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1. INTRODUCTION

LetX1, X2, . . . , Xn be independent and identically distributed random vari-
ables with cumulative distribution function F and let X1,n ≤ . . . ≤ Xn,n denote
the associated order statistics. We consider the case where F belongs to the
family of Weibull tail-distributions [12]:

(A.1) F is twice differentiable and F (·) = 1 − exp(−H(·)) with V (t) :=
H←(t) = tθℓ(t) for all t > 0, where θ > 0 is called the Weibull tail-coefficient
and where ℓ is a (positive) slowly-varying function i.e. ℓ(tx)/ℓ(x) → 1 as
x→ ∞ for all t > 0.

Here, and in the following, Φ←(·) = inf{x ∈ R,Φ(x) > ·} denotes the generalized
inverse of an increasing function Φ. The inverse cumulative hazard function V is
said to be regularly-varying at infinity with index θ and this property is denoted
by V ∈ RVθ, see [11] for a detailed account on this topic. The shape parameter
θ is referred to as the Weibull tail-coefficient. Weibull tail-distributions are part
of the Gumbel maximum domain of attraction, i.e. with extreme-value index
γ = 0, see [19, Proposition 2(ii)], and as such, are light-tailed distributions. They
include for instance exponential (θ = 1), Gamma (θ = 1), logistic (θ = 1), Normal
(θ = 1/2) and Weibull distributions (θ is the inverse of the shape parameter),
see [20, Table 1]. We refer to [9] for an application to the modeling of large claims
in non-life insurance and to [26] for an analysis of neural networks distributional
properties.

Dedicated methods have been proposed to estimate the Weibull tail-coeffi-
cient θ since the relevant information is localised in the extreme upper part of the
sample. Most approaches rely on the kn upper order statisticsXn−kn+1,n, . . . , Xn,n

where kn → ∞ as n → ∞. Note that, since θ is defined through a tail behav-
ior, the associated estimator should only use the extreme-values of the sample
and thus the extra condition kn/n → 0 is required. More specifically, recent
estimators are based on the log-spacings between the kn upper order statis-
tics [10, 17, 19, 20] or on the mean excess function [6, 7, 8]. The introduction of
kernel based weights has been investigated for both approaches, see [18] for the
log-spacings case and [21] for the mean excess function framework. A bias reduc-
tion method adapted to the estimation of the Weibull tail-coefficient is proposed
in [14] and the adaptation to random censoring is achieved in [28].

We address the problem of estimating extreme quantiles of Weibull tail-
distributions. Recall that an extreme quantile q(αn) of order αn is defined by
q(αn) = F←(1 − αn) with nαn → 0 as n → ∞. The latter condition implies
that q(αn) is almost surely asymptotically larger than Xn,n, the sample maxi-
mum. It is shown in [16] that classical extreme-value estimators of such large
quantiles are numerically outperformed by estimators dedicated to Weibull tail-
distributions [15], see also Lemma 1.1 in the Appendix for a theoretical argument.
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The latter methods estimate q(αn) by combining two ingredients: an order statis-
ticXn−kn+1,n and an estimator of the Weibull tail-coefficient θ used to extrapolate
from this anchor point.

In this work, we show that the biases associated with the previous ex-
trapolation method and the estimator of θ may asymptotically cancel out in the
extreme quantile estimator thanks to an appropriate tuning of the number of
upper order statistics involved in the Weibull tail-coefficient estimator. The con-
struction of the resulting estimator is presented in Section 2 and an asymptotic
normality result is provided, emphasizing that the proposed extreme quantile es-
timator is asymptotically less biased than the original one [16]. Its performances
are illustrated on simulated data in Section 3 and compared to three state-of-
the-art competitors [8, 15, 16]. An illustration on a real data set of daily wind
measures is provided in Section 4. Finally, a small conclusion is proposed in
Section 5 and the proofs are postponed to the Appendix.

2. A REFINED ESTIMATOR OF THE EXTREME QUANTILE

2.1. Extreme quantile estimators

Weibull-tail estimators of the extreme quantile q(αn) rely on an interme-
diate quantile q(kn/n) where (kn) is an intermediate sequence of integers i.e.
such that kn ∈ {1, . . . , n − 1}, kn → ∞ and kn/n → 0 as n → ∞, see for
instance [15, 16]. Indeed, in view of (A.1), one has

(2.1)
q(αn)

q(kn/n)
=
V (log(1/αn))

V (log(n/kn))
≃
(
log(1/αn)

log(n/kn)

)θ
=: τ θn,

as n → ∞, where τn = log(1/αn)/log(n/kn) is the (logarithmic) extrapolation
factor. From an intuitive point of view, an extreme quantile can thus be approx-
imated by multiplying an intermediate quantile by an appropriate extrapolation
term: q(αn) ≃ q(kn/n)τ

θ
n. The intermediate quantile q(kn/n) can then be esti-

mated by its empirical counterpart Xn−kn+1,n while the extrapolation term de-
pends on the tail heaviness through θ which has to be estimated as well. Following
the ideas of [4], we propose a refined Weissman [27] type estimator:

(2.2) q̂n(αn, kn, k
′
n) = Xn−kn+1,n

(
log(1/αn)

log(n/kn)

)θ̂n(k′n)
= Xn−kn+1,n τ

θ̂n(k′n)
n ,

with θ̂n(k
′
n) an estimator of θ depending on another intermediate sequence (k′n).

Let us focus on the estimator introduced in [17]:

(2.3) θ̂RSH
n (k′n) =

1

µ(log(n/k′n))

1

k′n

k′n∑
i=1

(logXn−i+1,n − logXn−k′n+1,n),
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with, for t > 0, µ(t) =
∫ +∞
0 log

(
1 + x

t

)
e−xdx = etE1(t), where E1 is the Expo-

nential integral function [2, Page 228]. This estimator is motivated by the remark
that, in view of (2.1), the log-spacings between two quantiles are approximately
proportional to θ. This property is also used in the real data application (see
the top-right panel of Figure 4) to visually check the Weibull-tail assumption.
Clearly, θ̂RSH

n (·) can be interpreted as a rescaled Hill estimator since

(2.4) θ̂RSH
n (k′n) =

γ̂Hn (k
′
n)

µ(log(n/k′n))
,

where γ̂Hn (·) is the well-known Hill estimator [25] of the extreme-value index γ.

Let us note, when k′n = kn, one recovers the extreme quantile estimator for
Weibull tail-distributions introduced in [16]. In the next paragraph, the asymp-
totic normality of q̂n(αn, kn, k

′
n) is established, and it is shown that choosing

k′n ̸= kn can yield better results from an asymptotic point of view. A similar
phenomenon occurs in the estimation of the endpoint of a distribution in the
Weibull maximum domain of attraction, see [1] for details. We also refer to [4]
for the estimation of the tail-index in the Fréchet maximum domain of attraction.

2.2. Asymptotic analysis

The study of the limit distribution of q̂n(αn, kn, k
′
n) requires a second-order

condition on the slowly-varying function ℓ introduced in (A.1):

(A.2) There exist ρ ≤ 0 and b(t) → 0 as t → ∞, with ultimately constant
sign, such that uniformly locally on x ≥ 1,

lim
t→∞

1

b(t)
log

(
ℓ(tx)

ℓ(t)

)
= Kρ(x) :=

∫ x

1
uρ−1du.

It can be shown that necessarily |b| ∈ RVρ. The second-order Weibull parameter
ρ ≤ 0 tunes the rate of convergence of the ratio ℓ(tx)/ℓ(t) to 1. The closer ρ is to
0, the slower is the convergence. Condition (A.2) is the cornerstone in all proofs
of asymptotic normality for extreme-value estimators. Again, we refer to [20,
Table 1] for ρ parameters associated with usual Weibull tail-distributions. Our
first result is a refinement of [17, Corollary 3.1]. It provides an asymptotic nor-
mality result for the extreme quantile estimator (2.2) based on two intermediate
sequences (kn) and (k′n).

Theorem 2.1. Assume (A.1) and (A.2) hold. Let (kn) and (k′n) be
two intermediate sequences and introduce (αn) a probability sequence such that
αn → 0 as n→ ∞. Suppose, as n→ ∞,

(i)
√
k′nb(log(n/k

′
n)) → λ ∈ R,
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(ii) log(n/k′n)/ log(n/kn) → β ≥ 1,

(iii) τn → τ > β.

Then, as n→ ∞,

(2.5)
√
k′n

(
q̂n(αn, kn, k

′
n)

q(αn)
− 1

)
d−→ N

(
λ(log(τ)− β−ρKρ(τ)), (θ log τ)

2
)
.

Let us first remark that condition (i) implies log(n/k′n) ∼ log(n) as n → ∞ (see
[17, Lemma 5.1]), then condition (ii) yields log(n/kn) ∼ log(n)/β and therefore
condition (iii) can be rewritten as log(1/αn) ∼ (τ/β) log(n) as n → ∞. As a
consequence, the condition τ > β in (iii) implies nαn → 0 as n → ∞ which, in
turns, implies that q(αn) is an extreme quantile.

It follows from (2.5) that the asymptotic bias associated with q̂n(αn, kn, k
′
n)

is given by(
log τ − β−ρKρ(τ)

)
b(log(n/k′n)) ∼ (βρ log(τ)−Kρ(τ)) b(log(n/kn))

=: B(β, τ, ρ)b(log(n/kn)),

since |b| ∈ RVρ. It appears that each choice of k′n yields an associated constant β
in (ii) and thus a corresponding bias factor B(β, τ, ρ) = βρ log(τ)−Kρ(τ). From
the theoretical point of view, two cases can be considered.

• The usual choice k′n = kn yields β = 1 and one recovers [17, Corollary 3.1]
as a particular case of Theorem 2.1. Moreover, for all τ > 1, ρ ≤ 0,

(2.6) B(1, τ, ρ) = log(τ)−Kρ(τ) ≥ 0,

which is the (positive) bias factor associated with the extreme quantile estima-
tor q̂n(αn, kn, kn) investigated in [17]. Note that ρ 7→ B(1, τ, ρ) is a decreasing
function such that B(1, τ, 0) = 0 which is an unusual situation in extreme-value
theory. For instance, the bias factor associated with the Weissman estimator [27]
dedicated to heavy-tailed distributions is proportional to 1/(1− ρ) and increases
with ρ, see [22, Theorem 3.2.5 and Theorem 4.3.8].

• The choice β⋆(τ, ρ) := (Kρ(τ)/ log(τ))
1/ρ yields

(2.7) B(β⋆(τ, ρ), τ, ρ) = 0.

The associated intermediate sequence is given by k⋆n(τ, ρ) = ⌊n(kn/n)β
⋆(τ,ρ)⌋ and

therefore the extreme quantile estimator q̂n(αn, kn, k
⋆
n(τ, ρ)) is asymptotically un-

biased. Note that this estimator cannot be used in practice since the second-order
Weibull parameter ρ is unknown.

Up to our knowledge, there is no estimator of the second-order Weibull
parameter in the statistical literature. In practice, one can replace the true
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unknown value of ρ by a misspecified value y ≤ 0 in the above β⋆(τ, ρ) leading to

β⋆(τ, y) = (Ky(τ)/ log(τ))
1/y,(2.8)

k⋆n(τ, y) = ⌊n(kn/n)β
⋆(τ,y)⌋,(2.9)

B(β⋆(τ, y), τ, ρ) = β⋆(τ, y)ρ log(τ)−Kρ(τ)(2.10)

= (Ky(τ)/ log(τ))
ρ/y log(τ)−Kρ(τ),

with ρ ≤ 0 and τ > 1. This misspecification technique has been used both to deal
with Pareto-type distributions (γ > 0), see for instance [13], and Weibull tail-
distributions (γ = 0) [15]. Some properties of the intermediate sequence k⋆n(τ, y)
are given in the next Lemma.

Lemma 2.1. Let β⋆(τ, y) and k⋆n(τ, y) be defined by (2.8) and (2.9)
respectively. Then, for all τ > 1:

(i) β⋆(τ, y) → 1 as y → −∞ and β⋆(τ, ·) can be extended by continuity by
setting β⋆(τ, 0) :=

√
τ .

(ii) 1 < β⋆(τ, y) < τ for all y ≤ 0.

(iii) For all y ≤ 0, k⋆n(τ, y) is an increasing function of kn, k
⋆
n(τ, y) ≤ kn and

k⋆n(τ, y)/kn → 0 as n→ ∞.

(iv) k⋆n(τ, y) is a decreasing function of y ∈ (−∞, 0).

In particular, it appears in (iii) that the number of upper order statistics k⋆n(τ, y)
used in the Weibull tail-coefficient estimator should be asymptotically small com-
pared to kn for all finite values of y. From (iv), this is all the more true as y is
large. When y → −∞, meaning that one does not take into account the bias,
(i) shows that k⋆n(−∞, τ) = kn is recovered as a limit case. These properties are
illustrated on the left panel of Figure 1, where k⋆n is drawn as a function of kn
for several values of y. The next Corollary shows that these choices indeed lead
to a bias reduction in the estimation of the extreme quantile.

Corollary 2.1. Assume (A.1) and (A.2) hold. Let c > 0, τ > 1, y ≤ 0,
λ ̸= 0 such that λb(·) is ultimately positive, and β⋆(τ, y) be defined as in (2.8).
Let αn = c n−τ/β

⋆(τ,y), kn = ⌊n{λ2/(nb2(log n))}1/β⋆(τ,y)⌋ and define k⋆n(τ, y) as
in (2.9).

(i) Then, as n→ ∞,

√
k⋆n(τ, y)

(
q̂n(αn, kn, k

⋆
n(τ, y))

q(αn)
− 1

)
d−→ N

(
λ(log(τ)− (Ky(τ)/ log(τ))

−ρ/yKρ(τ)), (θ log τ)
2
)
.
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(ii) Moreover, for all τ > 1, y ≤ 0:

|B(β⋆(τ, y), τ, ρ)| < B(1, τ, ρ) for all ρ < 0,

B(β⋆(τ, y), τ, 0) = B(1, τ, 0) = 0.

Let us first highlight that
√
k⋆n(τ, y) ∼ λ/b(log n) as n → ∞ (see the proof of

Corollary 2.1 in the Appendix) which is the (logarithmic) rate of convergence
of usual extreme quantile estimators dedicated to Weibull tail-distributions, see
for instance [15, Theorem 1]. In contrast, the rate of convergence of extreme
quantile estimators is a power function of n in the Fréchet maximum domain of
attraction, see [22, Theorem 4.3.8 and Equation (3.2.10)] for Weissman estimator
and [4, Corollary 2] for the associated refined version. This may be seen as
a consequence of Lemma 1.1 in the Appendix where it is established that the
second-order parameter associated with Weibull distributions is ψ = 0.

Surprisingly, as a consequence of Corollary 2.1(ii), the extreme quantile
estimator q̂n(αn, kn, k

⋆
n(τ, y)) computed with k⋆n(τ, y) defined in (2.8) and (2.9) has

a smaller asymptotic bias than the usual one q̂n(αn, kn, kn) whatever the chosen
value y ≤ 0. Let us recall that, from (2.7), the theoretical best choice would be
y = ρ. In practice, we use y = ρ# = −1 leading to β⋆(τ,−1) = τ log(τ)/(τ − 1).
This ”canonical” choice is also used in [15], see Section 3.2 hereafter. Let us stress
that the use of a similar bias reduction method in the Fréchet maximum domain
attraction [4] is not based on such a misspecification technique but requires the
estimation of ρ.
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Figure 1: Left: Graphs of kn ∈ {2, . . . , 500} 7→ k⋆n(τn, y) for y ∈
{−∞,−2,−1,−1/2, 0} respectively in {black, blue, red, violet,
green}. Right: graphs of kn ∈ {2, . . . , 500} 7→ B(1, τn, ρ) (dot-
ted lines) and kn ∈ {2, . . . , 500} 7→ B(β⋆(τn, ρ

# = −1), τn, ρ)
(solid lines) given in Equations (2.6) and (2.10), with ρ ∈
{−2,−1,−1/2} respectively in {blue, red, violet}. On both pan-
els: τn = log(1/αn)/log(n/kn) with αn = 1/n and n = 500.
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Corollary 2.1(ii) is illustrated on the right panel of Figure 1 through the
graphical comparison of the bias factors associated with β = β⋆(τ,−1) (refined
Weibull-tail estimator) and β = 1 (usual Weibull-tail estimator [17]). It clearly
appears that, from the theoretical point of view, the first choice yields smaller
bias factors in absolute value than the second one. The performance of the refined
estimator in practice is assessed on simulated data in the next Section.

3. VALIDATION ON SIMULATED DATA

The refined extreme quantile estimator is compared on simulated data to
the original estimator [16] and to two other competitors described hereafter.

3.1. Experimental design

Let us consider the class of D(ζ, η, a)-distributions which is an adaptation
of Hall’s class [23, 24] to the Weibull-tail framework. In this family, the inverse
cumulative hazard function is defined for all x > 0 by

V (x) := x1/ζ
(
1 +

a

η
x−η

)
,

with a, ζ, η > 0 and ζη ≤ 1. Under these conditions, the above class of distribu-
tions fulfills assumptions (A.1) and (A.2) with Weibull tail-coefficient θ = 1/ζ,
second-order Weibull parameter ρ = −η, slowly-varying function ℓ(x) = 1 +
(a/η)x−η and b(x) = −ax−η. Unlike classical distributions such as the (absolute)
Normal distribution N (µ, σ) (θ = 1/2, ρ = −1 and b(x) = log(x)/(4x)), the
Gamma distribution G(υ ̸= 1, λ) (θ = 1, ρ = −1 and b(x) = (1 − υ) log(x)/x)
and the Weibull distribution W(υ, λ) (θ = 1/υ, ρ = −∞ and b(x) = 0), it is thus
possible to obtain D-distributions with arbitrary Weibull tail-coefficient θ > 0
and second-order Weibull parameter ρ ∈ [−θ, 0).

In the following, we set θ ∈ {1/2, 3/4, . . . , 5/2}, ρ ∈ {−5/2,−2, . . . ,−1/2},
a = 10 and focus on the only 25 situations of the D-distribution where ρ ≥
−θ to fulfill the constraint ζη ≤ 1, see Table 1. We also consider 5 situations
from the (absolute) Normal distribution N (µ, σ = 1) with µ ∈ {1, 3, 5, 7, 9}, 4
situations from the Gamma distribution G(υ, λ = 1) with υ ∈ {4, 6, 8, 10} and
2 situations from the Weibull distribution W(υ, λ) with υ = λ ∈ {1/2, 2}. In
each case, N = 1, 000 replications of a data set of n = 500 i.i.d. realisations are
simulated from the 25+5+4+2 = 36 considered parametric models. Finally, the
same two cases as in [15] are investigated for the order of the extreme quantile:
αn ∈ {1/n2, 1/n4}. Summarizing, this experimental design includes 36× 2 = 72
configurations.
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(ρ, θ) 1/2 3/4 1 5/4 3/2 7/4 2 9/4 5/2

-∞ W1 W1

-5/2 D1

-2 D1 D1 D1

-3/2 D1 D1 D1 D1 D1

-1 N5 G4/D1 D1 D1 D1 D1 D1 D1

-1/2 D1 D1 D1 D1 D1 D1 D1 D1 D1

Table 1: All considered configurations for (ρ, θ). The letter stands for the
distribution and the subscript for the number of investigated
situations. As an example, N5 corresponds to the (absolute)
Normal distribution N (µ, σ = 1) where five cases are considered
µ ∈ {1, 3, 5, 7, 9}.

3.2. Competitors

The refined estimator dedicated to the estimation of extreme quantiles for
Weibull tail-distributions is compared to three competitors. All three estimators
share the same structure and rely on three quantities, i.e. the order statistic
Xn−kn+1,n, an extrapolation term and an estimator of the Weibull tail-coefficient.

Let us first consider the estimator (2.3) of the Weibull tail-coefficient intro-
duced in [17]. The extreme quantile estimator proposed in [16] can be interpreted
as a particular case of (2.2) with k′n = kn and θ̂n(·) = θ̂RSH

n (·), see (2.4):

(3.1) q̂RSH
n (αn, kn) = Xn−kn+1,n τ

θ̂RSH
n (kn)
n .

More recently, an estimator of the Weibull tail-coefficient based on the mean
excess function t 7→ m(t) = E(X − t | X > t) has been introduced in [8]. In
practice, the authors estimate m(Xn−j,n) for all j ∈ {1, . . . , kn} by its empirical
counterpart:

m̂n(Xn−j,n) =
1

j

j∑
i=1

Xn−i+1,n −Xn−j,n,

which leads to the following estimator of θ based on log-spacings between the
mean excesses:

θ̂MEF
n (kn) =

1− 1

γ̂Hn (kn)

1

kn

kn∑
j=1

log m̂n(Xn−j,n)− log m̂n(Xn−kn−1,n)

−1 .
Letting k′n = kn and θ̂n(·) = θ̂MEF

n (·) in (2.3) yields the following estimator of the
extreme quantile:

(3.2) q̂MEF
n (αn, kn) = Xn−kn+1,n τ

θ̂MEF
n (kn)
n .

Up to our knowledge there exists only one bias-reduced extreme quantile esti-
mator dedicated to Weibull tail-distributions. This estimator [15] is based on
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a least-squares approach and involves a bias-reduced estimator of the Weibull
tail-coefficient proposed by the same authors [14]:

θ̂LSEn (kn) = Ȳkn − b̂(log(n/kn))x̄kn ,

where

Ȳkn =
1

kn

kn∑
j=1

Yj with Yj = j log(n/j)(logXn−j+1,n − logXn−j,n),

x̄kn =
1

kn

kn∑
j=1

xj with xj = log(n/kn)/ log(n/j),

and where

b̂(log(n/kn)) =

kn∑
j=1

(xj − x̄kn)Yj

/
kn∑
j=1

(xj − x̄kn)
2 .

The associated extreme quantile estimator is defined as

(3.3) q̂LSEn (αn, kn) = Xn−kn+1,n τ
θ̂LSE
n (kn)
n exp

(
b̂(log(n/kn))Kρ̂n(τn)

)
.

The authors suggest to choose in practice ρ̂n = ρ# = −1. This estimator features
two bias corrections: a first one in the estimator of the Weibull tail-coefficient
and a second one in the extrapolation term. This estimator is built under the
assumption that x|b(x)| → ∞ as x → ∞ leading to the constraint ρ ≥ −1. The
latter assumption is fulfilled by the class of D(ζ, η, a)-distributions when η ≤ 1.

Finally, recall that our estimator is given by

(3.4) q̂RWT
n (αn, kn, k

⋆
n(τn,−1)) = Xn−kn+1,n τ

θ̂RSH
n (k⋆n(τn,−1))
n ,

where k⋆n(τn,−1) = ⌊n(kn/n)β
⋆(τn,−1)⌋ and β⋆(τn,−1) = τn log(τn)/(τn − 1). For

the sake of simplicity, the above extreme quantile estimators (3.1)–(3.4) are re-
spectively referred to as RSH, MEF, LSE and RWT in the sequel.

3.3. Selection of the intermediate sequence

All four considered extreme quantile estimators (RWT, RSH, LSE, MEF)
depend on the intermediate sequence kn. The selection of kn is a crucial point
which has been widely discussed in the extreme-value literature. A new algorithm
for the selection of kn is proposed in [4], basing on a bisection method inspired
from random forests. The objective is to find the region with the smallest variance
in a given series {Z1, . . . , Zm}. The proposed method starts by randomly splitting
the series into two parts, computes the variance in each sub-region and repeats
the action in the one with smallest variance until getting a final single point,
see [4, Algorithm 2]. The above procedure is embedded in a bootstrap technique,
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see [4, Algorithm 1], and the final k†n is selected by taking the median across the
T = 10, 000 bootstrap samples. In the simulations, Zj = q̂(αn, kj,n), an estimator
(RWT, RSH, LSE or MEF) of the extreme quantile at level αn computed with
the intermediate sequence kj,n ∈ {15, 16, . . . , 3n/4}.

3.4. Results

The performance of the four extreme quantile estimators is assessed using
the Mean absolute relative error:

(3.5) MARE (q̂n(αn)) =
1

N

N∑
i=1

∣∣∣∣∣ q̂(i)n (αn, k
(i,†)
n )

qn(αn)
− 1

∣∣∣∣∣ ,
where q̂

(i)
n (αn, k

(i,†)
n ) denotes the estimator computed on the ith replication, i ∈

{1, . . . , N = 1, 000} with the intermediate sequence k
(i,†)
n selected using the above

described procedure. The computed MAREs are provided in Table 4 and Table 6
for αn = 1/n2 and in Table 5 and Table 7 for αn = 1/n4. The results are
summarized in Table 2: We start by remarking that, as expected, the smaller the
order αn of the extreme quantile is, i.e. the more one extrapolates, the larger
the error is. This is true for all four considered estimators. The proposed RWT
estimator is the most accurate one in average since it provides the best results in
48% of cases. Let us remark that, since we fixed ρ# = −1, the RWT estimator
performs best overall when ρ is close to −1. The second most accurate estimator
is LSE which provides the best results in 26% of the considered cases (19 out
of 72 situations). As expected, and similarly to the RWT estimator, it performs
well when ρ = −1. The RSH estimator shares similar performances with 25% of
best results. It is remarkably efficient when ρ = −∞ (all 4 situations) and more
surprisingly when ρ = −1/2 where it obtains 14 best results. RSH performs well
in this difficult case despite the fact that it does not benefit from a bias reduction.
This unexpected performance may be explained by the relatively small bias factor,
see the graph of B(1, ·,−1/2) in the right panel of Figure 1. The four cases where
RSH fails to obtain the best results when ρ = −1/2 correspond to a Weibull tail-
coefficient θ smaller than 1. Finally, MEF yields very poor estimations (even in
the strict Weibull case), with less than 2% of best results (only 1 situation). In
particular, it does not give acceptable results (with MARE ≥ 1) in 22% of the
considered situations.

As an illustration, the median and MARE associated with the RWT, RSH
and LSE estimators computed on a D(ζ, η, a = 10)-distribution for αn = 1/n2

are depicted on Figure 2 and Figure 3 as functions of kn. In Figure 2, the Weibull
tail-coefficient is fixed to θ = 3/2 and ρ ∈ {−1/2,−1,−3/2} decreases (from top
to bottom), while, in Figure 3, the second-order Weibull parameter is fixed to
ρ = −1 and θ ∈ {1, 3/2, 2} increases (from top to bottom). In most of these
situations, the RWT estimator has the smallest bias and thus the minimum value
of the MARE is reached for larger values of kn than RSH and LSE. To conclude,
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(ρ, θ) 1/2 3/4 1 5/4 3/2 7/4 2 9/4 5/2
-∞ RSH RSH

-5/2 LSE
-2 RWT RWT RWT

-3/2 RWT RWT RWT RWT RWT
-1 RWT/LSE RWT/LSE RWT RWT LSE/MEF LSE LSE LSE

-1/2 RWT LSE RSH RSH RSH RSH RSH RSH RSH

Table 2: Summary of results obtained in Tables 4–7. Best estimator of
the extreme quantiles q(αn = 1/n2) & q(αn = 1/n4) computed
on simulated data from Weibull tail-distributions. The situa-
tions in bold are illustrated for the D(ζ = 1/θ, η = −ρ, a = 10)-
distribution on Figure 2 and Figure 3.

it appears on these experiments that, overall, the RWT estimator performs the
best within the four considered estimators. One of its main competitors is LSE,
which, similarly to RWT, considers the two sources of bias (associated with the
Weibull tail-coefficient estimator and the extrapolation term).

4. ILLUSTRATION ON A REAL DATA SET

We study a data set of daily wind measures (in m/s) at Reims (France)
from 01/01/1981 to 04/30/2011. For seasonality reasons, only the months from
October to March are considered, resulting in n = 5, 371 measures, see the top-
left panel of Figure 4 for an histogram of the considered data. It is shown in [3]
that the Weibull tail model represents fairly well the upper tail of these data.
The goal is to estimate the extreme quantile q(1/n) (with 1/n ≃ 1.86 · 10−4) and
to compare it to the maximum of the sample xn,n = 42.26 m/s.

To this end, the Weibull tail-coefficient is estimated first by θ̂RWT
n (k†n) =

θ̂RSH
n (k̂⋆n) = 0.5597, where k†n = 2, 877 has been selected following the procedure
introduced in [4] and sketched in Subsection 3.3. This yields k̂⋆n = k̂⋆n(τn, ρ

#) =
961 where we set ρ# = −1. As a visual check, a Weibull quantile-quantile plot of
the log-excesses (logXn−i+1,n−logXn−k̂⋆n+1,n) versus (log log(n/i)−log log(n/k̂⋆n))

for i ∈ {1, . . . , k̂⋆n} is drawn on the top-right panel of Figure 4. The relationship
appearing in this plot is approximately linear, which constitutes an empirical
evidence that the Weibull-tail assumption makes sense and that k̂⋆n = 961 is a
reasonable choice for the estimation of the Weibull tail-coefficient. A line with
the estimated value θ̂RWT

n (k†n) = 0.5597 as slope is added to the quantile-quantile
plot highlighting the linear relationship. The function kn 7→ θ̂RSH

n (kn) is plot-
ted on the bottom-left panel of Figure 4, it features as a nice stability for all
kn ∈ {100, . . . , 4000}. A similar procedure is carried out for the other three

estimators to select k†n. The two Weibull tail-coefficient estimators RSH and
MEF that do not benefit from a bias reduction provide respectively the small-
est and the largest estimation: θ̂RSH

n (k†n) = 0.5017 and θ̂MEF
n (k†n) = 0.6693,

while the bias-reduced estimator LSE gives a value θ̂LSEn (k†n) = 0.6077 close
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to the RWT estimate θ̂RWT
n (k†n) = 0.5597. These results are reported in Ta-

ble 3 with the corresponding estimated extreme quantiles q̂n(1/n). The esti-
mates of the extreme quantile provided by RSH and MEF seem to respectively
underestimate and overestimate q(1/n) with respectively RSH(1/n) = 33.89
m/s and MEF(1/n) = 49.53 m/s while the sample maximum is xn,n = 42.26
m/s. It appears that LSE(1/n) = 37.08 is significantly smaller than the sam-
ple maximum. Let us stress that the proposed refined estimator gives the clos-
est estimate to the maximum value of the sample: RWT(1/n) = 41.00 m/s.
Note that the behaviour of the RWT estimate is stable with respect to the
choice of ρ#: RWT(1/n) ∈ {37.62, 41.00, 39.84} when ρ# ∈ {−2,−1,−1/2}
even though ρ# = −1 seems to be the best option. Finally, both sample paths
kn 7→RWT(1/n) and kn 7→LSE(1/n) enjoy a stable behaviour in a large neigh-

bourhood of k†n, see the bottom-right panel of Figure 4. As a conclusion, according
to RWT(1/n) estimate, one can expect a daily wind larger than 41.00 m/s to
occur in average once every 30 years during the October to March period.

RSH RWT LSE MEF

θ̂n(k
†
n) 0.5017 0.5597 0.6077 0.6693

q̂n(1/n, k
†
n) 33.89 41.00 37.078 49.53

k†n 2,206 2,877 2,792 2,202

Table 3: Comparison of the four estimators on the daily wind data set:
Estimates of the Weibull tail-coefficient θ and extreme quantile
q(1/n). The selected intermediate sequence k†n is also given for
each estimator.

5. CONCLUSION

As a conclusion, the RWT estimator is an efficient tool for estimating
extreme quantiles from Weibull tail-distributions. It relies on the ideas of [4],
consisting in selecting carefully two intermediate sequences to reduce the asymp-
totic bias of a Weissman type estimator. In contrast to this previous work, the
proposed approach does not rely on a preliminary estimate of the second-order
parameter; Any negative value may be used, and does yield an asymptotic bias re-
duction, as shown in our theoretical results. Other surprising features of Weibull
tail-distributions can be found in [5]. The proposed method provides satisfy-
ing results in our numerical experiments and outperforms all its competitors in
half of the considered situations. This work could be extended by investigating
the adaptation of this bias reduction principle to other estimators of extreme
quantiles from Weibull tail-distributions.
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RWT RSH LSE MEF

θ = 1/2

ρ = −1/2 0.0133 0.0441 0.0203 0.0969

θ = 3/4

ρ = −1/2 0.0702 0.0459 0.0412 0.2543

θ = 1

ρ = −1 0.1125 0.3449 0.1814 -
ρ = −1/2 0.1317 0.0640 0.0715 0.3015

θ = 5/4

ρ = −1 0.1430 0.3386 0.1846 0.5964
ρ = −1/2 0.1937 0.0857 0.1029 0.2283

θ = 3/2

ρ = −3/2 0.2116 0.7095 0.3844 -
ρ = −1 0.1874 0.3374 0.1900 0.4198
ρ = −1/2 0.2517 0.1090 0.1332 0.2076

θ = 7/4

ρ = −3/2 0.2470 0.6989 0.3831 -
ρ = −1 0.2442 0.3330 0.1986 0.2705
ρ = −1/2 0.3154 0.1349 0.1663 0.3809

θ = 2

ρ = −2 0.3236 0.8833 0.4406 -
ρ = −3/2 0.2869 0.6945 0.3833 -
ρ = −1 0.2934 0.3311 0.2136 0.3168
ρ = −1/2 0.3744 0.1586 0.1971 0.5915

θ = 9/4

ρ = −2 0.3710 0.8783 0.4365 -
ρ = −3/2 0.3274 0.6915 0.3847 0.6088
ρ = −1 0.3401 0.3303 0.2301 0.4946
ρ = −1/2 0.4359 0.1818 0.2262 0.7415

θ = 5/2

ρ = −5/2 0.8958 0.9493 0.3713 -
ρ = −2 0.4301 0.8754 0.4420 -
ρ = −3/2 0.3824 0.6891 0.3874 0.4998
ρ = −1 0.4050 0.3309 0.2526 0.7070
ρ = −1/2 0.5086 0.2101 0.2629 0.8675

Table 4: MAREs associated with the four estimators of the extreme
quantile q(αn = 1/n2) computed on simulated data from the
D(ζ = 1/θ, η = −ρ, a = 10)-distribution. The best result is
emphasized in bold. MAREs larger than 1 are not reported.
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RWT RSH LSE MEF

θ = 1/2

ρ = −1/2 0.0363 0.0835 0.0498 0.0871

θ = 3/4

ρ = −1/2 0.1049 0.0823 0.0685 0.2907

θ = 1

ρ = −1 0.2797 0.5471 0.3746 -
ρ = −1/2 0.1928 0.0964 0.1075 0.3572

θ = 5/4

ρ = −1 0.2941 0.5408 0.1471 0.4404
ρ = −1/2 0.2768 0.1201 0.1495 0.2738

θ = 3/2

ρ = −3/2 0.3973 0.8691 0.6227 -
ρ = −1 0.3316 0.5384 0.3743 0.3368
ρ = −1/2 0.3548 0.1467 0.1923 0.2555

θ = 7/4

ρ = −3/2 0.4242 0.8629 0.6135 -
ρ = −1 0.3813 0.5359 0.3744 0.3286
ρ = −1/2 0.4454 0.1785 0.2406 0.4611

θ = 2

ρ = −2 0.4764 0.9609 0.6591 -
ρ = −3/2 0.4616 0.8601 0.6109 -
ρ = −1 0.4351 0.5340 0.3796 0.4767
ρ = −1/2 0.5256 0.2088 0.2883 0.6809

θ = 9/4

ρ = −2 0.5542 0.9591 0.6429 -
ρ = −3/2 0.4977 0.8585 0.6088 0.6181
ρ = −1 0.4869 0.5316 0.3878 0.6607
ρ = −1/2 0.6005 0.2355 0.3304 0.8201

θ = 5/2

ρ = −5/2 - 0.9865 0.5552 -
ρ = −2 0.6308 0.9578 0.6388 -
ρ = −3/2 0.5603 0.8568 0.6047 0.6947
ρ = −1 0.5557 0.5298 0.4045 0.8317
ρ = −1/2 0.7019 0.2698 0.3847 0.9216

Table 5: MAREs associated with the four estimators of the extreme
quantile q(αn = 1/n4) computed on simulated data from the
D(ζ = 1/θ, η = −ρ, a = 10)-distribution. The best result is
emphasized in bold. MAREs larger than 1 are not reported.
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RWT RSH LSE MEF

N (µ, σ = 1)

µ = 1 0.1396 0.2804 0.0798 0.1852
µ = 3 0.0776 0.0564 0.0471 0.2943
µ = 5 0.0553 0.0882 0.0440 0.2682
µ = 7 0.0334 0.0789 0.0366 0.1852
µ = 9 0.0361 0.0822 0.0381 0.1987

G(υ, λ = 1)

υ = 4 0.1417 0.2240 0.1089 0.4930
υ = 6 0.1219 0.2270 0.1071 0.5040
υ = 8 0.0943 0.2095 0.1086 0.4581
υ = 10 0.1002 0.2158 0.1017 0.4758

W(υ, λ)

υ = λ = 1/2 0.4932 0.2100 0.2593 0.8528
υ = λ = 2 0.1217 0.0510 0.0646 0.3324

Table 6: MAREs associated with the four estimators of the extreme
quantile q(αn = 1/n2) computed on simulated data from classi-
cal Weibull tail-distributions. The best result is emphasized in
bold.

RWT RSH LSE MEF

N (µ, σ = 1)

µ = 1 0.1914 0.4430 0.1212 0.3009
µ = 3 0.1162 0.1001 0.0797 0.3354
µ = 5 0.0837 0.1584 0.0897 0.2507
µ = 7 0.0780 0.1565 0.0892 0.2270
µ = 9 0.0702 0.1477 0.0856 0.1895

G(υ, λ = 1)

υ = 4 0.2206 0.3616 0.2024 0.4721
υ = 6 0.2008 0.3709 0.2126 0.4677
υ = 8 0.1906 0.3669 0.2148 0.4492
υ = 10 0.1825 0.3596 0.2137 0.4275

W(υ, λ)

υ = λ = 1/2 0.6775 0.2729 0.3886 0.9070
υ = λ = 2 0.1750 0.0664 0.0938 0.4333

Table 7: MAREs associated with the four estimators of the extreme
quantile q(αn = 1/n4) computed on simulated data from classi-
cal Weibull tail-distributions. The best result is emphasized in
bold.
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Figure 2: Illustration on simulated data sets of size n = 500 from a
D(ζ = 1/θ = 2/3, η = −ρ, a = 10)-distribution with ρ ∈
{−1/2,−1,−3/2} (from top to bottom) computed on N = 1000
replications. Medians (left panel) and MAREs (right panel) as
functions of kn ∈ {2, . . . , n−1}, associated with estimators RWT
(orange), RSH (blue) and LSE (green) of the extreme quantile
q(αn = 1/n2) (black dashed line).
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Figure 3: Illustration on simulated data sets of size n = 500 from a D(ζ =
1/θ, η = −ρ = 1, a = 10)-distribution with θ ∈ {1, 3/2, 2}
(from top to bottom) computed on N = 1000 replications.
Medians (left panel) and MAREs (right panel) as functions
of kn ∈ {2, . . . , n − 1}, associated with estimators RWT (or-
ange), RSH (blue) and LSE (green) of the extreme quantile
q(αn = 1/n2) (black dashed line).
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Figure 4: Illustration on the daily wind data set. Top-left: Histogram of
the data set. Top-right: Weibull quantile-quantile plot (horizon-

tally: (log log(n/i)− log log(n/k̂⋆n)), vertically: (logXn−i+1,n −
logXn−k̂⋆

n+1,n) for i ∈ {1, . . . , k̂⋆n = 961}). A line with slope

θ̂RWT
n (k†n) = 0.5597 is superimposed in red. Bottom-left: Es-
timates of the Weibull-tail coefficient RSH (blue), LSE (green)
and MEF (red) as functions of kn. The range is limited to
kn ∈ {100, . . . , 4000} for the sake ok readability. The pair

(k†n, θ̂n(k
†
n)) associated with the selected value k†n is emphasized

by a circle. The RWT estimate is represented by an orange
circle on the RSH curve. Bottom-right: Estimates of the ex-
treme quantile q(αn = 1/n) by RWT (orange), RSH (blue),
LSE (green) and MEF (red) as functions of kn with their asso-
ciated k†n emphasized by a circle. The sample maximum xn,n is
depicted by a black dashed line.
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A. APPENDIX: PROOFS

Proofs of main results are collected in Subsection A.1. Auxiliary results are
provided in Subsection A.2 and proved in the Supplementary material document.

A.1. Proofs of main results

Proof of Theorem 2.1. Clearly, the following expansion holds√
k′n log

(
q̂n(αn, kn, k

′
n)

q(αn)

)
= T (1)

n + T (2)
n + T (3)

n ,

with T (1)
n =

√
k′n

(
Xn−kn+1,n

V (log(n/kn))

)
, T (2)

n =
√
k′n(log τn)(θ̂

RSH
n (k′n)− θ),

and T (3)
n =

√
k′n

(
ℓ(log(n/kn))

ℓ(log(1/αn))

)
.

Let us consider the three terms separately. First, [16, Lemma 1] shows that,
under (A.1), kn → ∞, kn/n→ 0 and condition (iii):

(1.1) T (1)
n =

√
k′n/kn

log(n/kn)
θξ′n +OP

( √
k′n

kn log
2(n/kn)

)
,

where ξ′n
d−→ N (0, 1). Second, [17, Proposition 2.1] entails that, under assump-

tions (A.1), (A.2), k′n → ∞ and k′n/n→ 0, the following expansion holds
(1.2)
T (2)
n = θ log(τ)ξn + θ log(τ)µ(log(n/k′n))ξ

′′
n + log(τ)

√
k′nb(log(n/k

′
n))(1 + o(1)),

where ξn
d−→ N (0, 1), ξ′′n

d−→ N (0, 1). Third, (A.2) and condition (iii) imply

(1.3) T (3)
n = −Kρ(τ)

√
k′nb(log(n/kn))(1 + o(1)).

Collecting (1.1), (1.2) and (1.3), one has√
k′n log

(
q̂n(αn, kn, k

′
n)

q(αn)

)
= θ log(τ)ξn + θ log(τ)µ(log(n/k′n))ξ

′′
n +

√
k′n/kn

log(n/kn)
θξ′n +OP

( √
k′n

kn log
2(n/kn)

)
+
√
k′n
{
log(τ)b(log(n/k′n))(1 + o(1))−Kρ(τ)b(log(n/kn))(1 + o(1))

}
.

Recalling that, from [17, Lemma 5.3], µ(t) ∼ 1/t as t→ ∞, the above expansion
can be simplified as√

k′n log

(
q̂n(αn, kn, k

′
n)

q(αn)

)
= θ log(τ)ξn +

√
k′n/kn

log(n/kn)
θξ′n +OP

( √
k′n

kn log
2(n/kn)

)
+
√
k′n
{
log(τ)b(log(n/k′n))(1 + o(1))−Kρ(τ)b(log(n/kn))(1 + o(1))

}
.
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Finally, remark that assumption (ii) implies k′n ≤ kn eventually and b(log(n/kn)) ∼
β−ρb(log(n/k′n)) as n→ ∞ so that√
k′n log

(
q̂n(αn, kn, k

′
n)

q(αn)

)
= θ log(τ)ξn +

√
k′nb(log(n/k

′
n))
(
log(τ)− β−ρKρ(τ) + o(1)

)
(1 + o(1)) + oP (1) .

Assumption (i) then yields√
k′n log

(
q̂n(αn, kn, k

′
n)

q(αn)

)
d−→ N

(
λ(log τ − β−ρKρ(τ)), (θ log τ)

2
)

and a first order Taylor expansion proves the result.

Proof of Lemma 2.1: (i) Remarking that Ky(τ) ∼ −1/y as y → −∞
for all τ > 1 yields β⋆(y, τ) → 1 as y → −∞. The result β⋆(τ, 0) :=

√
τ follows

from a second-order Taylor expansion.
(ii) First, Lemma 1.3(iii) implies that, for all τ > 1 and y < 0, hy(τ) > 1 and
thus β⋆(τ, y) = hy(τ)

−1/y > 1. Second, Lemma 1.3(iii) implies that, for all τ > 1
and y < 0, hy(τ) < τ−y/2 < τ−y when y < 0. This straightforwardly implies that
Ky(τ)/ log(τ) > τy which is equivalent to β⋆(τ, y) < τ . In the particular case
where y = 0, from (i), one can take β⋆(τ, 0) :=

√
τ < τ since τ > 1 and the result

is proved.
(iii) Let us first consider k̃n(τ, y) = n(kn/n)

β⋆(τ,y) such that k⋆n(τ, y) = ⌊k̃n(τ, y)⌋.
Clearly, k̃n(τ, y)/kn = (kn/n)

β⋆(τ,y)−1 and β⋆(τ, y) > 1 in view of (ii). As a
consequence, for all y ≤ 0, k̃n(τ, y) is an increasing function of kn, k̃n(τ, y) ≤ kn
and k̃n(τ, y)/kn → 0 as n → ∞. These properties can be extended to k⋆n(τ, y)
without difficulty since the integer part is an increasing function and k⋆n(τ, y) ≤
k̃n(τ, y).
(iv) Routine calculations give for all τ > 1 and y < 0,

∂

∂y
log(β∗(τ, y))

=
1

y2(τy − 1)

(
τy log(τy)− τy + 1− τy log

(
τy − 1

log(τy)

)
+ log

(
τy − 1

log(τy)

))
=:

1

y2(τy − 1)
φ(τ, y).

Letting x := τy ∈ (0, 1) yields

φ̃(x) := φ(τ, y) = x log(x)− x+ 1− x log

(
x− 1

log(x)

)
+ log

(
x− 1

log(x)

)
,

and differentiating, one gets

φ̃′(x) = − log

((
1− 1

x

)
1

log(x)

)
+

(
1− 1

x

)
1

log(x)
−1 = − log(u(x))+u(x)−1,

where u(x) := (1− 1/x) / log(x) > 0. It thus appears that φ̃′(x) ≥ 0 for all
x ∈ (0, 1) since − log(u) + u − 1 ≥ 0 for all u > 0. As a consequence, φ̃(·) is an
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increasing function on (0, 1). Moreover, taking account of φ̃(x) → 0 as x → 1−

shows that φ̃(x) ≤ 0 for all x ∈ (0, 1). Finally, τy − 1 < 0 and φ(τ, y) ≤ 0 for all
τ > 1 and y < 0 imply that β∗(τ, y) is an increasing function of y which in turns
shows that k⋆n(τ, y) is a decreasing function of y.

Proof of Corollary 2.1. (i) To prove the convergence in distribution,
it is sufficient to show that conditions (i), (ii) and (iii) of Theorem 2.1 hold. Let
y ≤ 0 and τ > 1. First, one can easily check that k⋆n(τ, y)b

2(log n) → λ2 as
n → ∞ and thus

√
k⋆n(τ, y)b(log n) → λ in view of the sign assumption on λ.

Besides,

(1.4) log(n/k⋆n(τ, y)) = log n+ 2 log |b(log n)| − 2 log |λ|+ o(1) ∼ log n,

since b(·) is regularly-varying so that b(log(n/k⋆n(τ, y))) ∼ b(log n) and thus√
k⋆n(τ, y)b(log(n/k

⋆
n(τ, y))) → λ,

as n→ ∞. Theorem 2.1(i) is thus proved. Second, observe that

τn =
log(1/αn)

log(n/kn)
=

log(1/c)

log(n/kn)
+

τ

β⋆(τ, ρ)

log n

log(n/kn)

and
(1.5)

log(n/kn) =
1

β⋆(τ, ρ)
(log n+ 2 log |b(log n)| − 2 log |λ|) + o(1) ∼ 1

β⋆(τ, ρ)
log n,

as n → ∞. It is thus clear that τn → τ as n → ∞, which is Theorem 2.1(ii).
Third, Theorem 2.1(iii) is a straightforward consequence of (1.4) and (1.5).
(ii) Proposition 1.1 concludes the proof.

A.2. Auxiliary results

Let us begin with a Lemma that establishes that the strict Weibull dis-
tribution belongs to the Gumbel maximum domain of attraction (γ = 0), and
more importantly, with a second-order parameter ψ = 0. This result illustrates
why inference on Weibull-tail distributions may be difficult since the situation
γ = ψ = 0 is the most complicated one for classical extreme-value estimators. Let
us also recall that, in contrast, the second-order Weilbull parameter is ρ = −∞,
see [20, Table 1] and therefore strict Weibull distributions are an easy situation
for dedicated Weibull-tail estimators.

Lemma 1.1. Suppose F is the cumulative distribution function of a
strict Weibull distribution with shape parameter υ > 0, υ ̸= 1 and scale parameter
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λ > 0. Then, the associated tail quantile function U(·) := F←(1 − 1/·) verifies
the second-order condition

1

A(t)

(
U(tx)− U(t)

a(t)
−Kγ(x)

)
→
∫ x

1
sγ−1Kψ(s)ds,

as t → ∞, for all x > 0, see [22, Equation (3.4.5)], with γ = 0, ψ = 0, a(t) =
(λ/υ)(log t)1/υ−1 and A(t) = (1− υ)/(υ log t).

The following three analytical results are used to prove Proposition 1.1 below.

Lemma 1.2. Let us define for all (u, β) ∈ (0, 1] × [0, 1/2], gβ(u) :=
log(u)(1 + uβ)− 2(u− 1). Then, ∀β ∈ [0, 1/2] one has gβ(u) < 0 if u ∈ (0, 1) and
gβ(1) = 0.

Lemma 1.3. Let us define, for all τ > 1 and y ≤ 0,

hy(τ) :=
K0(τ)

Ky(τ)
=
y log(τ)

τy − 1
if y < 0 and h0(τ) := 1 otherwise.

Then,

(i) hy(·) can be extended by continuity letting hy(1) = 1 for all y ≤ 0.

(ii) hy(·) is an increasing function on [1,∞) for all y < 0 (and h0(·) is a
constant function).

(iii) 1 < hy(τ) < τ−y/2 for all τ > 1 and y < 0 (all three quantities coincide
at y = 0).

Lemma 1.4. Let us define, for all τ > 1 and y ≤ 0,

fy(τ) := − log(hy(τ))

y log(τ)
if y < 0 and f0(τ) = 1/2 otherwise.

Then,

(i) fy(·) can be extended by continuity letting fy(1) = 1/2 for all y ≤ 0.

(ii) fy(·) is a decreasing function on [1,∞) for all y < 0 (f0(·) is a constant
function).

(iii) 0 < fy(τ) < 1/2 for all τ ≥ 1 and y < 0 (the last two quantities coincide
at y = 0).



24 Jonathan El Methni and Stéphane Girard

The next Proposition establishes two unexpected results. First, the bias asso-
ciated with the refined estimator of extreme quantiles is strictly smaller than
the bias associated with the original one, even though a misspecification of the
second-order Weibull parameter is used. Second, both (asymptotic) biases vanish
at ρ = 0.

Proposition 1.1. For all τ > 1, y ≤ 0 and ρ < 0, |B(β⋆(τ, y), τ, ρ)| <
B(1, τ, ρ), see (2.6) and (2.10). Besides, B(β⋆(τ, y), τ, 0) = B(1, τ, 0) = 0 for all
τ > 1 and y ≤ 0.
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