log() — K(r) — log(r) < ) T Ky(r)
— log(r)(1 — hy(r)*).

Clearly, B(1,7,0) — B(p*(7,y),7,0) = 0 and B(1,7,0) = 0 in view of (2.6). Let
us thus focus on the case where 7 > 1, p < 0 and y < 0. Combining log(7) > 0,
p/y > 0 and Lemma 1.3(iii) yields

(1'6) B(LT? P) - B(ﬁ*(Ta y)77—7 P) > 0.

Second,

log(1)

forall 7 > 1, p < 0 and y < 0. The change of variable p — u = 7 yields

’ ply
(BT p) + B3 (r,y),7.p)} = p <log<f> T log(r) <Ky( ’) - 2Kp<f>> ,

Ky(7)>10g(U)/(y log(7)) s 1)

log(1)
= log(u) <1 + ufy(T)> —2(u—1),

p(B(L,7.p) + BB (r.).7,0)} = log(u) + log(u) (

= gfy(’r)(u)a
with
g (u) = log(u)(1 +u”) = 2(u — 1), (see Lemma 1.2),
hy(T) = [Igg:;’ (see Lemma 1.3),
b (BT log(A(T)) see Lemma
B = iy (o)) = ) e 10

Lemma 1.4(iii) shows that 0 < f,(7) < 1/2 for all y <0, 7 > 1 and thus one can
apply Lemma 1.2 to obtain gy, (- (u) < 0 and consequently

95, (1°)
p

(1.7) B(1,7,p)+ B(8*(1,y),7,p) = > 0.

Collecting (1.6) and (1.7) concludes the proof. O
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