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1. INTRODUCTION

The usual linear models for time series have been used successfully for

modelling stationary dependent sequences under the assumption of Gaussianity,

which is inappropriate for modelling counting processes. Motivated by the need

of modelling correlated series counts, the INteger-valued AutoRegressive (INAR)

process was proposed by Al-Osh and Alzaid (1987) and Mckenzie (1985).

The INAR model has been extensively studied in the literature and success-

fully applied in different contexts. A generalization of the INAR model to the

multivariate case has been considered by Latour (1997). Here, our interest lies in

models for integer-valued panel data, which are a particular case of multivariate

data. The simplest such model is considered in Silva et al. (2005) and consists

of independent replicates of the INAR model. However, in many practical situa-

tions, namely in econometric data, the individuals are not uncorrelated. Such an

example is the panel data of entry and exit of plants in Swedish municipalities

considered by Berlung and Brannas (1996). To model these data, the authors

propose a multivariate integer-valued INAR(1) model related to the Seemingly

Unrelated Regression model, SUR, as follows.

Consider a panel of integer-valued data consisting of r individuals and

n −1 time periods, Xk,t, k =1, ..., r, t = 2, ..., n, satisfying the following r variate

Poisson INAR(1) model with parameters which are constant along the time but

different from individual to individual,

(1.1) Xk,t = αk ◦Xk,t−1 + ǫk,t , k = 1, ..., r, t = 2, ..., n ,

where xk,1 is known, αk ◦Xk,t−1|Xk,t−1 ∼ B(Xk,t−1, αk), αk ∈ (0, 1), ǫk,t are, for

each k = 1, ..., r, Poisson random variables with parameter µk and, moreover, ǫk,t

and Xk,t−1 are independent, for all k and t.

The dependence between individuals is modelled in (1.1) through the inno-

vations term by

ǫk,t = ǫ∗k,t + ζt , k = 1, ..., r, t = 2, ..., n .

Thus, equation (1.1) takes the form

(1.2) Xk,t = αk ◦Xk,t−1 + ǫ∗k,t + ζt , k = 1, ..., r, t = 2, ..., n ,

with ǫ∗k,t ∼ P (λk) i.i.d., k = 1, ..., r; ζt ∼ P (δ) i.i.d., t = 2, ..., n; ǫ∗k,t and ζt are

independent for k = 1, ..., r, t = 2, ..., n.

The model defined in (1.2) is called Seemingly Unrelated INteger Auto-

Regressive, SUINAR, since the individuals appear independent from each other.
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Particular situations of the model defined in (1.1) were studied by Silva et al.

(2005) — PoRINAR(1) model — where the parameters are constant along the

time and from individual to individual, i.e., considering independent replicates of

the PoINAR(1) model. Berglund and Brännäs (2001), Blundell et al. (1999) and

Böckenholt (1999), considered a generalization of this model in which the parame-

ters depend on exogenous variables and vary with time and from individual to

individual.

In time series analysis we are usually interested in estimating the underlying

model and in the predictive capabilities of that model. Thus, the aim of this study

is to establish a comparison between classical and Bayesian approaches in order to

conduct inference for model parameters and obtain predictions for future values.

The remaining of the paper is organized as follows. In Section 2, the SUINAR

process is introduced and some properties of the model are derived. In Section 3,

the estimation of the parameters is studied under several classical methods and

Bayesian methodology which requires the use of an MCMC algorithm — ARMS —

for which we give full details. In Section 4, forecasts of future observations and

prediction intervals are derived, under both approaches. In Section 5, the results

are illustrated through a simulation study. Finally, in Section 6 some concluding

remarks are given.

2. THE SUINAR(1) MODEL AND ITS PROPERTIES

Equation (1.2) is written in matrix form as











X1

X2
...

Xr











t

=








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α1 0 · · · 0
0 α2 · · · 0
...

...
. . .

...
0 0 · · · αr


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



◦








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X1

X2
...

Xr











t−1

+











ǫ∗1
ǫ∗2
...
ǫ∗r











t

+











1
1
...
1











t

ζt ,

or alternatively

x · t = A◦ x ·(t−1) + ǫ · t + 1r ζt , t = 2, ..., n ,

with

A◦ x ·(t−1) =

(

α1◦X1 =

X1
∑

i=1

Bi1, . . . , αr ◦Xr =

Xr
∑

i=1

Bir

)′

t−1

,

where x · t = (X1,t, X2,t, ..., Xr,t), Bik are i.i.d. Bernoulli random variables with

αk as the success probability and independent of xt−1 and ǫt, t = 2, ..., n.
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The following properties are important for the remainder of the paper.

1. Let ǫ · t = ǫ∗· t + ζt1r. The covariance matrix of (ǫ · t) at lag j is given by

γǫ(j) = Cov
(

ǫ · t, ǫ · (t+j)

)

=











cov(ǫ1,t, ǫ1,t+j) cov(ǫ1,t, ǫ2,t+j) · · · cov(ǫ1,t, ǫr,t+j)

cov(ǫ2,t, ǫ1,t+j) cov(ǫ2,t, ǫ2,t+j) · · · cov(ǫ2,t, ǫr,t+j)
...

...
. . .

...
cov(ǫr,t, ǫ1,t+j) cov(ǫr,t, ǫ2,t+j) ... cov(ǫr,t, ǫr,t+j)











.

When j = 0, it follows that

γǫ(0) =











λ1 + δ δ · · · δ
δ λ2 + δ · · · δ
...

...
. . .

...
δ δ · · · λr + δ











.

If j ≥ 1, then γǫ(j) = 0, due to the independence between ǫ∗k,t and ζt

for k = 1, ..., r, t = 2, ..., n.

2. The mean value of the process x · t is given by

E(x · t) = (Ir − A)−1 (λ + δ1r) ,

where x · t = (X1,t, X2,t, ..., Xr,t), λ = (λ1, ..., λr) and Ir is the (r×r)

identity matrix.

For the k-th individual, we have

E[Xk,t] = (λk + δ)/(1− αk) , k = 1, ..., r .

3. The covariance matrix of the process, x · t, is defined by

(2.1) γX(0) =











(λ1+δ)/(1−α1) δ/(1−α1α2) · · · δ/(1−α1αr)

δ/(1−α2α1) (λ2 +δ)/(1−α2) · · · δ/(1−α2αr)
...

...
. . . · · ·

δ/(1−αr α1) δ/(1−αr α2) · · · (λr+δ)/(1−αr)











.

4. The covariance matrix x · t at lag j is given by

γX(j) = E
[

(

x·t−E(x·t)
)(

x·(t−j)−E(x·(t−j))
)

]′
= Aj γX(0), j =1,2, ... .

3. PARAMETER ESTIMATION

In this section we consider the estimation of the 2r+1 unknown parameters

θ = (α, λ, δ) = (α1, α2, ..., αr; λ1, λ2, ..., λr; δ) of the SUINAR(1) process from

the sample xr,n =
{

Xk,t; k=1, 2, ..., r; t=1, 2, ..., n
}

. The methods under study

are the Conditional Maximum Likelihood, Conditional Least Squares, Method of

Moments and Bayesian methodology.
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3.1. Classical Approach

3.1.1. Conditional Maximum Likelihood Estimators

The likelihood function, conditional on x ·1 = (x1,1, x2,1, ..., xr,1), is given

by the following expression

L
(

xr,n; θ|x.1

)

=
r
∏

k=1

n
∏

t=2

P
(

Xk,t = xk,t |Xk,t−1 = xk,t−1

)

(3.1)

=

r
∏

k=1

n
∏

t=2

Mk,t
∑

i=0

exp
[

−(λk+δ)
] (λk+δ)xk,t−i

(xk,t− i)!

(

xk,t−1

i

)

αi
k(1−αk)

xk,t−1−i ,

with Mk,t = min(xk,t, xk,t−1).

Estimates for δ and λk, k=1, ..., r, cannot be obtained separately due to

the term (λk+δ)xk,t−i. Thus, we consider µk = λk +δ in the expression (3.1), and

we obtain the conditional maximum likelihood (CML) estimates of αk and µk.

The CML estimates satisfy the following system, where the equations are

obtained by cancelling the derivatives of the logarithm of expression (3.1)


























∂ logL
(

xr,n; θ|x ·1
)

∂µk

= 0 ⇔
n
∑

t=2

Pt(xk,t−1)

Pt(xk,t)
= (n−1) ,

∂ logL
(

xr,n; θ|x ·1
)

∂αk

= 0 ⇔
n
∑

t=2

xk,t − αk

n
∑

t=2

xk,t−1 − µk

n
∑

t=2

Pt(xk,t−1)

Pt(xk,t)
= 0 ,

where

Pt(y) = exp
[

−(λk +δ)
]

Mk,t
∑

i=0

(λk +δ)y−i

(y− i)!

(

xk,t−1

i

)

αi
k(1− αk)

xk,t−1− i .

These equations do not yield explicit forms for the estimators of µk and αk,

therefore iterative methods are used to solve the system. We use the bisection

method, halving the amplitude of the interval which contains the zero of the

function until the required precision is obtained.

3.1.2. Conditional Least Squares Estimators

To obtain the Conditional Least Squares (CLS) estimators, we proceed

similarly to Al-Osh and Alzaid (1987) in the analysis of PoINAR(1) model. Thus,
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the Conditional Least Squares (CLS) estimator of the parameter is obtained by

minimizing

(3.2) Q =
r
∑

k=1

n
∑

t=2

[

Xk,t−E(Xk,t|Xk,t−1)
]2

=
r
∑

k=1

n
∑

t=2

[

Xk,t−αkXk,t−1−λk−δ
]2

.

Therefore, calculating the derivatives of the previous expression in order to αk, λk

and δ, we obtain respectively

(3.3)















































∂Q/∂αk = −2
n
∑

t=2

Xk,t−1

[

Xk,t− αk Xk,t−1− λk − δ
]

,

∂Q/∂λk = −2
n
∑

t=2

[

Xk,t− αk Xk,t−1− λk − δ
]

, k=1, ..., r .

∂Q/∂δ = −2
r
∑

k=1

n
∑

t=2

[

Xk,t− αk Xk,t−1− λk − δ
]

,

Setting the derivatives to zero, we observe that ∂Q/∂δ is a multiple of ∂Q/∂λk.

It is easy to check that the normal equations constitute an indeterminate system

and, similarly to the maximum likelihood method, it is not possible to estimate

the parameters δ, αk, λk, k=1, ..., r, separately. Therefore, once again we consider

µk = λk + δ in expression (3.2).

After some simple algebraic operations the estimators are given by

α̂k,CLS =
(n−1)

∑n
t=2 Xk,tXk,t−1 −

(
∑n

t=2 Xk,t

) (
∑n

t=2 Xk,t−1

)

(n−1)
∑n

t=2 X2
k,t−1 −

(
∑n

t=2 Xk,t−1

)2 ,

µ̂k,CLS =

∑n
t=2 Xk,t − α̂k,LSE

∑n
t=2 Xk,t−1

(n−1)
.

3.1.3. Moment Estimators

Considering that the one step ahead prediction error is

ek,t = Xk,t − E(Xk,t |Xk,t−1) , k=1, 2, ..., r ,

we have that E(ek,t|Xk,t−1) = 0, E(Xk,t−1ek,t|Xk,t−1) = 0 and the corresponding

sample moments are the following

(3.4)



























1

n−1

n
∑

t=2

(

Xk,t − αk Xk,t−1 − λk − δ
)

= 0 ,

1

n−1

n
∑

t=2

Xk,t−1

(

Xk,t − αk Xk,t−1 − λk − δ
)

= 0 ,
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for k = 1, 2, ..., r. This system has 2r equations and 2r +1 unknown parameters

so it will be necessary to add another equation in order to estimate all the pa-

rameters. Through the analysis of covariance matrix given in (2.1), we observe

that

Cov(Xi,t, Xj,t) −
δ

1− αiαj
= 0 , i, j = 1, 2, ..., r , i 6= j ,

being the corresponding sample moment given by

(3.5)
1

n−1

n
∑

t=2

(Xi,t− X̄i · ) (Xj,t− X̄j · ) −
δ

1− αiαj
, i, j = 1, 2, ..., r ,

with X̄k · =
∑n

t=2 Xk,t/(n−1), k = 1, 2, ..., r.

Each of these equations yields an estimator for δ. Averaging the r(n−1)/2

equations we obtain the following smoothed estimator for δ

(3.6)
2

r(r−1)

r−1
∑

i=1

r
∑

j=i+1

[

1

n−1

n
∑

t=2

(Xi,t− X̄i · ) (Xj,t− X̄j · ) −
δ

1− αiαj

]

.

Thus, from the system (3.4) and equation (3.6), the following estimators for the

parameters δ, αk and λk, k = 1, ..., r, are obtained

α̂k,MM =
(n−1)

∑n
t=2 Xk,tXk,t−1 −

(
∑n

t=2 Xk,t

) (
∑n

t=2 Xk,t−1

)

(n−1)
∑n

t=2 X2
k,t−1 −

(
∑n

t=2 Xk,t−1

)2 ,

δ̂MM =

∑r−1
i=1

∑r
j=i+1

∑n
t=2

[

(Xi,t− X̄i · ) (Xj,t− X̄j · )
]

(n−1)
∑r−1

i=1

∑r
j=i+1

[

1/(1− αiαj)
] ,

λ̂k,MM =

∑n
t=2 Xk,t − α̂k,MM

∑n
t=2 Xk,t−1

(n−1)
− δ̂MM .

Note that the following relations may be established:

• for αk moment estimators are the same as conditional least squares

estimators, α̂k,MM = α̂k,CLS ,

• moment estimators for λk may be expressed as λ̂k,MM = µ̂k,CLS − δ̂MM .

3.2. Bayesian Approach

It is well known that Bayesian inference is based on the posterior distri-

bution, since this distribution contains all the available information about the

unknown parameters θ. After observing the particular sample xn, the updated

information about θ is expressed by Bayes theorem through posterior distribution

which is given by

(3.7) π(θ|xr,n) =
L(xr,n; θ|x ·1)π(θ)

∫

Θ
L(xr,n; θ|x ·1)π(θ) dθ

∝ L(xr,n; θ|x1)π(θ) , θ ∈ Θ ,
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where π(θ) denotes the prior distribution. In a Bayesian framework it is necessary

to assign priors to each parameter. In this work, the prior distributions considered

are the beta and gamma distributions since they are conjugated of binomial and

Poisson distributions, respectively. Therefore, beta distribution with parameters

ak, bk > 0 is the prior for αk, αk ⌢ Be(ak, bk), and gamma distributions with

parameters ck, dk > 0, λk ⌢ Ga(ck, dk) and e, f > 0, δ ⌢ Ga(e, f) are the priors

for λk and δ, respectively.

Moreover, we assume independence between αk, λk and δ, for k = 1, 2, ..., r,

as well as the knowledge of hiperparameters ak, bk, ck, dk, e and f, k = 1, 2, ..., r.

Therefore, the prior distribution of the 2r +1 parameters (α1, α2, ..., αr; λ1, λ2,

..., λr; δ) has the form

π(θ) = π(δ)
r
∏

k=1

π(αk)π(λk)

(3.8)
∝ δe−1 exp(−fδ)

r
∏

k=1

αk
ak−1(1− αk)

bk−1λck−1
k exp(−dkλk) .

Thus, by Bayes theorem it follows from the prior and the likelihood (3.1), that

the posterior distribution is given by the following expression

π(θ|xr,n) ∝ δe−1 exp(−fδ)

(

r
∏

k=1

αk
ak−1(1−αk)

bk−1λck−1
k exp(−dkλk)

)

×

(3.9)

×





r
∏

k=1

n
∏

t=2

Mk,t
∑

i=0

exp
[

−(λk+δ)
](λk+δ)xk,t−i

(xk,t− i)!

(

xk,t−1

i

)

αi
k(1−αk)

xk,t−1−i



 .

The Bayes estimate for θ is the mean of this distribution which cannot be ob-

tained analytically. Thus we use the Gibbs sampler in order to generate values

of π(θ|xr,n). Through Gibbs sampler and based on a irreducible Markov chain

with state space Θ whose stationary distribution is π(θ|xr,n), a sequence of

correlated realizations is generated. In this context the algorithm is based on

the fact that if the joint distribution π(θ|xr,n) is positive over its entire do-

main, then it is uniquely determined by the m full conditional distributions

π(θi|xr,n, θ−i), i = 1, 2, ..., m, where θ−i represents the vector θ after being re-

moved θi component (Besag, 1974; Gelfand and Smith, 1990).

The full conditional posterior densities are

• for αk

π
(

αk|α−k, λ, δ,xr,n

)

= π
(

αk|λk, δ,xk ·
)

∝

∝ αak−1
k (1−αk)

bk−1
n
∏

t=2

Mk,t
∑

i=0

(λk+δ)xk,t−i

(xk,t− i)!

(

xk,t−1

i

)

αi
k(1−αk)

xk,t−1−i ,

with α−k = (α1, ..., αk−1, αk+1, ..., αr), xk · = (xk,t : t=1, 2, ..., n);
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• for λk

π
(

λk|λ−k, α, δ,xr,n

)

= π
(

λk|αk, δ,xk ·
)

∝ λck−1
k exp

[

−(λk dk)
]

×

×
n
∏

t=2

Mk,t
∑

i=0

exp
[

−(λk+δ)
](λk+δ)xk,t−i

(xk,t− i)!

(

xk,t−1

i

)

αi
k(1−αk)

xk,t−1−i ,

with λ−k = (λ1, ..., λk−1, λk+1, ..., λr);

• for δ

π
(

δ|α, λ,xr,n

)

∝ δe−1 exp(−fδ) ×

×
r
∏

k=1

n
∏

t=2

Mk,t
∑

i=0

exp
[

−(λk+δ)
](λk+δ)xk,t−i

(xk,t− i)!

(

xk,t−1

i

)

αi
k(1−αk)

xk,t−1−i .

The generation of pseudo-random numbers through the full conditional posterior

densities may be achieved through the Adaptive Rejection Sampling (ARS) if the

functions were surely log-concave. However, since this is not generally the case,

we use Adaptive Rejection Metropolis Sampling (ARMS), which is an hybrid

method introduced by Gilks et al. (1995). Thus, in Gibbs sampler each value θ−i

is generated from π(θi|xr,n, θ−i) through ARMS algorithm in the following way:

Algorithm 1.

1. generate a random sample of the model (1.2);

2. calculate the initial estimates of α1, ..., αr and δ, by the moments

method; denote them by α1,0, ..., αr,0 and δ0 ;

3. using ARMS method, simulate for each k = 1, 2, ..., r,

λk,1 from π
(

λk|xk · , δ0, αk,0

)

and
αk,1 from π

(

αk|xk · , δ0, λk,1

)

;

4. simulate, using ARMS method,

δ1 from π
(

δ|xr,n, α1,1, ..., αr,1, λ1,1, ..., λr,1

)

;

5. repeat steps 3. and 4. with i = 2, ...,nig (number of Gibbs sampler

iterations); that is, for k = 1, 2, ..., r,

λk,i is simulated from π
(

λk|xk · , δi−1, αk,i−1

)

,

αk,i is simulated from π
(

αk|xk · , δi−1, λk,i

)

δi is simulated from π
(

δ|xr,n, α1,i, ..., αr,i, λ1,i, ..., λr,i

)

;

6. despising the first b values (corresponding to the burn-in period) and

picking up each value, obtain a sample with m = (nig − b)/l elements.

Denote the corresponding sample means by: α
(i)
k,B, λ

(i)
k,B and δ

(i)
B ;

7. repeat nrep times the steps 1. to 6..
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Afterwards Bayes estimates can be calculated through the expressions

α̂k,B =
1

nrep

nrep
∑

i=1

α
(i)
k,B , λ̂k,B =

1

nrep

nrep
∑

i=1

λ
(i)
k,B and δ̂B =

1

nrep

nrep
∑

i=1

δ(i) .

4. PREDICTIVE INFERENCE

Let xn =
{

Xk,t : k = 1, ..., r, t = 2, ..., n
}

be a sample generated by the

Poisson SUINAR(1) model. We aim at obtaining the h-step-ahead predictor of

Xk,n+h, X̂k,n+h. We begin by presenting some results fundamental to the under-

standing of the work.

According to the definition of the SUINAR(1) process, we have that

(4.1) Xk,n+h = αk ◦Xk,n+h−1 + ǫk,n+h .

Iterating backwards h times, equation (4.1) can be written as

Xk,n+h = αh
k ◦Xk,n +

h
∑

j=1

αh−j
k ◦ ǫk,n+j , h = 1, 2, ... .

Since Xk,n is independent of ǫk,n+j , j = 1, ..., h, the conditional distribution of

Xk,n+h on Xk,n is

P
(

Xk,n+h = x
∣

∣Xk,n

)

= P

(

αh
k ◦Xk,n +

h
∑

j=1

αh−j
k ◦ ǫk,n+j = x

∣

∣

∣
Xk,n

)

=

=

min Xk,n,x
∑

y=0

P
(

αh
k ◦Xk,n = y

∣

∣Xk,n

)

P

(

h
∑

j=1

αh−j
k ◦ ǫk,n+j = x − y

)

.

Noting that αk ◦Xk,n |Xk,n ∼ Bi(Xk,n, αk) and ǫk,t ∼ P (λk), it follows easily

that the distribution of Xk,n+h|Xk,n is the convolution of the distribution of the

innovation process, a Poisson distribution with parameter (λk+δ)(1−αh
k)/(1−αk),

and that resulting from the binomial thinning operation, a binomial distribution

with parameters Xk,n and αh
k . This result, proved in Silva (2005), is established

in the following theorem:

Theorem 4.1. For the Poisson SUINAR(1) model, the distribution of

Xk,n+h given Xk,n is the convolution of a binomial distribution with parameters

Xk,n and αh
k and a Poisson distribution with parameter (λk+ δ)(1−αh

k)/(1−αk).

That is to say, Xk,n+h|Xk,n has the moment generating function

(4.2) ϕXk,n+h|Xk,n
(s) =

[

αh
k es + (1− αh

k)
]xk,n

exp

{

(λk + δ)
1− αh

k

1− αk

(es−1)

}

.
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Thus, the probability function of Xk,n+h|Xk,n, k = 1, 2..., r, is given by

p
(

xk,n+h |xk,n

)

= P
(

Xk,n+h = x
∣

∣Xk,n = xk,n

)

=

min(x,xk,n)
∑

i=0

(

xk,n

i

)

(αh
k)i (1−αh

k)xk,n−i ×(4.3)

× exp

[

−(λk+δ)
1−αh

k

1−αk

]

1

(x−i)!

[

(λk+δ)
1−αh

k

1−αk

]x−i

, k=1,2, ..., r .

Since lim
h→+∞

ϕXk,n+h|Xk,n
(s) = exp

[

λk+δ

1−αk

(es−1)

]

, the corollary follows.

Corollary 4.1. Xk,n+h|Xk,n has the Poisson limit distribution with pa-

rameter (λk+δ)/(1−αk).

4.1. Classical Prediction

4.1.1. Forecasts of future observations

Analogously to the study made by Silva et al. (2006) concerning prediction

in PoINAR(1) processes, we will calculate two predictors of Xk,n+h. One of them

is based on the minimization of mean square error and the other minimizes the

mean absolute error. Due to the fact that the best predictor which minimizes the

mean square error is X̂k,n+h = E[Xk,n+h|Xk,n] and according to expression (4.2),

it comes straightforwardly that E[Xk,n+h|Xk,n] = ϕ′
Xk,n+h|Xk,n

(s)|s=0 . Therefore

(4.4) X̂k,n+h = E[Xk,n+h|Xk,n] = αh
k Xk,n +

1−αh
k

1−αk

(λk+δ) , k=1, 2, ..., r .

This method hardly produces coherent predictions in the sense that forecasts

of integer values must be integer values as well (see Chatfield, 2001). In order

to obtain coherent predictions for Xn+h, Freeland and McCabe (2003) suggest

using the value which minimizes the expected absolute error given the sample,

i.e., the value that minimizes E
[

|Xn+h− X̂n+h|
∣

∣Xn

]

. Let mk,h be the median

of the conditional distribution Xk,n+h|Xk,n. It can be proved that E
[

|Xk,n+h−

m̂k,n+h|
∣

∣Xk,n

]

has a global minimum in m̂k,n+h = mk,h; in this sense, this means

that median of the predictive distribution is the best predictor of Xk,n+h.
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4.1.2. Prediction Intervals

A prediction interval is always more informative than a point forecast.

The method for obtaining confidence intervals for the predicted value is based on

the probability function of the h-steps-ahead forecast error, which is given by

ek,n+h |xr,n = Xk,n+h− X̂k,n+h = Xk,n+h− αh
kxk,n−

1−αh
k

1−αk

(λk+δ) .

It is worth to mention that ek,n+h is a discrete variable taking values on
{

j − αh
k xk,n −

[

(λk + δ) (1−αh
k)/(1−αk)

]

; j = 0, 1, 2...
}

; hence has the prob-

ability function,

P

(

ek,n+h |xr,n = j−αh
k xk,n− (λk+δ)

1−αh
k

1−αk

)

= P
(

Xk,n+h = j
∣

∣Xk,n = xk,n

)

=

= exp

[

−(λk+δ)
1−αh

k

1−αk

]

×

×

min(j,xk,n)
∑

i=0

[

(λk+δ) (1−αh
k)/(1−αk)

]j−i

(j− i)!

(

xk,n

i

)

(αh
k)i (1−αh

k)xk,n−i .

Once the probability function of the forecast error is known, the 100γ% confidence

interval for Xk,n+h is given by

(4.5)
(

X̂k,n+h + et1 , X̂k,n+h + et2

)

,

where X̂k,n+h is defined by (4.4), et1 is the greatest value ek,n+h|xr,n such as

P (ek,n+h|xr,n ≤ et1) ≤ (1− γ)/2 and et2 is the lowest value of ek,n+h|xr,n, such

as P (ek,n+h|xr,n ≤ et2) ≥ (1+ γ)/2.

4.2. Bayesian Prediction

To obtain the Bayesian predictive function we use the randomness of both

the future observation Xk,n+h we want to predict and the vector of unknown

parameters θ. Moreover, information about θ is contained in the observed sample

xr,n and is quantified on the posterior distribution π(θ|xr,n). Thus the following

definition.

Definition 4.1. Let θ ∈ Θ be the vector of unknown parameters. The h

steps-ahead Bayesian posterior predictive distribution is defined by

(4.6) π(xk,n+h|xr,n) =

∫

Θ
π(xn+h; θ|xr,n) dθ =

∫

Θ
p(xk,n+h|xr,n; θ)π(θ|xr,n) dθ ,

where π(θ|xr,n) is the posterior probability density function of θ and p(xk,n+h|xr,n; θ)

is the classic predictive function.
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The predictive distribution Xn+h|xr,n given by (4.6) is looked upon as con-

taining all the accumulated information on the future values. Therefore, the

Bayesian predictor of Xk,n+h can be calculated through the mean value, the me-

dian or the mode of the predictive function π(xk,n+h|xr,n).

4.2.1. Forecasts of future observations

According to Definition 4.1, the h-steps-ahead Bayesian predictive function

for the k-th individual of the SUINAR(1) model is given by

π(xk,n+h|xr,n) =

∫

Θk

π(xk,n+h, θk|xr,n) dθk

=

∫

Θk

p(xk,n+h|xr,n, θk) π(θk|xr,n) dθk

=

∫

Θk

p(xk,n+h|xk,n, θk) π(θk|xr,n) dθk ,

(4.7)

where θk = (δ, αk, λk), p(xk,n+h|xk,n, θk), k = 1, 2, ..., r, is given by (4.3) and

π(θk|xr,n) is the posterior probability density function of θk defined by

π(θk|xr,n) ∝ π(θk)L(xr,n, δ, λk, αk|x ·1)

∝ δe−1 exp(−fδ) αk
ak−1(1−αk)

bk−1λck−1
k exp(−dk λk) ×

×





n
∏

t=2

Mk,t
∑

i=0

exp
[

−(λk+δ)
](λk+δ)xk,t−i

(xk,t− i)!

(

xk,t−1

i

)

αi
k(1−αk)

xk,t−1−i



 .

Usually, Xk,n+h is predicted by E(Xk,n+h|xr,n) which does not seem feasible here

due to the complexity of equation (4.7). Thus we propose two methodologies to

deal with the problem. In the first approach, using the expected value properties,

E(Xk,n+h|xr,n) is rewritten as follows:

E
[

Xk,n+h |xr,n

]

= E
[

E(Xk,n+h |xr,n, θk)
∣

∣ xr,n

]

= E
[

αh
k Xk,n + (1−αh

k)(λk+δ)/(1−αk)
∣

∣ xr,n

]

by (4.4)

= Xk,n E(αh
k |xr,n) + E

[

(1−αh
k)(λk+δ)/(1−αk)

∣

∣ xr,n

]

.

Now, the mean values E(αh
k |xr,n) and E

[

(1−αh
k)(λk+ δ)/(1−αk) | xr,n

]

, can be

estimated using Gibbs methodology jointly with ARMS algorithm to generate

m values of the full conditional distributions:
(

δ(1), δ(2), ..., δ(m)
)

,
(

α
(1)
k , α

(2)
k , ..., α

(m)
k

)

and
(

λ
(1)
k , λ

(2)
k , ..., λ

(m)
k

)

for k = 1, 2, ..., r, necessary to the evaluation of the corre-

sponding ergodic means (see Section 3.2). Thus, Xk,n+h can be estimated by

(4.8) X̂k,n+h = xk,n
1

m

m
∑

i=1

(

α
(i)
k

)h
+

[

1

m

m
∑

i=1

1−
(

α
(i)
k

)h

1−α
(i)
k

(

λ
(i)
k + δ(i)

)

]

,

where m is the number of replications really used, after convergency attained.
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The second approach applies Tanner composition method, Tanner (1996),

to the SUINAR(1) model. A sample (Xk,n+h,1, Xk,n+h,2, ..., Xk,n+h,m) is gener-

ated from the predictive distribution (4.7) using Algorithm 2 described bellow.

Then, the forecast for the future observation Xk,n+h can be calculated through

the sample mean, median or mode.

Algorithm 2.

1. Calculate an initial estimate α0 and δ0 for αk and δ, respectively, using

MM estimation from a sample
{

Xk,t : k = 1, ..., r, t = 2, ..., n
}

of the

Poisson SUINAR(1) defined by (1.2);

2. using Gibbs methodology jointly with adaptive rejection Metropolis

sampling (ARMS), sample values of the triplets (αk,1, λk,1, δ1),

(αk,2, λk,2, δ2), ..., (αk,m, λk,m, δm) from the full conditional distribu-

tions of αk, λk and δ ;

3. for each i (i = 1, ..., m) draw Xk,n+h,i from π(xk,n+h|xr,n, αk,i, λk,i, δi),

using the inverse transformation method adapted to discrete variables.

That means:

(a) sample a scaler u from Uniform distribution U(0, 1),

(b) evaluate the lowest integer value s:
s
∑

i=0
π
(

xk,n+h|xr,n, αi, λi, δi

)

≥ u,

(c) consider Xk,n+h,i = s.

Thus, we have sampled Xk,n+h,1, Xk,n+h,2, ..., Xk,n+h,m from the posterior

predictive distribution.

4.2.2. HPD predictive intervals

In this section Highest Probability Density (HPD) predictive intervals are

obtained from the posterior predictive distribution (Paulino et al., 2003).

Definition 4.2. R(γ) = (XL, XR) is a prediction interval HPD (degree γ)

for Xk,n+h if

P
(

XL ≤Xk,n+h ≤XR

)

=

XR
∑

xk,n+h=XL

π(xk,n+h|xr,n) ≥ Kγ ,

where Kγ is the largest constant such that P
[

Xn+h ∈R(γ)
]

≥ γ.

The computation of the HPD interval for Xk,n+h is hindered by the lack of

an explicit expression for the posterior predictive probability function, equation

(4.7). However an estimate of R(γ) may be obtained using Chen and Shao (1999)

algorithm which is outlined next.
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Algorithm 3.

1. draw a sample from π(xk,n+h|xr,n) (Algorithm 2);

2. order the sample values X(k,n+h,1), X(k,n+h,2), ..., X(k,n+h,m), obtained

in 1.;

3. for fixed γ, calculate the intervals

R̂i(γ) =
(

X(k,n+h,i), X(k,n+h,i+[mγ])

)

, 1≤ i ≤ m − [mγ] ,

where [mγ] is the integer part of mγ. Choose for 100γ% HPD interval

for Xk,n+h, the R̂(γ) with smallest amplitude.

R̂(γ) is an estimator of R(γ), whose asymptotic properties are valid under

certain regularity conditions (Theorem 7.3.1., Chen et al., 2000). Noting that

we are considering point processes, the Algorithm 3 can produce more than one

interval. When this is the case we choose for R̂(γ) the interval with highest

absolute frequency, between those with smaller amplitude; in the case of equality

of the absolute frequencies, the interval considered is the one with smaller inferior

limit as suggested by Chen et al. (2000).

5. SIMULATION STUDY

In this section the small sample properties of the estimation and forecast-

ing methods proposed are accessed by means of a simulation study. The data

are generated according to model (1.2) with r = 5, δ = 2 and for several sets

of parameters (α1, ..., α5, λ1, ..., λ5). The sets of values for the parameters αk

and λk combine small, αs, large, αl and mixed, αsl values for the α’s with

small, λs, large λl and mixed, λsl values for the λ’s, in a total of nine models,

(αs, λs), (αs, λl), (αs, λsl), ..., (αsl, λsl), described in Table 1. For each model,

200 time series of dimension n = 25, 50, 100 are generated.

Table 1: Values of the vector parameters α and λ

used to simulate the samples.

α1 α2 α3 α4 α5 λ1 λ2 λ3 λ4 λ5

αs 0.2 0.2 0.1 0.1 0.2 λs 1.5 1.0 1.0 1.5 1.0
αl 0.8 0.8 0.8 0.9 0.9 λl 3.0 3.0 2.5 2.5 3.0
αsl 0.2 0.8 0.9 0.1 0.2 λsl 3.0 0.5 1.0 3.0 0.1
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5.1. Parameter Estimation

To calculate the Bayesian estimates we use vague prior distributions, con-

sidering all the hyperparameters approximately null. This choice is due to the fact

that, for one hand we are dealing with simulated samples hence there is no avail-

able prior information, and for the other hand the main purpose is to compare

the performance between classical and Bayesian methodologies. In Algorithm 1,

we set nig = 3100, with b = 1100 as burn-in period and l = 20, to reduce auto-

correlation between MCMC samples. A problem that occurs frequently when

estimating INAR models by classic methodology is that the estimates for the

parameters αk are inadmissible, that is to say that αk /∈ (0, 1). In this study these

samples are eliminated.

The performance of the estimation methods is illustrated in Tables 2 and 3

for two particular situations of the Poisson SUINAR(1) model and based on

200 independent replicates. In Table 2 we consider the model (αsl, λsl) with

parameters αsl: α1 = 0.2, α2 = 0.8, α3 = 0.9, α4 = 0.1, α5 = 0.2, λsl: λ1 = 3.0,

λ2 = 0.5, λ3 = 1.0, λ4 = 3.0, λ5 = 0.1 and δ = 2 which is caracterized by both

αk and λk ranging from low to high values, meaning that the mean of the inno-

vations varies among the individuals. Table 3 presents the estimation results for

the model (αs, λl) with parameters αs: α1 = 0.2, α2 = 0.2, α3 = 0.1, α4 = 0.1,

α5 = 0.2, λl: λ1 = 3.0, λ2 = 3.0, λ3 = 2.5, λ4 = 2.5, λ5 = 3.0 and δ = 2 which

is caracterized by low values for the parameters α and high values for the innno-

vations for all the individuals, with small variation between individuals. These

results indicate that the method of moments (mm) provides better estimates for

small values of αk (αk ≤ 0.2) whereas the maximum likelihood (ml) and Bayesian

methodology (B) are more appropriate when the αk parameter has large values

(αk ≥ 0.8); however, the Bayesian approach has the advantage of estimating

δ, αk and λk separately, which is not possible with the maximum likelihood.

Regarding the estimation of λk the simulation results indicate that the Bayesian

methodology has a better performance when the mean value of entrances is very

different from individual to individual. However, if the differences between the

mean values are small, the behavior is not so good. It can be noticed that the

method of moments provides always poor estimates for λk. Moreover, the param-

eter δ is underestimated by both methods and the bias increases in the samples

where the mean number of entrances differ between the individuals. Regarding

the estimation of µk = δ+λk the method of moments provides the estimates with

smallest bias, whereas the maximum likelihood estimates are the most biased.

It is important to note once again that µk is estimated as a parameter by ml

while µ̂k,mm = δ̂mm + λ̂k,mm.
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Table 2: Estimates of (α,λ, δ) model with parameters αsl = (0.2, 0.8, 0.9, 0.1, 0.2),
λsl = (3.0, 0.5, 1.0, 3.0, 0.1) and δ = 2 (variances in brackets).

n = 25 n = 100

k αk α̂k,mm α̂k,ml α̂k,B α̂k,mm α̂k,ml α̂k,B

1 0.2
0.230 0.334 0.256 0.183 0.250 0.197
(0.02) (0.03) (0.02) (0.89) (0.01) (0.01)

2 0.8
0.673 0.847 0.842 0.766 0.865 0.865
(0.02) (0.00) (0.00) (0.01) (0.00) (0.00)

3 0.9
0.794 0.919 0.918 0.873 0.924 0.924
(0.02) (0.00) (0.00) (0.00) (0.00) (0.00)

4 0.1
0.177 0.275 0.224 0.118 0.174 0.125
(0.02) (0.03) (0.02) (0.01) (0.01) (0.01)

5 0.2
0.143 0.673 0.623 0.155 0.761 0.758
(0.02) (0.05) (0.02) (0.01) (0.00) (0.00)

k λk λ̂k,mm λ̂k,B λ̂k,mm λ̂k,B

1 3.0
3.783 3.333 4.004 3.812
(0.70) (0.82) (0.29) (0.37)

2 0.5
2.445 0.685 1.659 0.782
(2.00) (0.13) (0.32) (0.03)

3 1.0
4.322 1.088 2.494 1.303

(10.86) (0.39) (0.92) (0.07)

4 3.0
3.548 3.016 3.845 3.695
(0.53) (0.65) (0.14) (0.16)

5 0.1
1.082 0.155 1.114 0.154
(0.14) (0.00) (0.05) (0.00)

k µk µ̂k,mm µ̂k,ml µ̂k,B µ̂k,mm µ̂k,ml µ̂k,B

1 2.2
3.917 3.381 3.779 4.076 3.739 4.005
(0.59) (0.879) (0.08) (0.25) (0.34) (0.37)

2 2.8
2.581 1.097 1.130 1.730 0.977 0.975
(1.74) (0.13) (0.07) (0.27) (0.02) (0.03)

3 2.9
4.457 1.524 1.535 2.565 1.488 1.496

(10.27) (0.31) (0.07) (0.89) (0.82) (0.07)

4 2.1
3.683 3.241 3.462 3.916 3.667 3.889
(0.43) (0.71) (0.08) (0.12) (0.23) (0.16)

5 2.2
1.217 0.436 0.601 1.185 0.331 0.347
(0.03) (0.06) (0.08) (0.01) (0.01) (0.00)

δ̂mm δ̂B δ̂mm δ̂B

δ = 2
0.135 0.446 0.071 0.193
(0.11) (0.07) (0.06) (0.04)
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Table 3: Estimates of (α,λ, δ) of SUINAR(1) model with parameters
αs =(0.2, 0.2, 0.1, 0.1, 0.2), λl =(3.0, 3.0, 2.5, 2.5, 3.0) and δ=2
(variances in brackets).

n = 25 n = 100

k αk α̂k,mm α̂k,ml α̂k,B α̂k,mm α̂k,ml α̂k,B

1 0.2
0.212 0.323 0.238 0.181 0.243 0.201
(0.02) (0.03) (0.01) (0.01) (0.01) (0.01)

2 0.2
0.217 0.320 0.243 0.196 0.267 0.215
(0.02) (0.03) (0.01) (0.01) (0.01) (0.01)

3 0.1
0.180 0.306 0.162 0.125 0.204 0.094
(0.02) (0.04) (0.01) (0.01) (0.02) (0.01)

4 0.1
0.183 0.310 0.167 0.119 0.189 0.088
(0.02) (0.04) (0.01) (0.01) (0.01) (0.00)

5 0.2
0.215 0.325 0.237 0.187 0.256 0.211
(0.02) (0.04) (0.01) (0.01) (0.01) (0.01)

k λk λ̂k,mm λ̂k,B λ̂k,mm λ̂k,B

1 3.0
3.926 1.018 4.079 0.673
(0.70) (0.21) (0.29) (0.18)

2 3.0
3.948 1.050 3.999 0.603
(0.72) (0.27) (0.24) (0.19)

3 2.5
3.174 0.553 3.411 0.255
(0.43) (0.10) (0.15) (0.02)

4 2.5
3.150 0.526 3.432 0.272
(0.38) (0.05) (0.12) (0.03)

5 3.0
3.909 1.026 4.096 0.669
(0.45) (0.22) (0.22) (0.18)

k µk µ̂k,mm µ̂k,ml µ̂k,B µ̂k,mm µ̂k,ml µ̂k,B

1 2.2
3.947 3.388 3.787 4.079 3.767 3.966
(0.61) (0.89) (0.40) (0.27) (0.38) (0.27)

2 2.2
3.968 3.447 3.819 3.999 3.646 3.897
(0.65) (1.00) (0.47) (0.22) (0.33) (0.29)

3 2.1
3.195 2.702 3.322 3.412 3.102 3.549
(0.36) (0.66) (0.29) (0.13) (0.27) (0.12)

4 2.1
3.171 2.675 3.294 3.433 3.159 3.566
(0.35) (0.65) (0.25) (0.10) (0.20) (0.13)

5 2.2
3.930 3.376 3.795 4.096 3.747 3.963
(0.60) (0.98) (0.41) (0.21) (0.32) (0.28)

δ̂mm δ̂B δ̂mm δ̂B

δ = 2
0.0211 1.3832 0.0005 1.1759
(0.05) (0.19) (0.01) (0.09)
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5.2. Prediction

In this section h-steps-ahead (h = 1, 2, ..., 10) point forecasts and prediction

intervals are obtained using classic methodology, equations (4.4) and (4.5) and

Bayesian methodology, equation (4.8) and Algorithm 3 to obtain HPD predictive

intervals. The performance of the forecasting methods is illustrated in Tables 4

and 5 for two particular Poisson SUINAR(1) models.

Table 4: Forecasts for xk,n+h and values of square deviances (DA2 =(x̂k,n+h−xk,n+h)2)
of SUINAR(1) model with initial values αs = (0.2, 0.2, 0.1, 0.1, 0.2),
λs = (1.5, 1.0, 1.0, 1.5, 1.0) and δ = 2.

n = 25 n = 100

classical bayesian classical bayesian
h k jump

x̂k,n+h DA2 x̂k,n+h DA2
jump

x̂k,n+h DA2 x̂k,n+h DA2

1 1 2.672 0.107 2.323 0.458 2 3.191 1.418 3.254 1.571

2 0 2.272 0.530 2.744 0.066 3 2.864 3.474 3.180 4.752

1 3 0 2.618 0.146 2.712 0.083 1 2.328 0.452 2.233 0.588

4 0 2.789 0.045 2.841 0.025 1 3.095 3.629 3.178 3.320

5 3 1.340 7.076 1.307 7.252 0 2.721 0.078 2.812 0.035

1 1 2.857 3.448 2.626 2.644 2 3.135 1.288 3.216 1.479

2 2 2.213 1.471 2.679 2.819 2 2.514 0.264 2.876 0.767

2 3 1 2.528 0.279 2.641 0.411 1 2.359 1.847 2.324 1.753

4 0 2.697 0.092 2.811 0.036 1 2.956 0.002 3.097 0.009

5 1 1.523 0.228 1.539 0.213 1 2.617 0.381 2.743 0.552

1 2 2.922 1.162 2.933 1.138 1 3.131 0.017 3.200 0.040

2 1 2.208 3.211 2.552 2.097 1 2.373 0.393 2.575 0.181

4 3 1 2.502 0.252 2.697 0.486 2 2.362 2.683 2.460 2.372

4 3 2.639 11.296 2.811 10.170 1 2.932 0.004 2.991 0.000

5 2 1.675 1.756 1.812 1.411 1 2.564 2.062 2.721 1.636

1 5 2.927 16.589 3.247 14.085 3 3.131 4.541 3.173 4.722

2 0 2.208 0.627 2.472 0.279 3 2.358 1.844 2.509 2.277

8 3 1 2.500 0.250 2.781 0.610 0 2.363 0.132 2.443 0.196

4 2 2.626 5.636 2.799 4.844 0 2.931 1.143 3.021 0.958

5 0 1.731 0.534 2.114 1.241 1 2.556 0.309 2.705 0.497

1 0 2.927 0.859 3.259 1.585 3 3.131 4.541 3.200 4.840

2 2 2.208 7.795 2.626 5.636 0 2.358 0.696 2.429 2.468

10 3 0 2.500 0.250 2.755 0.060 1 2.363 0.406 2.452 0.300

4 1 2.625 1.891 3.108 0.796 2 2.931 0.867 3.047 1.096

5 0 1.735 0.540 2.157 1.339 1 2.556 2.085 2.731 1.610

1 2.927 3.131

2 2.208 2.358

∞ 3 2.500 2.363

4 2.623 2.931

5 1.736 2.556
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Table 5: Forecasts for xk,n+h and values of square deviances (DA2 =(x̂k,n+h−xk,n+h)2)
of SUINAR(1) model with initial values αl = (0.8, 0.8, 0.8, 0.9, 0.9),
λl = (3.0, 3.0, 2.5, 2.5, 3.0) and δ = 2.

n = 25 n = 100

classical bayesian classical bayesian
h k jump

x̂k,n+h DA2 x̂k,n+h DA2
jump

x̂k,n+h DA2 x̂k,n+h DA2

1 2 20.585 2.002 20.173 3.338 1 23.667 5.443 24.375 2.641

2 5 24.906 37.137 24.969 36.373 0 18.680 0.102 18.755 0.060

1 3 1 14.379 0.386 14.244 0.572 1 19.572 2.039 19.782 1.848

4 0 38.856 0.733 37.932 0.005 1 24.611 0.151 24.677 0.104

5 3 35.765 10.465 36.073 8.567 5 37.463 29.844 37.173 26.760

1 1 20.992 3.968 20.254 1.573 1 22.811 1.414 23.876 0.015

2 1 24.025 8.851 24.442 6.543 3 18.442 5.963 18.576 6.636

2 3 2 14.876 1.263 14.449 2.253 1 19.273 2.983 19.591 1.985

4 7 39.266 32.879 37.863 50.937 3 25.156 3.400 25.227 3.144

5 6 35.765 38.875 36.307 32.410 7 57.844 61.528 37.341 53.890

1 1 21.476 0.227 20.686 0.099 0 21.908 9.560 23.224 3.154

2 3 22.745 0.065 23.153 0.023 1 18.131 0.017 18.406 0.165

4 3 1 15.035 4.141 14.895 3.591 2 18.918 9.499 19.326 7.150

4 5 39.557 11.854 37.774 27.311 6 26.076 15.398 26.395 12.996

5 9 35.109 97.832 36.589 70.745 3 38.418 19.519 37.582 12.831

1 1 21.826 0.682 21.049 0.002 2 21.381 31.573 22.387 21.280

2 8 21.375 11.391 22.538 20.593 2 17.862 9.847 17.928 9.437

8 3 2 15.359 11.283 15.537 12.510 2 18.660 11.156 18.837 10.005

4 4 39.640 5.570 37.370 21.437 5 27.391 2.589 27.647 1.758

5 5 34.336 44.409 37.207 14.387 4 39.072 3.717 37.995 9.030

1 2 21.882 0.014 20.714 1.654 6 21.317 5.368 22.037 9.223

2 7 21.026 4.105 21.638 6.959 7 17.808 67.109 18.054 63.139

10 3 2 15.425 11.731 15.334 11.116 0 18.619 1.907 18.840 1.346

4 3 39.643 1.841 37.658 11.169 3 27.855 0.731 28.230 1.513

5 6 33.989 64.176 37.444 20.757 14 39.252 138.016 38.340 161.188

1 21.937 21.273

2 20.384 17.738

∞ 3 15.510 18.577

4 39.645 29.664

5 29.221 39.640

Table 4 displays forecasts for xk,n+h, the jump between xk,n and xk,n+h,

and the squared errors between x̂k,n+h and xk,n+h, considering samples of sizes

n = 25 and n = 100 simulated from the model with parameters (αs: α1 = 0.2,

α2 = 0.2, α3 = 0.1, α4 = 0.1, α5 = 0.2), (λs: λ1 = 1.5, λ2 = 1.0, λ3 = 1.0, λ4 = 1.5,

λ5 = 1.0) and δ = 2. Table 5 presents similar results for samples generated

from the model with parameters (αl: α1 = 0.8, α2 = 0.8, α3 = 0.8, α4 = 0.9,

α5 = 0.9), (λl: λ1 = 3.0, λ2 = 3.0, λ3 = 2.5, λ4 = 2.5, λ5 = 3.0) and δ = 2.
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Additionally Figure 1 presents absolute errors between predicted values and cor-

responding simulated values, regarding several samples of size 25 of SUINAR(1)

model. According to the present simulation study we can conclude that the re-

sults are independent of the prediction method and the methodology. Moreover,

the observed prediction error depends on two factors: the jump between xk,n and

xk,n+h for h≤ 4 and the proximity between xk,n+h and (λ̂k+ δ̂)/(1− α̂k) for large

values of h (h ≥ 5) (remark that limh→∞ E(Xk,n+h|Xk,n) = (λk + δ)/(1− αk))

(see Figure 1). Several simulated examples indicate that the variability of the

predictive function increases with the magnitude of αk and λk, justifying that

the predictions shown in Table 5 are worst than those in Table 4. Moreover it is

worthwhile to mention that the values of x̂k,n+h are constant for h≥ 8 (Table 4)

when αk and λk are small. In contrast, these values are not constant when αk

and λk are large. There is evidence that the confidence interval gets wider as h

increases, as expected and converges to the asymptotic interval. However, the

rate of convergence is higher for smaller values of αk and λk.
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Figure 1: Values of |x̂k,25+1− xk,25+1| with different samples of SUINAR(1) model.

6. APPLICATION

In this section the SUINAR(1) process is used to model the annual number

of plants in an industrial sector (electricity, gas, heating and waterpower) in

fifteen Swedish municipalities for the period 1984–1993, Berglund and Brännäs

(1996). For this data set k is equal to 15 and n is equal to 10. The estimates

for the parameters are given in Table 6. From the table it is easily seen that

maximum likelihood and Bayes methodologies yield similar estimates only for

k = 3, 5, 8, 10, 11 and 13. This is due to the small number of observations per

individual. In fact, a simulation study with k = 15 and n = 10 was carried out

and it was observed that the three estimation methods yield different estimates

and that the differences are larger for small values of αk and λk.
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Table 6: Estimated model for the number of plants in electricity,
gas, heating and waterpower.

k α̂k,mm α̂k,ml α̂k,B µ̂k,mm µαk,ml µαk,B

1 0.667 0.104 0.253 2.667 4.729 4.052
2 0.494 0.787 0.486 3.251 1.753 3.445
3 0.579 0.747 0.628 30.922 18.775 28.106
4 0.037 0.774 0.551 8.136 2.000 3.966
5 0.231 0.758 0.724 14.077 5.120 5.631
6 0.494 0.787 0.483 3.251 1.753 3.463
7 0.167 0.265 0.410 8.444 7.529 6.060
8 0.267 0.382 0.384 6.616 5.543 5.439
9 0.500 0.114 0.351 4.722 7.424 5.693

10 0.331 0.718 0.610 16.694 7.479 9.941
11 0.373 0.785 0.809 11.697 5.114 4.673
12 0.370 0.774 0.555 8.136 2.000 3.937
13 0.261 0.664 0.573 7.663 3.551 4.550
14 0.524 0.787 0.510 3.272 1.404 3.581
15 0.387 0.442 0.192 2.372 2.110 3.444

For illustrative purposes, h steps ahead predictions were obtained, for

h = 1, 2, 3, 4, 5. The predictions for h = 1, 2 and 5 are given in Table 7 and

1 step-ahead predictions for the 15 municipalities are represented in Figure 2.

Although the estimates of the model parameters differ, the forecasts obtained by

the different methodologies are quite similar.

Table 7: Forecasts for h = 1, 2, 5 steps-ahead for the number of
plants in electricity, gas, heating and waterpower.

h = 1 h = 2 h = 5
k

Classical Bayes Classical Bayes Classical Bayes

1 12.67 7.32 11.11 6.72 8.92 6.30
2 6.71 6.81 6.57 7.23 6.45 8.12
3 69.16 68.69 70.98 75.21 73.01 88.12
4 8.40 8.03 8.45 8.56 8.45 9.76
5 18.00 18.05 18.23 19.64 18.30 21.78
6 6.71 6.85 6.57 7.19 6.45 7.72
7 11.44 13.12 10.35 12.71 10.13 12.60
8 10.89 11.54 9.52 10.33 9.04 10.36
9 13.72 11.32 11.58 11.03 9.71 10.53

10 27.94 29.92 25.93 32.33 24.98 33.38
11 19.53 21.66 18.98 22.95 18.68 27.72
12 8.40 7.89 8.45 8.60 8.45 10.49
13 10.28 10.32 10.35 11.01 10.37 12.40
14 6.94 7.07 6.91 7.50 6.88 8.04
15 3.15 4.01 3.59 4.19 3.85 4.44
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Figure 2: Values of x̂k,10+1 for the number of plants relatively to electricity,
gas, heating and waterpower.

7. FINAL COMMENTS

In this work classical and Bayesian approaches to time series analysis and

forecasting are applied to the SUINAR(1) models. Regarding the estimation of

the model, the Bayesian approach has the advantage of allowing the estimation

of all the parameters of the model. However, the two methodologies perform

similarly regarding the forecasting of future values.
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