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1. INTRODUCTION

In data collection on sensitive characteristics such as illegal income, the
number of cigarettes consumed in a certain period, cheating in an examination,
and the number of violation of rules by employees, refusals and incorrect re-
sponses by the respondents is a common practice. The large number of refusals
result in high rates of non-response which may badly influence the estimates of
population parameter. Attempting to get reliable information from the respon-
dents on sensitive variables, Warner [19] devised a strategy commonly known as
the randomized response technique. The Warner’s [19] procedure was limited to
sample surveys on binary sensitive variables. For estimation of the parameters of
quantitative sensitive variables, Warner [20] presented another technique based
on an additive scrambling variable. Duncan [7] studied the calculation methods
for analyzing mutual information. Eichhorn and Hayre [8] proposed a quantita-
tive scrambling strategy where multiplicative noise is utilized in place of additive
noise.
Gupta et al. [10] presented a quantitative randomized response technique called
optional randomized response model. In the Gupta et al. [10] technique, the
respondents are given the choice to either provide the true response or provide
a random response. A multiplicative-type optional scrambling technique was
presented by Bar-Lev et al. [5]. Pluim et al. [18] reviewed the medical image
processing literature using mutual-information registration. Kraskov et al. [15]
suggested two new classes of estimators for mutual information. Yan et al. [21]
proposed a method for measuring the respondents’ privacy level in a given quan-
titative randomized response model. Zamanzade and Arghami [23] developed
a new estimator of entropy for continuous variables and proved its consistency.
In another study, Zamanzade and Mahdizadeh [24] analyzed entropy estimators
under ranked set sampling design. Diana and Perri [6] presented an efficient ran-
domized response procedure by utilizing both additive and multiplicative noises.
An additive cum subtractive scrambling technique was introduced by Al-Sobhi
et al. [1]. Zamanzade and Mahdizadeh [25] studied goodness-of-fit tests under
Phi-divergence.

Attempting to measure the overall quality of a given model, Gupta et al. [11]
presented a joint measure of privacy level and efficiency. Narjis and Shabbir
[17] introduced an efficient quantitative scrambling version of the Gjestvang and
Singh [9] technique and proved the improvement over the previous models. The
research study of Khalil et al. [14] demonstrated the effect of measurement errors
on the mean estimators. Gupta et al. [12] presented an efficient scrambling tech-
nique and proved its improvement over the Diana and Perri [6] model. Zhou et
al. [27] proposed a new mutual information-driven Pan-sharpening framework.
Other research studies related to various aspects of randomized response tech-
niques were conducted by Kalucha et al. [13], Young et al. [22], Murtaza et al.
[16], Zhang et al. [26], Azeem et al. [4], and Azeem [2] etc.
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Recently, Azeem and Salam [3] introduced an efficient randomized response tech-
nique which provides the following two options to the respondents.

(i) Report a direct response,

(ii) Report a scrambled response.

While the Azeem and Salam [3] model achieved the improvement in efficiency of
the previous models, one drawback of the Azeem and Salam [3] model was that
it forced all of the survey respondents to disclose to the researcher about their
choice. The Azeem and Salam [3] technique ignored a real-life situation where
some of the respondents may be willing to provide the true protected response.
That is, some of the respondents may not want to disclose to the researcher about
their chosen option.

The proposed technique is more versatile in the sense that it gives the follow-
ing two options to each respondent.

(i) Report a direct response (unprotected true response),

(ii) Report a protected response, which further provides two options:
(a) true response, (b) scrambled response.

In other words, the proposed procedure incorporates the option of true response
for those who opt for protected response, which was ignored by the Azeem and
Salam [3] model.

2. GUPTA et al. [12] OPTIONAL RANDOMIZED RESPONSE
MODEL

Let the population under consideration consists of N units and a simple
random sample of n units is obtained with replacement. Let the sensitive variable
under study be denoted by Y , and let the additive scrambling variable be denoted
by S. Moreover, it is assumed that E(Yi) = µy, E(S) = 0, V (Yi) = σ2

Y , V (S) =
σ2
S . Further, let T denote a multiplicative quantitative scrambling variable with

E(T ) = 1 , and V (T ) = σ2
S , where σ

2
Y , σ

2
T and σ2

S are the population variances of
variables Y , T , and S, respectively, whereas µy denotes the mean of the sensitive
quantitative variable Y . Further, it is also assumed that all three variables work
independently of one another.
Gupta et al. [12] presented the following quantitative model:

(2.1) Z =


Y with probability 1−W

Y + S with probability WA

TY + S with probability W (1−A),
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where W is the sensitivity level, and A is a constant, 0 < A < 1. An unbiased
estimator of the mean on using the Gupta et al. [12] scrambling model can be
written as:

(2.2) µ̂G =
1

n

n∑
i=1

Zi

The variance of µ̂G can be derived as:

(2.3) V ar(µ̂G) =
1

n
[W (1−A)σ2

T (σ
2
Y + µ2

Y ) + σ2
Y +Wσ2

S ]

The Gupta et al. [12] optional model gives the following three options to the
respondents.

(i) Report the true response (i.e., no scrambling),

(ii) Report the scrambled response using additive scrambling,

(iii) Report the scrambled response using additive and multiplicative scram-
bling.

3. PROPOSED MODEL

Motivated by Gupta et al. [12], a quantitative randomized response tech-
nique is introduced. In the proposed technique, before asking the question on
sensitive variable, the interviewer first asks the respondent to select one of the
two options - the direct response and the protected response. The researcher
records the choice of each response along with the reported value of the quanti-
tative sensitive variable. After the survey is finished, the researcher knows the
number of respondents opting for direct responses and the number of those who
chose to provide a protected response. Let n1 out of n be the number of re-
spondents opting for direct response, and let n2 = n − n1 be the number of
respondents opting for protected response for privacy protection. Thus, each
respondent belongs to one of the two categories of the respondents:

(i) The n1 respondents who choose to provide the direct response Y ,

(ii) The n2 respondents who choose to provide a protected response.

The second group further consists of the three types of respondents of the Gupta
et al. [12] technique. It only differs in that the group size is n2 in place of n.
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The proposed model offers two options - unprotected/direct response, and ran-
domized response to each respondent before asking the sensitive question. The
researcher notes the option chosen by the respondent along with his response to
the question being asked. In this way, the values of n1 and n2 are random as
they vary from sample to sample. That is, the number of respondents opting
for the protected response varies from sample to sample. In one sample, 30 out
of 100 respondents may choose the direct response option, however, in another
sample from the same population, 40 out of 100 respondents may choose the
direct response option. As opposed to the existing randomized response models
where the researcher doesn’t know the exact number of respondents opting for
a direct response, the values of n1 and n1 in the proposed model are known to
the researcher after the completion of the survey. Keeping values of n1 and n1 as
random values are in line with the real-world situations.
The mean of the first group is:

(3.1) Ȳ =
1

n1

n1∑
i=1

Yi

The mean response based on the second group can be written as:

(3.2) Z̄ =
1

n2

n2∑
i=1

Zi

where Zi are the reported responses defined in equation 2.1.
The mean estimator can be expressed as the weighted mean of the two groups of
respondents. That is,

(3.3) µ̂G =
n1Ȳ + n2Z̄

n1 + n2

where n1 + n2 = n.

4. MEAN AND SAMPLING VARIANCE

The mathematical proofs of the unbiasedness of the mean estimator and
the derivation of variances using the proposed model, are given in the following
theorems.

Theorem 4.1. The mean estimator µ̂p is unbiased for the population
mean .

Proof: Taking expectation on equation (3.3) gives:

(4.1) E(µ̂p) = E(
n1Ȳ + n2Z̄

n1 + n2
) =

n1E(Ȳ ) + n2E(Z̄)

n1 + n2
.
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Taking expectation of equation (3.1) yields:

(4.2) E(Ȳ ) = E(
1

n1

n1∑
i=1

Yi) = µY .

Taking expectation of equation (3.2) yields:

(4.3) E(Z̄) = E(
1

n2

n2∑
i=1

Zi).

Now,

E(Zi) = (1−W )E(Y ) + (WA)E(Y + S) +W (1−A)E(TY + S),

or,

(4.4) E(Zi) = (1−W )µy + (WA)(µy + 0) +W (1−A)(µy + 0) = µY .

Using equation (4.4) in (4.3) yields:

(4.5) E(Z̄) =
1

n2

n2∑
i=1

µy = µY .

Using equation (4.2) and (4.5) in equation (4.1) yields:

(4.6) E(µ̂p) =
n1µY + n1µY

n1 + n2
= µY .

Theorem 4.2. The variance of the mean estimators µ̂p is given by:

(4.7) V ar(µ̂p) =
σ2
Y

n
+

n2

n2
[W (1−A)σ2

T (σ
2
Y + σ2

T ) +Wσ2
S ]

Proof: Applying variance on equation (3.3) gives:

(4.8) V ar(µG) =
n2
1V ar(Ȳ ) + n2

2V ar(Z̄)

(n1 + n2)2

(4.9) V ar(Ȳ ) =
1

n2
1

n1∑
i=1

V ar(Yi) =
σ2
Y

n1
.

Applying variance on both sides of equation (3.2) yields:

(4.10) V ar(Z̄) =
1

n2
2

n2∑
i=1

V ar(Zi).
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By definition,

(4.11) V ar(Zi) = E(Z2
i )− [E(Zi]

2.

E(Z2
i ) can be simplified as:

E(Z2
i ) = (1−W )E(Y 2) + (WA)(Y + S)2 +W (1−A)(TY + S)2,

or,

E(Z2
i ) = (1−W )E(Y 2)+(WA)(Y 2+S2+2SY )+W (1−A)(T 2Y 2+S2+2STY ).

Using independence of variables, and the assumptions given in Section 2, the
above equation simplifies to:

E(Z2
i ) = (1−W )(σ2

Y +µ2
Y )+(WA)(σ2

Y +µ2
Y +σ2

S)+[W (1−A)(σ2
T+1)(σ2

Y +µ2
Y )+σ2

T+1].

On further simplification, the above equation reduces to:

(4.12) E(Z2
i ) = W (1−A)σ2

T (σ
2
Y + µ2

Y ) + σ2
Y + µ2

Y +Wσ2
S .

Using equation (4.4) and (4.12) in equation (4.11) yields:

(4.13) V ar(Zi) = W (1−A)σ2
T (σ

2
Y + µ2

Y ) + σ2
Y +Wσ2

S .

Using equation (4.13) in equation (4.10) yields:

(4.14) V ar(Zi) =
1

n2
[W (1−A)σ2

T (σ
2
Y + µ2

Y ) + σ2
Y +Wσ2

S ].

Using equation (4.9) and (4.14) in (4.8) yields:

V ar(µ̂p) =
n1σ

2
Y + n2[W (1−A)σ2

T (σ
2
Y + µ2

Y ) + σ2
Y +Wσ2

S ]

(n1 + n2)2
,

or,

V ar(µ̂p) =
(n1 + n2)σ

2
Y + n2[W (1−A)σ2

T (σ
2
Y + µ2

Y ) + σ2
Y +Wσ2

S ]

(n1 + n2)2
,

or,

V ar(µ̂p) =
σ2
Y

n
+

n2

n2
[W (1−A)σ2

T (σ
2
Y + µ2

Y ) + σ2
Y +Wσ2

S ].

Remark: Clearly, the V ar(µ̂p) is a function of n2, the number of respondents
opting for protected responses. This implies that the less the number of respon-
dents going for protected responses, the more efficient the model is.
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5. PERFORMANCE EVALUATION

The measure of respondent-privacy introduced by Yan et al. [21] for eval-
uation of model-performance can be written as:

(5.1) ∆ = E[Z − Y ]2.

A higher value of ∆ translates to a higher the level of respondent-privacy con-
tained in a given model.
The combined measure under the Gupta et al. [11] model as follows:

(5.2) δ =
MSE

∆
.

Equation (5.2) reveals that lower values of δ are preferable.
Based on the Gupta et al. [12] quantitative technique, the measure of privacy is
given by:

(5.3) ∆G = (1−A)σ2
T (σ

2
Y + µ2

Y ) + σ2
S .

The combined measure of model-efficiency and respondent-privacy for the Gupta
et al. [12] model can be obtained as:

(5.4) δG =
V ar(µ̂G)

∆G
=

1

n

[
W (1−A)σ2

T (σ
2
Y + σ2

T ) +Wσ2
S

1−A)σ2
T (σ

2
Y + µ2

y) + σ2
S

]
.

Since the proposed technique contains n2 respondents in the second group in
place of n, and since equation (5.3) is independent of the sample size n, so the
measure of privacy for the proposed model produces the same quantity as in the
Gupta et al. [12] method. That is,

(5.5) ∆P = (1−A)σ2
T (σ

2
Y + µ2

Y ) + σ2
S .

This means that although the proposed model gives the option of direct response,
there is no loss in the privacy protection level.
The joint measure of model-efficiency and respondent-privacy for the proposed
technique is given as:
(5.6)

δP =
V ar(µ̂P )

∆P
=

σ2
S

n[1−A)σ2
T (σ

2
Y + µ2

Y ) + σ2
S ]
+
n2

n2

[
W (1−A)σ2

T (σ
2
Y + σ2

T ) +Wσ2
S

1−A)σ2
T (σ

2
Y + µ2

Y ) + σ2
S

]
.

Equation (5.6) is a function of, the number of respondents opting for protected
response. This implies that the less the number of respondents going for protected
responses, the better the quality of the model is.

6. A PRACTICAL DATA COLLECTION EXAMPLE

The suggested technique was used to estimate the true mean µY of the
Grade Point Average (GPA) of students. The population under study consisted
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of the 175 students enrolled in the Department of Statistics of the University of
Malakand, Pakistan. For selection of the sample, the simple random sampling
technique was applied to choose 40 students out of the total 175 students of un-
dergraduate level. Each of the 40 selected students was given the choice to either
provide the direct response or go for a protected response. In the case of opting
for a protected response, the student had the choice to either provide the true
GPA or report a scrambled GPA. If a respondent did not want to report the
direct response, he/she was provided with a deck consisting of 100 cards and a
calculator. Each card carried two random values – one each for variable T and
S. Keeping in view the situation at hand, the random numbers for both of the
scrambling variable S and T were generated by the researcher by utilizing a nor-
mal distribution. For generation of random numbers for the additive scrambling
variable S, a normal distribution was used having mean 0 and variance 0.5. For
generation of random numbers for the multiplicative scrambling variable T , a
normal distribution was used having mean 1 and variance 0.5. Those respon-
dents who chose to provide a protected response were instructed not to show
the card selected by him/her to the interviewer, and hence it was ensured that
the respondent’s privacy was protected. Out of 40 selected students, 14 students
chose to provide the direct response, and the remaining 26 students chose to go
for a protected response.
The values of W and A are decided by the researcher based on his/her prior
knowledge about proportion of people who feel that the question is of sensitive
nature. In the absence of prior information, a pilot survey may be carried out
to get an estimate of W and A. In this case, the researcher decided to choose ,
and , so that , , and . Converting these proportions into percentages, one of the
following three statements were recorded on each card.

(i) 60 of 100 cards carried the statement: “Report your true GPA in last exam.”

(ii) 20 of 100 cards carried the statement: “Add the value of S to your true
GPA and report the result of the addition.”

(iii) 20 of 100 cards carried the statement: “Multiply the value of T with your
true GPA and then add the value of S and report the result.” The students
who opted for protected responses were asked to draw one card at random
from the 100 cards and add or multiply the numbers as per the instruction
on the selected card.

The responses reported by the 40 sampled students are presented in Table 1.

In Table 1, it may be observed that some of the protected responses ex-
ceeded 4.0 despite the fact that the students’ actual GPA was based on the scale
of 4.0. Any observed response greater than 4.0 clearly indicates that the re-
spondent used some sort of scrambling, although the privacy of the respondent
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Direct Responses Protected Responses

3.76, 2.43, 2.73, 3.16, 1.9667, 4.3816, 3.7816, 3.3618, 3.5346,
3.15, 2.26, 2.69, 3.30, 2.4980, 1.9408, 3.7091, 2.7870, 3.6079, 4.7927,
2.92, 3.68, 2.88, 1.76, 3.8478, 1.3655, 2.9668, 4.5787, 1.5271, 2.1962,

2.51, 3.28 1.4274, 1.8135, 3.9360, 2.1973, 3.3528,
3.3941, 2.8133, 4.4831, 2.6674

Table 1: Observed Responses.

is protected. To estimate the true mean GPA, one may calculate the weighted
mean of the two types of responses given in Table 1. To see the accuracy of the
estimator, one may collect the data of the results of all 175 students from depart-
ment office, calculate the value of population mean, and observe the difference
between the estimator and parameter.

7. EFFICIENCY COMPARISON

The variance of the mean estimator on the basis of the Gupta et al. [12]
model given in equation (2.3) may be re-written in the form:

(7.1) V ar(µ̂G) =
σ2
Y

n
+

n

n2
[W (1−A)σ2

T (σ
2
Y + µ2

Y ) +Wσ2
S ].

The proposed model will be more efficient than the model suggested by Gupta
et al. [12] if:

V ar(µ̂p) ≤ V ar(µ̂G),

or,

σ2
Y

n
+
n2

n2
[W (1−A)σ2

T (σ
2
Y +µ2

Y )+Wσ2
S ] ≤

σ2
Y

n
+

n

n2
[W (1−A)σ2

T (σ
2
Y +µ2

Y )+Wσ2
S ],

or,

(7.2) n2 ≤ n.

Condition (7.2) always holds. Thus, it is clear that the suggested model is more
efficient than the Gupta et al. [12] model. An extreme case where the two
models are equally efficient is the situation in which none of the respondents opts
for direct response. Otherwise, if at least one respondent opts for direct response,
then the suggested technique becomes more efficient than the Gupta et al. [12]
model. Since the measure of privacy protection produces the same value for both
models, so the proposed model is better when the overall quality of both models
is taken into account.
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8. GENERALIZATION OF THE FINDINGS TO OTHER MOD-
ELS

In addition to the Gupta et al. [12] optional randomized response model,
the direct response option can be incorporated into any of the available optional
models, and efficiency condition will always hold with no loss in the level of
respondent privacy. To see this, let us consider two optional randomized response
models: the Gupta et al. [10] and the Bar-Lev et al. [5] technique.
The observed response based on the Gupta et al. [10] model is:

(8.1) Z =

{
Y with probability p

Y + S with probability 1− p.

The mean estimator using the Gupta et al. [10] model can be written as:

(8.2) µ̂G1 =
1

n

n∑
i=1

Zi,

where Z is defined in equation (8.1). The sampling variance of the mean can be
derived as:

(8.3) V ar(µ̂G1) =
σ2
Y

n
+

n

n2
(1− p)σ2

S .

If the option of direct responses is used, then the variance of the mean becomes:

(8.4) V ar(µ̂p1) =
σ2
Y

n
+

n2

n2
(1− p)σ2

S .

Comparing equation (8.3) and (8.4), since n2 ≤ n , therefore:

(8.5) µ̂p1 ≤ µ̂G1.

The measure of privacy for the Gupta et al. [10] model is:

(8.6) ∆G1 = (1− p)σ2
S .

Since equation 8.6 is independent of the sample size n, so even if the option of
direct responses is given to the respondents, there will be no effect on the measure
of privacy.
Now consider the Bar-Lev et al. [5] model, the responses reported by the respon-
dents are as follows:

(8.7) Z =

{
Y with probability p

TY with probability 1− p.

The mean estimator using the Bar-Lev et al. [5] model can be expressed as:

µ̂B =
1

n

n∑
i=1

Zi,
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where Z is defined in equation (8.7). The sampling variance can be derived as:

(8.8) V ar(µ̂B) =
σ2
Y

n
+

n

n2
(1− p)σ2

T + (σ2
Y + µ2

Y ).

If the option of direct responses is used, then the variance of the mean becomes:

(8.9) V ar(µ̂P2) =
σ2
Y

n
+

n2

n2
(1− p)σ2

T + (σ2
Y + µ2

Y ).

Comparing equation (8.8) and (8.9), since n2 ≤ n , therefore:

(8.10) V ar(µ̂p1) ≤ V ar(µ̂B),

The measure of privacy based on the Bar-Lev et al. [5] model is:

(8.11) ∆B = (1− p)σ2
T + (σ2

Y + µ2
Y ).

Since equation (8.11) doesn’t depend on the sample size n, so even if the option
of direct responses is given to the respondents, there will be no effect on the
measure of privacy.

9. COMPARISON OF MODELS

Table 2 displays the variances of the mean for the proposed model with
respect to the Gupta et al. [12] model for different values of n1 and n2 . The
improvement in efficiency can be clearly observed over the Gupta et al. [12]
model. The improvement in efficiency can also be observed graphically in Figure
1, Figure 2, and Figure 3.

10. DISCUSSION AND CONCLUSION

A modified optional randomized response model using direct responses was
presented in Section 3. The current study found that the proposed model is more
efficient than the Gupta et al. [12] quantitative technique, with the same level of
respondent privacy as the Gupta et al. [12] model. Table 2 the improvement in
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Figure 1: Variance of the Mean under the Gupta et al. [12] and the Pro-
posed Model for W = 0.2.

 

Figure 2: Variance of the Mean under the Gupta et al. [12] and the Pro-
posed Model for W = 0.5.

efficiency over the Gupta et al. [12] technique. Table 2 also reveals that as n2,
the number of respondents choosing to provide a protected response, decreases,
the efficiency of the proposed model increases. Thus, it is recommended to the
researchers to motivate the respondents to report direct responses as far as possi-
ble. A larger number of direct responses in a given survey will result in a smaller
number of protected responses, which will result in getting efficient estimates of
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Figure 3: Variance of the Mean under the Gupta et al. [12] and the Pro-
posed Model for W = 0.8.

the mean.
In order to compare the overall quality of the proposed and the Gupta et al. [12]
model, δ values for both models were calculated and presented in Table 3 for var-
ious choices of n1 and n2. The δ values for the proposed model are smaller than
the Gupta et al. [12] model which indicate that the suggested model is better
than the Gupta et al. [12] model. Observing Table 3, it may also be observed
that δ value decreases as n2 decreases which indicate that a survey with lesser
number of protected responses, or equivalently, larger number of direct responses,
is desirable. In Section 9, it was also observed that the option of direct responses
can be incorporated in any of the existing optional randomized response models
and will always result in a more efficient model. It was also observed that giving
the respondents the option of direct responses doesn’t result in the value of ∆,
the measure of respondent privacy.

11. FUTURE RESEARCH

The present study analyzed the efficiency of the mean estimator when the
option of direct responses is given to the respondents. Further research studies
on the estimation of other parameters like population median, and variance can
also be conducted under the suggested technique. Moreover, in the current study,
the properties of the proposed model have been analyzed under simple random
sampling design. Future researchers may use other sampling designs to evaluate
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σs
s = 0.8 σs

s = 0.8 σs
s = 2 σs

s = 2 σs
s = 3 σs

s = 3
σs
T = 1 σs

T = 1 σs
T = 3 σs

T = 3 σs
T = 4 σs

T = 4
W A n1 n2 V (µ̂G) V (µ̂P ) V (µ̂G) V (µ̂P ) V (µ̂G) V (µ̂P )

0.2 0.3 10 40 1.1916 0.96528 3.4532 2.77456 4.5856 3.68048
20 30 1.1916 0.73896 3.4532 2.09592 4.5856 2.77536
30 20 1.1916 0.51264 3.4532 1.41728 4.5856 1.87024
40 10 1.1916 0.28632 3.4532 0.73864 4.5856 0.96512

0.7 10 40 0.5468 0.44944 1.5188 1.22704 2.0064 1.61712
20 30 0.5468 0.35208 1.5188 0.93528 2.0064 1.22784
30 20 0.5468 0.25472 1.5188 0.64352 2.0064 0.83856
40 10 0.5468 0.15736 1.5188 0.35176 2.0064 0.44928

0.5 0.3 10 40 2.889 2.3232 8.543 6.8464 11.374 9.1112
20 30 2.889 1.7574 8.543 5.1498 11.374 6.8484
30 20 2.889 1.1916 8.543 3.4532 11.374 4.5856
40 10 2.889 0.6258 8.543 1.7566 11.374 2.3228

0.7 10 40 1.277 1.0336 3.707 2.9776 4.926 3.9528
20 30 1.277 0.7902 3.707 2.2482 4.926 2.9796
30 20 1.277 0.5468 3.707 1.5188 4.926 2.0064
40 10 1.277 0.3034 3.707 0.7894 4.926 1.0332

0.8 0.3 10 40 4.5864 3.68112 13.6328 10.9182 18.1624 14.54192
20 30 4.5864 2.77584 13.6328 8.20368 18.1624 10.92144
30 20 4.5864 1.87056 13.6328 5.48912 18.1624 7.30096
40 10 4.5864 0.96528 13.6328 2.77456 18.1624 3.68048

0.7 10 40 2.0072 1.61776 5.8952 4.72816 7.8456 6.28848
20 30 2.0072 1.22832 5.8952 3.56112 7.8456 4.73136
30 20 2.0072 0.83888 5.8952 2.39408 7.8456 3.17424
40 10 2.0072 0.44944 5.8952 1.22704 7.8456 1.61712

Table 2: Variances of the mean under different models for µY = 20, σ2
Y =

3, n = 50.

the efficiency of the estimators under the proposed model.

ACKNOWLEDGMENTS

I acknowledge the valuable suggestions from the unknown referees which
helped me improve the quality of the paper. I am also thankful to Ms. Irsa
Sajjad, PhD Scholar at Central South University, China, for help in preparing
the revised version of the paper.



16 Muhammad Azeem

σs
s = 0.8 σs

s = 0.8 σs
s = 2 σs

s = 2 σs
s = 3 σs

s = 3
σs
T = 1 σs

T = 1 σs
T = 3 σs

T = 3 σs
T = 4 σs

T = 4
W A n1 n2 δG δP δG δP δG δP
0.2 0.3 10 40 0.004212 0.003412 0.004071 0.003271 0.004053 0.003253

20 30 0.004212 0.002612 0.004071 0.002471 0.004053 0.002453
30 20 0.003412 0.001812 0.004071 0.001671 0.004053 0.001653
40 10 0.004212 0.001012 0.004071 0.000871 0.004053 0.000853

0.7 10 40 0.004493 0.003693 0.004165 0.003365 0.004123 0.003323
20 30 0.004493 0.002893 0.004165 0.002565 0.004123 0.002523
30 20 0.004493 0.002093 0.004165 0.001765 0.004123 0.001723
40 10 0.004493 0.001293 0.004165 0.000965 0.004123 0.000923

0.5 0.3 10 40 0.010212 0.008212 0.010071 0.008071 0.010053 0.008053
20 30 0.010212 0.006212 0.010071 0.006071 0.010053 0.006053
30 20 0.010212 0.004212 0.010071 0.004071 0.010053 0.004053
40 10 0.010212 0.002212 0.010071 0.002071 0.010053 0.002053

0.7 10 40 0.010493 0.008493 0.010165 0.008165 0.010123 0.008123
20 30 0.010493 0.006493 0.010165 0.006165 0.010123 0.006123
30 20 0.010493 0.004493 0.010165 0.004165 0.010123 0.004123
40 10 0.010493 0.002493 0.010165 0.002165 0.010123 0.002123

0.8 0.3 10 40 0.016212 0.013012 0.016071 0.012871 0.016053 0.012853
20 30 0.016212 0.009812 0.016071 0.009671 0.016053 0.009653
30 20 0.016212 0.006612 0.016071 0.006471 0.016053 0.006453
40 10 0.016212 0.003412 0.016071 0.003271 0.016053 0.003253

0.7 10 40 0.016493 0.013293 0.016165 0.012965 0.016123 0.012923
20 30 0.016493 0.010093 0.016165 0.009765 0.016123 0.009723
30 20 0.016493 0.006893 0.016165 0.006565 0.016123 0.006523
40 10 0.016493 0.003693 0.016165 0.003365 0.016123 0.003323

Table 3: Variances of the mean under different models for µY = 15, σ2
Y =

5, n = 50.
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