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1. INTRODUCTION

The Unified Skew Normal family SUN(p,q), which was introduced by Arellano-
Valle and Azzalini [1], is a family of asymmetric distributions generalizing the
normal distribution and incorporating parameters controlling this asymmetry.
The SUN(p,q) familly also generalizes the basic asymmetric family of Skew Nor-
mal (SN) distributions, which was introduced by Azzalini [7] and Azzalini and
Dalla Valle [11]. In practice, the SUN(p,q) familly is used as an alternative to
the gaussian distribution for modelling non-normal features as skewness. Among
the numerous methods used to generate the SUN(p,q) distributions, we find the
method known as stochastic representation by conditioning which is achieved as
folows: if (U t, V t)

t
is a Gaussian vector of (p, q) order, then the distribution of

U |V > 0 belongs to the family of SUN(p,q) distributions. As a result, the ob-
tained distribution is a special case of the so-called selection distributions (see [3]).
In this work, we consider the case of SUN(1,q) distributions where U is real and

V is a vector and we intend to study the influence of the underlying (U t, V t)
t

vector parameters on the induced selection distribution. More specifically, we
are interested in studying the stochastic ordering of the latter, relative to their
parameters for some stochastic orders: usual stochastic order (first dominance
stochastic order), increasing concave order (second dominance stochastic order),
increasing convex order and the likelihood ratio order.

Azzalini [8] has established the usual stochastic order for SN distributions
with respect to the skewness parameter α, whereas Loperfido et al [20] have
shown the existence of the likelihood ratio order for the location parameter µ.
Blasi and Scarlatti [15] have also addressed the stochastic ordering of the SN
distribution with respect to µ, α and the dispersion parameter σ.

The present work is structured as follows: in Section 1, we recall the gen-
eral definition of the SUN distributions with some of their properties. Section
2 introduces some of the stochastic orders that we shall consider in this work.
In Section 3, we provide the main results on the ordering of the SUN(1,q) distri-
butions. Section 4 deals with the application of the results obtained to both a
reliability and a selection problems.

2. THE SUN(p,q) DISTRIBUTION

Let U and V be two Gaussian random vectors such that:

(2.1)

(
U

V

)
∼ Np+q(ξ,Ω

∗), ξ =

(
µ

γ

)
,
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where µ ∈ Rp, γ ∈ Rq and Ω∗ is a non-singular variance covariance matrix.
The correlation matrix associated with Ω∗ is:

Ω̄∗ =

(
Ω̄ ∆
∆t Γ

)
where Ω̄ ∈ Rp × Rp, Γ ∈ Rq × Rq, ∆ ∈ Rp × Rq.
Let Ω = σΩ̄σ, where σ is a diagonal matrix of order p with elements σ1, σ2, . . . , σp
representing the standard deviations of the U components.

Definition 2.1. A random vector X with values in Rp is said to have a
SUN(p,q) distribution if

(2.2) X
d
= U |(V > 0),

where V > 0 means that each component of V is greater than 0.

The probability density function of X is then given by:

(2.3) fX(x) = φp(x− µ; Ω)
Φq(γ + ∆tΩ̄−1σ−1(x− µ); Γ−∆tΩ̄−1∆)

Φq(γ; Γ)
,

where x ∈ Rp and φn(.,Σ), Φn(.,Σ) are the probability density function (pdf) and
the cumulative distribution function (cdf) of the multivariate normal distribution
Nn(0,Σ), respectively.
The distribution of X is denoted SUN(p,q)(µ,Ω, γ,Γ,∆) where µ is the location
parameter, Ω the dispersion parameter, γ the truncation parameter and ∆ the
shape parameter. Its expectation is given by (see [9]):

(2.4) E(X) = µ+ σ∆
OΦq(γ,Γ)

Φq(γ,Γ)
,

where OΦq(γ,Γ) is the gradient vector at point γ of Φq(.,Γ).
If p = 1 and q = 1, we get Ω = σ2. In addition, for Γ = 1 and by letting ∆ = ρ,
this distribution is the so-called Extended Skew Normal distribution (ESN) and
it admits the following pdf [5]:

(2.5) f(x) =
φ(x−µσ )Φ(

γ+ρ(x−µ
σ

)√
1−ρ2

)

σΦ(γ)
, x ∈ R,

where φ(.) and Φ(.) are the standard normal pdf and cdf respectively.
The expectation of X simplifies to:

(2.6) E(X) = µ+ σρλ(γ),

where λ(γ) = φ(γ)
Φ(γ) is the inverse Mills’ ratio.
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Remark 2.1. Arnold and Beaver [5] wrote the density in (2.5) using a
different parametrization:

(2.7) f(x) =
φ(x−µσ )Φ(α0 + α1(x−µσ ))

σΦ( α0√
1+α2

1

)
, where α0 ∈ R, α1 ∈ R,

with, α0 =
γ√

1− ρ2
and α1 =

ρ√
1− ρ2

.

Alternatively, we may as well use:

ρ =
α1√

1 + α2
1

and γ =
α0√

1 + α2
1

.

When γ = 0, the ESN distribution reduces to the SN(µ, σ2, α1) distribution intro-
duced by Azzalini [7], while for γ = 0 and ρ = 0 the normal distribution N(µ, σ2)
is obtained. The distribution of X is denoted ESN(µ, σ, γ, ρ) or ESN(µ, σ, α0, α1).

3. STOCHASTIC ORDERS

In this section, we recall the definitions and some properties of the stochas-
tic orders that we will use in the sequel. These are mainly based on the following
references: Shaked and Shanthikumar [26] and Muller and Stoyan [25].

Definition 3.1. Let X1 and X2 be two real random variables with cdf
F1 and F2 and pdf f1 and f2, respectively.

� X1 is said to be smaller than X2 in the sense of the usual stochastic order
(or smaller in distribution) and we denote X1 ≤st X2, if:

(3.1) F̄1(x) ≤ F̄2(x), ∀x ∈ R,

where F̄1, F̄2 represent the survival functions of X1 and X2, respectively,
i.e,
F̄1(x) = 1− F1(x) and F̄2(x) = 1− F2(x), or equivalently, if:

(3.2) F1(x) ≥ F2(x), ∀x ∈ R.

This stochastic or distributional order is known in economic theory as first-
order stochastic dominance.

� X1 is said to be smaller than X2 in the sense of the likelihood ratio order
and we denote X1 ≤lr X2 if:

(3.3)
f2(x)

f1(x)
is increasing in x, ∀x ∈ I;

where I is the union of the supports of X1 and X2.
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� X1 is said to be smaller than X2 in the sense of increasing convex order
and we denote X1 ≤icx X2 if:

(3.4)

∫ ∞
y

F̄1(x)dx ≤
∫ ∞
y

F̄2(x)dx, ∀y ∈ R.

� X1 is said to be smaller than X2 in the sense of increasing concave order
and we denote X1 ≤icv X2 if:

(3.5)

∫ y

−∞
F1(x)dx ≥

∫ y

−∞
F2(x)dx, ∀y ∈ R.

The increasing concave stochastic order is also known in the literature as
second-order stochastic dominance.

� X1 is smaller than X2 in the sense of the less dangerous order, denoted by
X1 ≤D X2, if:

– ∃t0 ∈ R such that F1(t) ≤ F2(t), ∀t < t0 and F1(t) ≥ F2(t), ∀t ≥ t0;

– E(X1) ≤ E(X2).

The following proposition connects these stochastic orders.

Proposition 3.1. The above partial orders verify the following impli-
cations:

� X1 ≤lr X2 ⇒ X1 ≤st X2 ⇒ X1 ≤icv X2;

� X1 ≤st X2 ⇒ X1 ≤icx X2;

� X1 ≤D X2 ⇒ X1 ≤icx X2.

Several properties stem from these definitions. We give some of them in
the following:

Proposition 3.2.

1. X1 ≤st X2 if and only if there is a positive Y random variable such that

X2
d
= X1 + Y ;

2. If X1 ≤st X2 then E(X1) ≤ E(X2);

3. If X1 ≤st X2 and E(X1) = E(X2), then X1 et X2 have the same distribu-
tion, i.e. F1 = F2;
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4. ORDERING OF SUN(1,q) DISTRIBUTIONS

In this section, we study the stochastic ordering of the SUN(1,q) distribu-
tions for the orders defined previously and relatively to each of its parameters,
assuming that the others are held constant.

Choosing p = 1 in (2.1), we obtain the SUN (1,q) density:

(4.1) fX(x) = φ(x− µ;σ2)
Φq(γ + ∆t(x−µσ ); Γ−∆t∆)

Φq(γ; Γ)
, x ∈ R.

where µ ∈ R, Ω = σ2 ∈ R∗+, γ ∈ Rq and ∆ ∈ Rq.

Now, we state the main result of our work.

Theorem 4.1. Let X1 and X2 be two random variables with pdf f1 and
f2 and cdf F1 and F2, respectively. We have:

1. If X1 ∼ SUN(1,q)(µ1, σ,γ,Γ,∆), X2 ∼ SUN(1,q)(µ2, σ,γ,Γ,∆) and if
µ1 ≤ µ2 then:

X1 ≤lr X2.

2. If X1 ∼ SUN(1,q)(µ, σ,γ,Γ,∆) and X2 ∼ SUN(1,q)(µ, σ,γ
′
,Γ,∆) with

γ = (γ1, . . . , γi−1, γi, γi+1, . . . , γq) and γ
′

= (γ1, . . . , γi−1, γ
′
i, γi+1, . . . , γq)

and if γi ≤ γ
′
i then:

X1 ≥lr X2, for ∆ ≥ 0;

X1 ≤lr X2, for ∆ ≤ 0.

3. If X1 ∼ SUN(1,q)(µ, σ,γ,Γ,∆) and X2 ∼ SUN(1,q)(µ, σ,γ,Γ,∆
′
) with

∆ = (δ1, . . . , δi−1, δi, δi+1, . . . , δq) and ∆
′

= (δ1, . . . , δi−1, δ
′
i, δi+1, . . . , δq),

and if δi ≤ δ
′
i then:

X1 ≤st X2.

4. If X1 ∼ SUN(1,q)(µ, σ1,γ,Γ,∆), X2 ∼ SUN(1,q)(µ, σ2,γ,Γ,∆) and if
σ1 ≤ σ2 then:

X1 ≤icx X2, when ∆ ≥ 0;

X1 ≥icv X2, when ∆ ≤ 0.

Proof:

1. Arellano-Valle and Azzalini [2] have established the log-concavity of the
density SUN(p,q). Moreover, we know that if g is a log-concave density in
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R, then the family g(x− θ) has a monotone likelihood ratio with respect to
θ (see [17]), i.e.

If θ1 < θ2,
g(x− θ2)

g(x− θ1)
is an increasing monotone function of x.

As a result, for all µ1 < µ2 the ratio

f2(x)

f1(x)
=
f(x− µ2, 0, σ

2,γ,Γ,∆)

f(x− µ1, 0, σ2,γ,Γ,∆)

is an increasing monotone function of x.

2. We have

f2(x)

f1(x)
=

φ(x−µσ )Φq(γ
′
+ ∆t(x−µσ ),Γ−∆t∆)

φ(x−µσ )Φq(γ + ∆t(x−µσ ),Γ−∆t∆)

Φq(γ,Γ)

Φq(γ
′
,Γ)

;

Note that,
Φq(γ,Γ)

Φq(γ
′
,Γ)

is a positive constant independent of x.

Consider the function g given by:

g(z) =
Φq(γ

′
+ ∆z,Γ−∆∆t)

Φq(γ + ∆z),Γ−∆∆t)
, where z =

x− µ
σ

.

We have

dg(z)

dz
=
dΦq(γ

′
+∆z,Γ−∆∆t)
dz Φq(γ + ∆z,Γ−∆∆t)− dΦq(γ+∆z,Γ−∆∆t)

dz Φq(γ
′
+ ∆z,Γ−∆∆t)

Φ2
q(γ + ∆z,Γ−∆∆t)

.

Let u = γ + ∆z and u
′

= γ
′
+ ∆z. The derivative may then be written as

follows:

dg(z)

dz
=

∑q
j=1

du
′
j

dz
∂Φq(u

′
,Γ−∆∆t)
∂uj

Φq(u,Γ−∆∆t)−
∑q

j=1

duj
dz

∂Φq(u,Γ−∆∆t)
∂uj

Φq(u
′
,Γ−∆∆t)

Φ2
q(u,Γ−∆∆t)

.

Moreover, Φq has a decreasing reversed hazard rate (DRHR) since it is
log-concave (see [21]), i.e.

∂ ln Φq(u1, u2, . . . , uq)

∂uj
is decreasing in uj , ∀j = 1, q.

For any ∆ ≥ 0, it holds then

q∑
j=1

δj
∂
(

ln Φq(u
′
,Γ−∆∆t)

)
∂uj

≤
q∑
j=1

δj
∂
(

ln Φq(u,Γ−∆∆t)
)

∂uj
,

⇔
q∑
j=1

δj

∂Φq(u
′
,Γ−∆∆t)
∂uj

Φq(u
′
,Γ−∆∆t)

≤
q∑
j=1

δj

∂Φq(u,Γ−∆∆t)
∂uj

Φq(u,Γ−∆∆t)
,

⇔dg(z)

dz
≤ 0, ∀z ∈ R.
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Similarly, for any ∆ ≤ 0, it holds then

q∑
j=1

δj
∂
(

ln Φq(u
′
,Γ−∆∆t)

)
∂uj

≥
q∑
j=1

δj
∂
(

ln Φq(u,Γ−∆∆t)
)

∂uj
,

which is equivalent to:
dg(z)

dz
≥ 0,∀z ∈ R.

In conclusion, if γi ≤ γ
′
i, ∀i = 1, q, we have:

X1 ≥lr X2, for ∆ ≥ 0

and X1 ≤lr X2, for ∆ ≤ 0.

3. Without loss of generality, we take i = 1 in the proof.

Referring to Azzalini and Bacchieri [9], the cdf of X1 and X2 can be written
as follows:

F1(x) =
Φ1+q(x̃, Ω̃1)

Φq(γ,Γ)
; F2(x) =

Φ1+q(x̃, Ω̃2)

Φq(γ,Γ)
,

where x̃ =
( x−µ

σ
γ

)
, Ω̃1 =

( 1 −∆
−∆t Γ

)
and Ω̃2 =

( 1 −∆
′

−∆
′t Γ

)
;

On the other hand, we know, from the Slepian’s inequality [27], that:
if X ∼ Nn(µ,Σ = (σij)) and Y ∼ Nn(µ,Σ

′
= (σ

′
ij)) with σii = σ

′
ii ∀i =

1, n and σij ≥ σ
′
ij ∀i 6= j then:

Φn(a,Σ) ≥ Φn((a,Σ
′
) ∀a ∈ Rn.

In our case, if δ1 ≤ δ
′
1, we deduce that:

Φ1+q(x̃, Ω̃1) ≥ Φ1+q(x̃, Ω̃2),

and then,
F1(x) ≥ F2(x), ∀x ∈ R.

4. Using the following notation:

K(σ) =

∫ x

−∞
F (t)dt,

where F is the SUN(1,q) cdf, we have:

dK(σ)

dσ
=

d

dσ

(∫ x

−∞
F (t)dt

)
,

=
d

dσ

[ ∫ x

−∞

(∫ t−µ
σ

−∞

φ(z)Φq(γ + ∆tz,Γ−∆t∆)

Φq(γ,Γ)
dz
)
dt
]
,

=
1

Φq(γ,Γ)

∫ x

−∞

d

dσ

(∫ t−µ
σ

−∞
φ(z)Φq(γ + ∆tz,Γ−∆t∆)dz

)
dt,

=
1

Φq(γ,Γ)

∫ x

−∞
−(t− µ)

σ2
φ(
t− µ
σ

)Φq(γ + ∆t(
t− µ
σ

),Γ−∆t∆)dt.
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Integrating by parts and using the change of variable u = t−µ
σ , we get:

dK(σ)

dσ
=

1

Φq(γ,Γ)

∫ (x−µ)
σ

−∞
−uφ(u)Φq(γ + ∆tu,Ψ)du,

where Ψ = Γ−∆t∆.
Noting that φ(u)

′
= −uφ(u), we get:

K
′
(σ) =

1

Φq(γ,Γ)

[
φ(
x− µ
σ

)Φq

(
γ + ∆t(

x− µ
σ

),Ψ
)]
−
∫ x−µ

σ

−∞
φ(u)

q∑
j=1

δj(OΦq)jdu;

where (OΦq)j is the jth element of the gradient vector of Φq(.,Ψ) at the
point γ + ∆tu. Recall that each gradient component of Φq(., .) is positive.
We deduce that K

′
(σ) ≥ 0 if ∆ ≤ 0. Thus, X1 ≥icv X2.

If ∆ ≥ 0, we can show that X1 ≤D X2, which according to Proposition 3.1,
will lead to X1 ≤icx X2.

1) If σ1 < σ2 and t < µ, then we have:∫ t−µ
σ1

−∞
φ(z)

Φq(γ + ∆tz,Γ−∆t∆)

Φq(γ,Γ)
dz ≤

∫ t−µ
σ2

−∞
φ(z)

Φq(γ + ∆tz,Γ−∆t∆)

Φq(γ,Γ)
dz,

This is true because it is an integral of a product of positive functions
which is positive and increasing with respect to the bound. Thus we
get:

(4.2) F1(t) ≤ F2(t) ∀t < µ and F1(t) ≥ F2(t) ∀t ≥ µ.

2) Referring to Equation (2.4), each component of the gradient vector
OΦq being positive, we conclude that:
if σ1 < σ2 and ∆ ≥ 0, we have: E(X1) ≤ E(X2).

Thus, both conditions for the ”D” order are verified. We deduce that
X1 ≤icx X2.

Remark 4.1.

� From Theorem 4.1, we deduce, that: if ∆ = (δ1, δ2, . . . , δq) and

∆
′

= (δ
′
1, δ

′
2, . . . , δ

′
q) with ∆

′ ≤∆, then X1 ≤st X2. Similarly, if

γ = (γ1, γ2, . . . , γq) and γ
′

= (γ
′
1, γ

′
2, . . . , γ

′
q) with γ ≤ γ ′ and if ∆ ≥ 0

(∆ ≤ 0), then X1 ≥lr X2 (X1 ≤lr X2 respectively).

The following results on the stochastic ordering of ESN distributions stem imme-
diately from those established for SUN(1,q) distributions.
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Corollary 4.1. Let X1 and X2 be two random variables of ESN distri-
bution. We have:

1. If X1 ∼ ESN(µ1, σ, γ, ρ) and X2 ∼ ESN(µ2, σ, γ, ρ) with µ1 ≤ µ2, then:

X1 ≤lr X2.

2. If X1 ∼ ESN(µ, σ, γ1, ρ) and X2 ∼ ESN(µ, σ, γ2, ρ) with γ1 ≤ γ2, then:

X1 ≥lr X2, for ρ ≥ 0;

X1 ≤lr X2, for ρ ≤ 0.

3. If X1 ∼ ESN(µ, σ, γ, ρ1) and X2 ∼ ESN(µ, σ, γ, ρ2) with ρ1 ≤ ρ2, then:

X1 ≤st X2.

4. If X1 ∼ ESN(µ, σ1, γ, ρ) and X2 ∼ ESN(µ, σ2, γ, ρ) with σ1 ≤ σ2, then:

X1 ≤icx X2, for ρ ≥ 0;

X1 ≥icv X2, for ρ ≤ 0.

Remark 4.2. By adopting the parametrization ESN(µ, σ, α0, α1), each
of the following results is a direct consequence of Corollary 4.1:

1. If X1 ∼ ESN(µ, σ, α0, α1), X2 ∼ ESN(µ, σ, α
′
0, α1) and if α0 ≤ α

′
0, then we

have:
X1 ≥lr X2, for α1 ≥ 0;

X1 ≤lr X2, for α1 ≤ 0.

2. If X1 ∼ ESN(µ, σ, α0, α1), X2 ∼ ESN(µ, σ, α0, α
′
1) and if α1 ≤ α

′
1, then we

have:
X1 ≤st X2.

5. APPLICATIONS

In this section, we apply the previous results to two practical problems:
the lifetime of a system in reliability and a selection problem encountered in
education.
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5.1. Lifetime of a system

Let X1, X2, . . . , Xn be the lifetimes of the n components of a system. Let us
denote by Z the lifetime of the system distributed in parallel and U the lifetime
of the system distributed in series. We have:

Z = max(X1, X2, . . . , Xn)

U = min(X1, X2, . . . , Xn)

Assume that X = (X1, X2, . . . , Xn)t follows an exchangeable normal distribution
Nn(µ∗,Ω) with µ∗ = µ1(n) , where 1(n) = (1, 1, . . . , 1)t ∈ Rn,
Ω =

(
σ2ρij

)
1≤i≤j≤n and ρij is given as follow:

ρij =

{
ρ, if i 6= j ∀i, j ∈ {1, . . . n}
1, if i = j.

The cdf of Z is given by:

FZ(z) = P (max(X1, X2, . . . , Xn) ≤ z)

=

n∑
i=1

P
(
Xi ≤ z|

n⋂
j=1
j 6=i

{
Xj ≤ Xi

})
P
( n⋂
j=1
j 6=i

{
Xj ≤ Xi

})
.

The assumption of exchangeability implies that:

Xi|
n⋂
j=1
j 6=i

{
Xi −Xj ≥ 0

}
∼ SUN(1,n−1)(µ,0Rn−1 ,Ω∗), ∀i = 1, n;

with Ω∗ = σ2(1− ρ)[A(n) + 1(n)1
t
(n)] and A(n) given by:

A(n) =


ρ

1−ρ 0 . . . . . . 0

0 1 0 . . . 0
...

...
...

. . .
...

0 0 . . . 0 1

 ∈ Rn × Rn.

We deduce that: Z ∼ SUN(1,n−1)(µ,0Rn−1 ,Ω∗) because

n∑
i=1

P
( n⋂
j=1
j 6=i

{
Xj ≤ Xi

})
= 1.

The associated correlation matrix Ω̄
∗

is then:

(5.1) Ω̄
∗

=

(
1 ∆

∆t Γ

)
,

where ∆ =
√

1−ρ
2 1t(n−1), Γ = 1

2I(n−1) + 1
21(n−1)1

t
(n−1) and I(n−1) is the

identity matrix of order n− 1.
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On the other hand, we have U = −max(−X1,−X2, . . . ,−Xn). We deduce
that U ∼ SUN(1,n−1)(µ,0Rn−1 ,Ω∗∗) where Ω∗∗ = σ2(1− ρ)[B(n) + 1(n)1

t
(n)] and

B(n) is the following matrix

B(n) =


ρ

1−ρ −2 . . . . . . −2

−2 1 0 . . . 0
...

...
...

. . .
...

−2 0 . . . 0 1

 ∈ Rn × Rn.

From (5.1), we obtain the associated correlation matrix below:

(5.2) Ω̄
∗∗

=

(
1 −∆
−∆t Γ

)
;

The results of Theorem 4.1 allow us to conclude that:

� When all other parameters are held constant, the survival function is an
increasing function of µ for both variables Z and U .

� When all other parameters are held constant, the survival function decreases
with ρ for the variable Z and increases with ρ for the variable U .

� From Equation (4.2), we deduce that the survival function of the variable
Z increases with σ for z ≥ µ while it decreases with σ for z < µ. The same
result holds for the variable U .

Corollary 5.1. Let Z1 and Z2 be the lifetimes of two parallel systems
which are characterized by the following parameters: µ1, ρ1 and σ2 for Z1 and
µ2, ρ2 and σ2 for Z2. The two systems have the same lifetime if and only if:

(5.3) µ1 − µ2 = σ
(√1− ρ2

2
−
√

1− ρ1

2

)
1t(n−1)

OΦn−1(0Rn−1,Γ)

Φn−1((0Rn−1,Γ)
.

Proof:
It is obvious that if FZ1(z) = FZ2(z) then Equation (5.3) holds and therefore
(µ1 − µ2)(ρ1 − ρ2) < 0.
Now, for the sufficient condition, let Z

′
1 be the lifetime of a parallel system which

is characterized by the parameters µ2, ρ1 and σ2.
From the results of Theorem 4.1, we have:

(5.4) µ1 ≤ µ2 ⇒ Z1 ≤st Z
′
1,

(5.5) ρ1 ≥ ρ2 ⇒ Z
′
1 ≤st Z2.

Thus, from (5.4) and (5.5), we find that:

ρ1 ≥ ρ2 and µ1 ≤ µ2 ⇒ Z1 ≤st Z2.
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According to the last property of Proposition 3.2, to have FZ1(z) = FZ2(z), it is
sufficient that E(Z1) = E(Z2).
This is equivalent to:

µ1 − µ2 = σ
(√1− ρ2

2
−
√

1− ρ1

2

)
1t(n−1)

OΦn−1(0Rn−1,Γ)

Φn−1((0Rn−1,Γ)
.

5.2. Selection problems

We now consider selection problems which have been studied in particular
by Birnbaum [13] and Birnbaum and Chapman [14]. These problems invoke the
so-called selection distributions [3] which reduce in some cases to SUN distribu-
tions.

Equation (2.2) can be interpreted as the selection of individuals in a pop-
ulation using the variable of interest U under the constraint V > 0, where V is

the truncation variable. The distribution of Z
d
= U|V > τ , τ ∈ Rq is called a se-

lection distribution and when the vector (U t, V t)t follows a normal distribution,
we recover the SUN distribution.

For example, U can stand for a student’s baccalaureate grade and V for
his Math grade. In this case, since p = 1, q = 1 and under the assumption
of normality made on the vector (U t, V t)t, Z follows the ESN distribution.
According to (2.5), the pdf of Z, is:

fZ(z) =
1

σ
φ(
z − µ
σ

)Φ

(
ρ (
z − µ
σ

) + γ̃√
1− ρ2

)/
Φ(γ̃),

where γ̃ = −( τ−γ
σ′

) and σ
′
is the scale parameter of V . Then Z ∼ ESN(µ, σ2, ρ, γ̃).

We select the individuals according to the grade obtained at the baccalau-
reate exam under the condition that the Math grade exceeds τ . The proportion
of students retained (admission rate) is equal to:

P (Z ≥ zα) = P (U ≥ uα|V > τ),

= α.(5.6)

In this example, V can be a vector, if for instance we consider the vector V =(V1,V2)
of Math and Physics grades. In this case, we have:

Z
d
= U |V1 > τ1, V2 > τ2,

Under the assumption of normality made on the vector (U, V t)t,

Z ∼ SUN(1,2)

(
µ, σ2,∆, γ̃,Γ

)
with γ̃ = −σ′−1(τ − γ). Here, σ

′
is the diagonal
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matrix of order 2 of elements σ
′
1, σ

′
2 which correspond to the standard deviations

of V1 and V2 respectively.

In the first case (p = 1, q = 1), we are interested in studying the variation
of the proportion of students retained as a function of some parameters of Z
which are µ, σ2, ρ and γ̃, the other parameters being held constant. Note that γ
and σ

′
are only involved through the truncation parameter γ̃. The results stated

in Corollary 4.1 imply that:

1. The admission rate is an increasing function of µ when the other parameters
are held constant, i.e:

µ1 ≤ µ2 ⇒ F̄1(z) ≤ F̄2(z), ∀z ∈ R

2. The admission rate decreases with τ if ρ ≤ 0 and increases with τ if ρ ≥ 0
when the other parameters are held constant, i.e:

τ1 ≥ τ2 ⇒

{
ρ ≥ 0, F̄1(z) ≥ F̄2(z), ∀z ∈ R;

ρ ≤ 0, F̄1(z) ≤ F̄2(z), ∀z ∈ R.

3. The admission rate increases with ρ when the other parameters are held
constant, i.e:

ρ1 ≤ ρ2 ⇒ F̄1(z) ≤ F̄2(z), ∀z ∈ R.

Remark 5.1. The problem of determining the selection threshold τ for
a given α when the other parameters are held constant can be solved numerically
by expressing (5.6) using the bivariate normal distribution function (see [9], or
[8]). This gives:

Φ2(z̃α,−ρ)

Φ(γ̃)
= 1− α, whre z̃α = (

zα − µ
σ

, γ̃)t.

5.2.1. Equality of two selection distributions

Consider two Gaussian vectors such that :(
U1

V1

)
∼ N2

((
µ1

ξ1

)
,Ω∗1

)
and

(
U2

V2

)
∼ N2

((
µ2

ξ2

)
,Ω∗2

)
.

We define Z1
d
= U1|V1 > τ1, Z2

d
= U2|V2 > τ2 and F1, F2 their respective cdf.

We know that Z1 ∼ ESN(µ1, σ
2
1, ρ1, γ̃1) and Z2 ∼ ESN(µ2, σ

2
2, ρ2, γ̃2).

We are interested to know under which conditions it holds that F̄1(z) = F̄2(z) ∀z ∈ R.
For instance, if we consider the same variables as those defined in the previous
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example with U1 and V1 corresponding to high school A, U2 and V2 correspond-
ing to high school B, we may ask the question: ”under which conditions will the
admission rate in both high schools be the same?”
We propose to solve the problem when two parameters are held constant.

Corollary 5.2. Let Z1 ∼ ESN(µ1, σ
2
1, ρ1, γ̃1) and Z2 ∼ ESN(µ2, σ

2
2, ρ2, γ̃2).

Then F̄1(z) = F̄2(z) if and only if one of the following holds:

i) When γ̃1 = γ̃2 = γ̃ and σ1 = σ2 = σ,

(5.7) µ1 − µ2 = σλ(γ̃)(ρ2 − ρ1).

ii) When µ1 = µ2 = µ and σ1 = σ2 = σ,

(5.8)
λ(γ̃1)

λ(γ̃2)
=
ρ2

ρ1
.

iii) When σ1 = σ2 = σ and ρ1 = ρ2 = ρ,

(5.9) µ1 − µ2 = σρ
(
λ(γ̃2)− λ(γ̃1)

)
.

Proof: The proof is analogous to the one given for Corollary 5.1

Remark 5.2. Corollary 5.2 allows one to draw the following conclusions
for the considered example:

� To prevent a change in the admission rate if the correlation ρ between the
baccalaureate grade and the Math grade inceases when τ and σ are held
constant, it is necessary to lower the average baccalaureate grade.

� To get a similar admission rate in the two high schools when µ and σ are
held constant, it is necessary to vary the selection threshold τ and ρ in
opposite directions. This problem has been discussed by Birnbaum [13]
who established that the selection threshold τ is a decreasing function of
|ρ|.

� To get a similar admission rate in both high schools when ρ and σ are held
constant, it is necessary to vary the selection threshold τ and the average
baccalaureate grade µ in opposite directions when ρ is positive and vary
them in the same direction when ρ is negative .
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6. CONCLUSION AND FUTURE WORK

In the present paper, we compare the univariate Unified Skew Normal dis-
tributions according to some classical criteria (usual stochastic order, increasing
concave order, increasing convex order and the likelihood ratio order) and give
two applications to both a reliability and a selection problems. A natural sequel
of this work concerns the extension to the multivariate Unified Skew Normal fam-
ily SUN(p,q) with p > 1 and to the more general class of the multivariate Unified
Skew Elliptical distributions SUEp,q [1]. This requires the use of multivariate
stochastic orders as defined, for example, in Shaked and Shanthikumar [26]. In
this connection, Yin [29] recently considered the special case of the multivari-
ate Skew Elliptical distributions [10] for some criteria: Hessian order, increasing
Hessian order as well as many of their special cases.

As mentionned in the introduction, both SUN(p,q) and SUE(p,q) families
introduce skweness, in addition SUE(p,q) introduce kurtosis. So, it would be of
great interest to compare the above distributions relatively to these features. In
the litterature, several skewness and kurtosis orderings and measures have been
defined, among them the well-known convex transform order of Van Zwet [28]. For
the univariate case, we can refer to Arnold and Groeneveld [6] and MacGillivray
[22]. Much less work has been devoted to the multivariate case. Belzunce et al
[12] extended the convex transform order to the multivariate setting. For the
particular case of skew-normal vectors, Arevalillo and Navarro [4] have introduced
a new multivariate skewness order based on the canonical transformation of these
vectors. He also established that the univariate Skew Normal family is ordered
for the skewness parameter α according to the convex transform order.

On the other hand, Loperfido [18] revisited some usual measures of the
multivariate skewness: Mardia’s skewness [24], partial skewness [16], directional
skewness [23] and established relationships between them. Later, Loperfido [19]
defined a new kurtosis matrix as alternative for the existing measures of multi-
variate kurtosis.
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