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Chile (njerez1@mat.uc.cl)

Pedro Luiz Ramos
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1. INTRODUCTION

The Gumbel distribution is widely used in various areas of knowledge to model the

maximum (or minimum) values of occurrence for a given phenomenon of interest. Examples

include extreme natural events in climatology (floods, earthquakes, climate changes), hydrol-

ogy (river discharge volumes), geology, environmental science (concentration of pollution in

the air), finance (study of financial crises), insurance (for large claims due to catastrophic

events), resistance of materials, aeronautics, and naval engineering, among others.

In the field of climatology, numerous studies focus on examining extreme rainfall and

predicting its future behavior utilizing the Gumbel distribution across various geographical

zones, including South Korea (Nadarajah and Choi, 2007), Zimbabwe (Onwuegbuche et al.,

2019), Kenya (Nadarajah and Choi, 2007), and Chile (Vidal, 2014). Analyzing the data

distribution of maximum rainfall holds crucial importance for the development of agricul-

tural and hydraulic engineering projects. This includes the design of irrigation and drainage

channels, soil conservation efforts, roads, and dams. Accurate sizing necessitates a thorough

understanding of extreme occurrences.

Let X be a random variable under the Gumbel distribution with the probability density

function (pdf) given by

(1.1) f(x | µ, φ) = 1

φ
exp

(
−x− µ

φ
− exp

(
−x− µ

φ

))
, −∞ < x <∞

with −∞ < µ <∞, φ > 0, where µ and φ are the location and scale parameters, respectively.

The mean of this distribution is given by E(X) = µ+ γφ, where γ is the Euler–Mascheroni

constant (γ ≈ 0.5772). The mode equals µ, the median is µ+ φ log(log 2), and the variance

is π2

6 φ ≈ 1.645φ (Kotz and Nadarajah, 2000).

Several methods can be used to obtain estimators for the parameters of the Gumbel

distribution. The moments or maximum likelihood approaches are the most commonly used

classical methods. Bayesian inference is another widely adopted approach, requiring the

definition of a prior distribution for the parameters of the Gumbel distribution. This approach

is especially useful when dealing with small sample sizes.

However, the practical use of Bayesian estimation often is associated with difficulties in

choosing the prior distribution for the parameters. For example, Rostami and Adam (2013)

compared eighteen pairs of independent proper priors, concluding that the combination of

Gumbel and Rayleigh is the most productive pair of priors for the Gumbel model. Coles

(2003) used a Bayesian approach to estimate Gumbel parameters by choosing normal and

log-normal as priors for daily rainfall recorded data in Venezuela.

An important class of priors, known as objective priors (some of which can be seen as

non-informative), is considered when we aim to construct a prior using a formal rule based on

the model, rather than assessing it from expert opinions (see, for instance, Consonni et al.,

2018; Kass and Wasserman, 1996). An objective prior allows the data, through the likelihood

function, to fully dictate the posterior distribution, especially when little prior information

about the parameters is available (Bernardo, 2005). Many of these prior distributions have

been proposed by Jeffreys (1946), Bernardo (1979, 2005), Zellner (1977, 1984), Tibshirani



Selection of objective priors for Gumbel distribution parameters... 3

(1989), and others. The extensive number of objective priors, as well as their usage, has

been derived for other models, as different priors may return better results for the posterior

estimates in terms of bias, variance, and coverage probabilities when considering different

models (see Tomazella et al., 2020; Ferreira et al., 2020; Ramos et al., 2021; Ramos et al.,

2022).

Vidal (2014) has modeled annual rainfall maximum intensities by using noninformative

prior distribution for the parameter µ and three different prior distributions for the param-

eter φ. Mousa et al. (2002) conducted a Bayesian method to examine the characterization,

prediction and estimation of Gumbel model based on records data. Actually, they proposed

a Jeffreys noninformative prior distribution for µ and a conjugate prior distribution for φ.

Chbab et al. (2000) proposed the noninformative joint Jeffreys prior representing weak in-

formation for the parameters µ and φ. Lye et al. (1993) and Elkahlout (2006) also used

noninformative Jeffreys prior to estimating the reliability function of the Gumbel distribu-

tion.

More recently, Yılmaz et al. (2021) compared many classical methods, such as the

maximum likelihood, moment, least squares, weighted least squares, percentile, L-moments,

trimmed L-moments estimators, best linear unbiased estimators, and Bain and Engelhardt

estimators with the Bayesian method assuming weakly non-informative gamma priors and

concluded that the Bayesian approach returned more accurate results. However, one of the

priors is improper, and they did not prove that the resulting posterior would be proper, thus

lacking theoretical justification. Meanwhile, the other priors were highly informative, which

could lead to biased information in regions of the parameter space where the priors assigned

small probabilities. Additionally, Bernardo (2005) argued that using simple proper priors as

supposed to be non-informative, often hides significant unwarranted assumptions, which may

easily dominate, or even invalidate the statistical analysis and should be strongly discouraged,

and objective priors obtained by formal rules should be used instead.

In this paper, our focus is on the derivation and comparison of objective priors such

as Jeffreys (Jeffreys, 1946), maximal data information (MDI) prior (Zellner, 1977), reference

(Bernardo, 2005; Berger et al., 2015), and Tibshirani (Tibshirani, 1989) priors for the Gumbel

distribution when both parameters µ and φ are of interest. It is worth mentioning that,

although the Jeffreys priors and the reference priors are the most commonly presented in

the statistical literature, the MDI and the priors proposed by Tibshirani, also known as

matching priors, are also very useful for constructing objective priors. Comparing these

priors, particularly for small sample sizes, is desirable. The motivation for this work partly

lies in the importance of these priors in Bayesian inference, which can be used to obtain

the parameter estimation objectively. It is also due to the necessity of considering both

parameters unknown, i.e., without any information about them, not even the form of the

prior distribution. We also demonstrated that these priors belong to a general class of power

priors, in which the exponent determines the type of prior under consideration. These findings

enabled us to identify conditions under which improper priors result in proper posteriors.

More importantly, the obtained posterior returns better numerical results and also excellent

theoretical properties such as invariance property under one-to-one transformations of the

parameters, consistency under marginalization and consistent sampling properties.

As the marginal posterior densities and related Bayesian estimators cannot be ob-

tained in closed form, we conduct Bayesian computations using Markov Chain Monte Carlo



4 F. A. Moala, A. B. Moala, N. Jerez-Lillo, and P. L. Ramos

(MCMC) techniques to generate samples from the joint posterior distributions. We then

conduct a simulation study with various sample sizes to examine the bias, mean square error,

and frequentist coverage probabilities, comparing the performance of the proposed priors.

Additionally, we apply this approach to rainfall data to model maximum rainfall, which is

crucial for planning in hydraulic engineering.

The remaining sections are organized as follows. Section 2 reviews the construction of

the priors and their applications for the Gumbel parameters µ and φ. In Section 3, the joint

and marginal posteriors for all proposed priors are also derived. The implementation of the

MCMC algorithm applied to obtain the posterior summaries is given in section 4. Section

5 presents a numerical simulation to compare the performance of the prior distributions

proposed in this paper. Section 6 illustrates the proposed Bayesian approach applied to

rainfall data. Finally, Section 7 presents some conclusions and discussions.

2. OBJECTIVE PRIORS

There are a large number of objective priors that can be used in a Bayesian analysis,

further we discuss the most commonly used prior.

2.1. Jeffreys prior

A well-known weak prior to representing a situation with little information available a

priori about the parameters was proposed by Jeffreys (1946). Since then Jeffreys prior has

played an important role in Bayesian inference. Tiao and Box (1973) give an explanation

of the derivation of non-informative Jeffreys priors in terms of “data translated” likelihood.

This prior is derived as

(2.1) πJ(θ) ∝
√
det I(θ),

where θ ∈ Θ ⊂ Rk is a vector of parameters, and I(θ) is the Fisher information matrix with

elements given by Iij(θ) = −E
(
∂2 log f(x|θ)

∂θi∂θj

)
, for i, j = 1, . . . , k. The Fisher information for

the Gumbel distribution is given by

(2.2) I(µ, φ) =

[
1
φ2 − 1

φ2 [1 + ψ(1)]

− 1
φ2 [1 + ψ(1)] 1

φ2 [1 + ψ ′(2) + ψ2(2)]

]
,

where ψ(k) is the digamma function, which is defined as the logarithmic derivative of the

gamma function, i.e, ψ(k) = d
dk log Γ(k).

The rule of Jeffreys leads to the following joint prior distribution (see for instance

Elkahlout, 2006) given by

(2.3) πJ(µ, φ) ∝
1

φ2
.
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2.2. Reference prior

Another well-known class of noninformative priors is the reference prior, first described

by Bernardo (1979) and further developed by Berger et al. (1992). The idea is to derive a prior

π(θ) that maximizes the expected posterior information about the parameters, provided by

independent replications of an experiment relative to the information in the prior. A natural

measure of the expected information about θ provided by the data x is given by

I(θ) = Ex[K(p(θ |x), π(θ))],

where

K(p(θ | x), π(θ)) =
∫
Θ
p(θ | x) log

(
p(θ | x)
π(θ)

)
dθ

is the Kullback-Leibler distance. Thus, the reference prior is defined as the prior π(θ) that

maximizes the expected Kullback-Leibler distance between the posterior distribution and the

prior distribution π(θ), taken over the experimental data.

The method leads to Jeffreys prior in the one-dimensional case, but it has some advan-

tages over Jeffreys prior in the multidimensional case (see Berger et al., 1992 for details).

The general reference prior is typically very hard to implement; however, for the regular

case, in which the asymptotic normality of the model holds, a considerable simplification of

the algorithm occurs. Zhang and Shaby (2023) provided a comprehensive analysis of the

asymptotic normality of the Generalized Gumbel distribution, which includes the Gumbel

distribution as a subclass. They demonstrated the asymptotic posterior normality of the

model, a pivotal result elaborated in Proposition 3.1 of their study.

An important feature in this approach is the different treatment for interest and nui-

sance parameters when θ is a vector of parameters. In the presence of nuisance parameters,

one must establish an ordered parameterization with the parameter of interest singled out

and then follow the procedure below. The algorithm of Berger et al. (1992) to derive the

reference prior, in the two-parameter case, can be described in four steps, as follows.

Let θ = (θ1, θ2) be the whole parameter, with θ1 being the parameter of interest and

θ2 the nuisance parameter. The algorithm is as follows:

Step 1: Determine π2(θ2 | θ1), the conditional reference prior for θ2 assuming that θ1 is

given, i.e.,

π2(θ2| θ1) =
√
I22(θ1, θ2)

where I22(θ1, θ2) is the (2,2)-entry of the Fisher Information Matrix.

Step 2: Normalize π2(θ2 | θ1). In case that π2(θ2 | θ1) was improper, choose a sequence of

subsets Θ1 ⊆ Θ2 ⊆ . . . → Θ on which π2(θ2 | θ1) is proper. Then, define

cm(θ1) =
1∫

Θm
π2(θ2| θ1)dθ2

,

and

pm(θ2| θ1) = cm(θ1)π2(θ2| θ1)IΘm(θ2).
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Step 3: Find the marginal reference prior for θ1, i.e., the reference prior for the experiment

formed by marginalizing out with respect to pm(θ2| θ1). We obtain

(2.4) πm(θ1) ∝ exp

{
1

2

∫
Θm

pm(θ2| θ1) log
∥∥∥∥det I(θ1, θ2)I22(θ1, θ2)

∥∥∥∥ dθ2} .
Step 4: Compute the reference prior for (θ1, θ2) when θ2 is a nuisance parameter:

πB(θ1, θ2) = lim
m→∞

(
cm(θ1)πm(θ1)

cm(θ∗1)πm(θ∗1)

)
π(θ2 | θ1)

where θ∗1 is any fixed point with positive density for all πm;

Theorem 2.1. The reference prior for the parameters µ and φ of the Gumbel dis-

tribution (1.1) is given by

(2.5) πB(µ, φ) ∝
1

φ
.

Proof: The reference prior is obtained firstly for the nuisance parameter φ, condi-

tionally on the parameter of interest µ, as

π(φ | µ) ∝
√

Iφφ(µ, φ) =
1

φ

which is an improper prior.

A natural sequence of compact sets for (µ, φ) is Θm = (l1m, l2m) × (q1m, q2m), so that

l1m → −∞, l1m → ∞, q1m → 0, and q2m → ∞ when m → ∞. Hence, the normalizing

constant of prior π(φ | µ) is

cm(µ) =
1∫ q2m

q1m
1
φdφ

=
1

log q2m − log q1m
,

and pm(φ | µ) = 1
log q2m−log q1m

1
φ1Θm(φ).

Now, from (2.4) the marginal reference prior for µ after some algebras is given by

πm(µ) ∝ exp

(∫ q2m

q1m

log

(
1

φ

√
1 + ψ(2)

1 + ψ ′(2) + ψ2(2)

)
cm(µ)

1

φ
dφ

)

that does not depend of µ.

Therefore the global referencial prior for (µ, φ) with parameter of interesting µ is given

by,

πµ(µ, φ) = lim
m→∞

(
cm(µ)πm(µ)

cm(µ∗)πm(µ∗)

)
π(φ | µ) = 1

φ
,

considering µ∗ = 1.
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In a similar way, we obtain the reference prior considering parameter of φ interest and

µ nuisance. In this case, we define

π(µ | φ) ∝
√
Iµµ(µ, φ) ∝ 1.

From the mentioned sequence of compact sets, it follows that the normalizing constant

of prior π(µ | φ) is
dm(φ) =

1∫ l2m
l1m

dµ
=

1

l2m − l1m
,

and pm(µ | φ) = 1
l2m−l1m

1Θm(µ).

From (2.4) the marginal reference prior for φ is given by

πm(φ) ∝ exp

(∫ l2m

l1m

log

(
1

φ

√
1 + ψ′(2)

)
dm(φ)dµ

)
∝ 1

φ
.

Therefore the global referencial prior for (µ, φ) with parameter of interesting φ is given

by,

πφ(µ, φ) = lim
m→∞

(
dm(φ)πm(φ)

dm(φ∗)πm(φ∗)

)
π(µ | φ) ∝ 1

φ
,

considering φ∗ = 1. This way, the reference prior with parameter of interesting φ is the same

with µ as the parameter of interest, and hence,

πB(µ, φ) ∝
1

φ
.

Due to this fact, the reference prior presented above is an overall reference prior (see Berger

et al., 2015), and all the parameters are of interest.

2.3. Maximal data information prior

Zellner (1977) developed a prior π(θ) that maximizes the information from the data in

relation to the information known a priori about the parameters. Let

H(θ) =

∫ ∞

−∞
f(x | θ) log f(x | θ)dx

be the negative entropy of f(x | θ). The non-informative prior distribution known as Maximal

Data Information prior is defined as

πZ(θ) ∝ expH(θ).

Zellner (1977, 1984) shows several interesting properties of MDI prior and additional

conditions that can also be imposed on the approach reflecting given initial information.

However, the MDI prior has restrictive invariance properties.
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Theorem 2.2. The MDI prior for the parameters µ and φ from Gumbel distribution

(1.1) is given by:

(2.6) πZ(µ, φ) ∝
1

φ

and, therefore, the MDI prior coincides with the reference prior.

Proof: Firstly, we have to evaluate the measure H(µ, φ). After some algebras,

H(µ, φ) =

∫ ∞

−∞
f(x | µ, φ) log f(x | µ, φ) dx,

=

∫ ∞

−∞
f(x | µ, φ)

[
− logφ− x− µ

φ
− exp

(
−x− µ

φ

)]
dx,

= − logφ − E(X)− µ

φ
−
∫ ∞

−∞
exp

(
−x− µ

φ

)
f(x | µ, φ) dx,

= − logφ− γ − 1.

This way, the noninformative MDI prior for the parameters µ and φ is given by

πZ(µ, φ) ∝
1

φ
.

2.4. Tibishirani’s prior

Tibshirani (1989) proposes a procedure for obtaining an objective prior for a parametric

vector θ = (θ1, . . . , θk) such that, for a fixed coefficient, the marginal posterior interval

for a single parameter of interest has coverage probability in the frequentist sense close to

the nominal significance level. Consider the vector of parameters θ = (θ1,θ2) in which

the scalar θ1 is the parameter of interest and θ2 = (θ21, θ22, . . . , θ2,k−1) is the vector of

nuisance parameters. Here we want to obtain, a non-informative prior π(θ1, θ2) where θ1 is

the parameter of interest so that the credible interval for θ1 has a coverage error O(n−1) in

the frequentist sense, i.e.,

(2.7) P
[
θ1 ≤ θ1−α

1 (π;X)|(θ1, θ2)
]
= 1− α−O(n−1),

where θ1−α
1 (π;X)|(θ1, θ2) denote the (1 − α)th quantile of the posterior distribution of θ1.

The class of priors satisfying (2.7) are known as matching priors.

The procedure requires an orthogonal reparametrization of the parameter θ. To achieve

this, we will employ the criterion proposed by Cox and Reid (1987), involving the reparametriza-

tion of the model in a system with k − 1 equations, as follows:

(2.8)
k−1∑
i=1

i∗θ2rθ2s
∂θ2r
∂θ1

= −i∗θ1θ2s , s = 1, . . . , k − 1,
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where i* are the elements of the information matrix obtained in the parametrization (θ1, θ2)

under the assumption that the transformation from (θ1, θ2)→(δ, λ) has a non-null Jacobiano

and is orthogonal. Therefore, the k × k Fisher information matrix for the new orthogonal

parameters δ and λ, which corresponds to the parameter of interest δ is given by

I(δ,λ) =
[
Iδδ(δ, λ) 0

0 Iλλ(δ, λ)

]
,

where

Iδδ(δ, λ) = −E
(
∂2L(δ,λ | x)

∂δ2

)
, [Iλλ(δ, λ)]ij = −E

(
∂2L(δ,λ | x)
∂λi∂λj

)
.

This way, the prior given by

(2.9) π(δ,λ) ∝ g(λ)
√

Iδδ(δ, λ),

leads (asymptotically in the sample size) to the proper frequentist coverage one-sided posterior

interval for δ and g(λ) > 0 is an arbitrary function. The corresponding prior for θ is given

by

πT (θ) ∝ g(λ)Iδδ(δ, λ)1/2 ∥J(δ, λ)∥ ,

where ∥J(δ, λ)∥ is the Jacobian of the transformation from (δ, λ) to θ.

Due to a lack of uniqueness in the choice of the orthogonal parametrization then the

class of orthogonal parameters is of the form g(λ), where g(·) is any reparametrization. This

nonuniqueness is reflected by the function g(·) corresponding to (2.9). One possibility, in the

single nuisance parameter case, is to require that (δ, λ) also satisfies Stein’s condition (see

Tibshirani, 1989) for λ with δ taken as the nuisance parameter.

Theorem 2.3. The Tibshirani prior for the parameters µ and φ of the extreme

value distribution (1.1) is given by

(2.10) πT (µ, φ) ∝
1

φ
.

Proof: As discussed by Cox and Reid (1987), the orthogonal parametrization diag-

onalizes the Fisher matrix (2.2). Therefore, we transform the original parameters (µ, φ) to

the orthogonal parameters (δ, λ), by solving the differential equation in (2.8), which in our

case is given by
1

φ2

∂µ

∂φ
=

a

φ2
,

where a = 1 + ψ(1) is a constant.

The solution of the differential equation gives an one-to-one transformation

(2.11) λ = µ− aφ.

From (2.2) and (2.11), the Fisher Information matrix for the orthogonal parameters is

given by

I(δ, λ) =
1

δ2

[
b 0
0 1

]
,
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where b = −a2 +
(
1 + ψ′(2) + ψ2(2)

)
.

From (2.9) and (2.11), the corresponding prior for (δ, λ) is given by

π(δ, λ) ∝ g(λ)
1

δ
,

where g(λ) is an arbitrary function.

Now, assuming the parameter δ as the single nuisance parameter we obtain

π(δ, λ) ∝ g∗(δ)
1

δ
.

Now, requiring g(λ)1δ = g∗(δ)1δ we have that

π(δ, λ) ∝ 1

δ
.

Thus, the prior expressed in terms of the (µ, φ) parametrization is given by

πT (µ, φ) ∝
1

φ
.

3. POSTERIOR DISTRIBUTION

Suppose that an objective Bayesian approach will be considered, the priors discussed

so far can be represented as a class of priors given by

(3.1) π(µ, φ) ∝ 1

φk
,

where k is a known constant that depends on the chosen prior, i.e, the uniform prior (k = 0),

reference, MDI and Tibishirani (k = 1), and finally Jeffreys (k = 2).

Note that the priors (3.1) are particular cases of joint independent prior given by

π(µ, φ) = π(µ)π(φ) with π(µ) ∝ 1 and π(φ) ∝ 1
φa+1 exp(− b

φ).

By considering a random sample x1, . . . , xn from the Gumbel distribution with pdf

given in (1.1), then the likelihood function for the parameters µ and φ, based on x, is given

by

(3.2) L(µ, φ | x) =
1

φn
exp

(
−n
φ
(x− µ)−

n∑
i=1

exp

(
−xi − µ

φ

))
,

where x =
∑n

i=1
xi
n is the sample mean. Now, from (3.2) and (3.1), the joint posterior

distribution for (µ, φ) is given by

(3.3) p(µ, φ | x) ∝ 1

φn+k
exp

(
−n
φ
(x− µ)−

n∑
i=1

exp

(
−xi − µ

φ

))
.
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As the posterior could return an improper posterior, the following proposition shows

us that under the assumptions of n+ k > 2 any of the priors returns proper posterior.

Theorem: The joint posterior density p(µ, φ | x) for parameters (µ, φ) is proper if and only

if n+ k > 2 for any k = 0, 1, 2.

Proof: We are interested in proving that the double integral of the joint posterior

(3.3) is finite, i.e, ∫ ∞

0

∫ +∞

−∞
p(µ, φ | x)dµdφ <∞.

Integrating first with respect to µ, we have

∫ +∞

−∞
p(µ, φ | x)dµ =

1

φn+k
exp

(
−nx
φ

)∫ +∞

−∞
exp

{
nµ

φ
− exp

(
µ

φ

) n∑
i=1

exp

(
−xi
φ

)}
dµ.

(3.4)

To compute the integral in (3.4), we will consider the transformation given by u =

exp
(
µ
φ

)
as a function of µ, then we obtain that

∫ +∞

−∞
exp

{
nµ

φ
− exp

(
µ

φ

)
Λ

}
dµ = φ

∫ ∞

0
un−1 exp(−Λu)du,

which is a kernel of a gamma distribution parameterized in terms of a shape parameter n

and an rate parameter Λ =
∑n

i=1 exp
(
−xi

φ

)
. Therefore

∫ +∞

−∞
p(µ, φ | x)dµ =

1

φn+k−1
exp

(
−nx
φ

)
Γ(n)

Λn
.

The double integral of joint posterior density for parameters µ and φ can be written as

(3.5)

∫ ∞

0

∫ +∞

−∞
p(µ, φ | x)dµdφ = Γ(n)

∫ ∞

0

exp
(
−nx

φ

)
φn+k−1

(∑n
i=1 exp

(
−xi

φ

))ndφ.
This way, we just need to prove that integral in (3.5) is finite. In fact, consider a new

transformation w = 1
φ in the integral (3.5), this way we have

∫ ∞

0

exp
(
−nx

φ

)
φn+k−1

(∑n
i=1 exp

(
−xi

φ

))ndφ =

∫ ∞

0
wn+k−3 exp (−wnx)(∑n

i=1 exp(−wxi)
)ndw.

Let x(1) be the sample minimum. It is clear that
∑n

i=1 exp(−wxi) ≥ exp(−wx(1)) and
[
∑n

i=1 exp(−wxi)]
−1 ≤

[
exp(−wx(1))

]−1
. Therefore

(3.6)

∫ ∞

0
wn+k−3 exp (−wnx)(∑n

i=1 exp(−wxi)
)ndw ≤

∫ ∞

0
w(n+k−2)−1 exp

(
− wn(x− x(1))

)
dw.
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Hence, we have that (3.6) is finite if and only if x > x(1) and n+ k > 2. Consequently,

the joint posterior is proper if n > 2 under the uniform prior (k = 0), if n > 1 under

the reference, MDI and Tibishirani prior (k = 1), and for all n under the Jeffreys prior

(k = 2).

A corollary of this demonstration relates to the existence of the moments of φ. The

p-th moment of φ is calculated as

E(φp | x) ∝
∫ ∞

0

exp
(
−nx

φ

)
φn+k−p−1

(∑n
i=1 exp

(
−xi

φ

))ndφ.
Therefore, E(φp | x) < ∞ if n + k − p > 2. For instance, the expectation and the variance

exist if n+ k > 3 and n+ k > 4, respectively.

Now the inferences about µ and φ are typically based on marginal posterior distribu-

tions.

Proposition 4: The marginal posterior distribution for the parameter φ is

(3.7) p(φ | x) ∝
exp

(
−nx

φ

)
φn+k−1

(∑n
i=1 exp

(
−xi

φ

))n .

Proof: For definition and from the joint posterior (3.3), the marginal posterior dis-

tribution for the parameter φ is obtained as

p(φ | x) ∝ 1

φn+k
exp

(
−nx
φ

)∫ ∞

−∞
exp

(
nµ

φ
−

n∑
i=1

exp

(
−xi − µ

φ

))
dµ.

Making the change of variable u = µ
φ and some algebraic manipulations, the marginal

distribution for φ is obtained in a closed form given by

p(φ | x) ∝
exp

(
−nx

φ

)
φn+k−1

(∑n
i=1 exp

(
−xi

φ

))n .
The proof is completed.

On the other hand, the marginal posterior for µ is also derived from joint posterior

(3.3) by direct integration out φ as

(3.8) p(µ | x) ∝
∫ ∞

0

1

φn+k
exp

(
−n
φ
(x− µ)−

n∑
i=1

exp

(
−xi − µ

φ

))
dφ.

Unfortunately, it is intractable to compute the normalization constant, Bayes sum-

maries and intervals. However, samples of the marginal posterior distributions (3.7) and

(3.8) can be simulated by using MCMC (Markov Chain Monte Carlo) methods, as the pop-

ular the Metropolis-Hastings algorithm (see for example, Chib and Greenberg, 1995).
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4. IMPLEMENTING THE MCMC ALGORITHM

Since the joint posterior distribution in (3.3) do not have closed form, MCMC algo-

rithms, in particular the Metropolis-Hasting (MH), can be implemented in this case quite

routinely for the computation of Bayes estimators and quantiles.

Applying the Bayes theorem, we can write the joint posterior distribution as the product

between the marginal distribution of (φ | x) in (3.7) and the conditional distribution (µ |
φ, x), i.e,

p(µ, φ | x) = p(µ | φ, x)p(φ | x).

As none of the previous distributions are identified as having a standard shape, dis-

abling the direct generation of samples, the MH algorithm will be considered to sample both

conditional and marginal distributions. We choose the Normal N(µ0, σ
2) and Gamma G(a, b)

distributions as the proposal distributions for the chain of µ and φ, respectively. The selec-

tion was only for the fact that for the µ we have the values on (−∞,∞) while φ is defined

on (0,∞), however, other distributions could be assumed respecting the parameter space.

The algorithm used to obtain the Bayesian estimates consists of the following steps

Step 1: Take some initial guess µo and φo for the parameters µ and φ, respectively;

Step 2: At the step i, we draw the new values µi+1 and φi+1 fromN(µi, σ
2) andG(b/φi+1, b)

distributions, respectively, where σ and b, are scale parameters to balance the acceptance rate

to about 0.45 according to Neal and Roberts (2008);

Step 3: The candidate φi+1 will be accepted with a probability given by the Metropolis

ratio

α2(φi, φi+1) = min

{
1,
G(b/φi + 1, b)p (φi+1 | x)
G(b/φi+1 + 1, b)p (φi | x )

}
,

and then, the candidate µi+1 with probability

α1(µi , µi+1) = min

{
1,
p (µi+1 | φi+1, x )

p (µi | φi+1, x )
=
p (µi+1, φi+1 | x )

p (µi, φi+1 | x )

}
;

Step 4: Repeat above step N times to obtain one chain of N values for each one of µ and

φ parameters;

Step 5: The Bayes estimators of the parameters µ and φ, under the square error loss function

(SELF) are given by

µ̂ =
1

N −M

N∑
i=M+1

µi, and φ̂ =
1

N −M

N∑
i=M+1

φi,

respectively, where M is the burn-in period;

Step 6: Calculate the 100(1−α)% Bayesian interval (Q(α
2
), Q(1−α

2
)), where Q(k) is the k-th

quantile of µ and φ.
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5. SIMULATION STUDY

In this section, we present a simulation study for the purpose of verifying the perfor-

mance of the Bayesian estimators using the priors proposed in the previous sections. The R

Core Team (2020) was used to develop the codes, which are accessible in a GitHub repository

provided at the end of this paper. No special packages beyond those typically included in R

were employed.

The simulation study was carried out for different sample sizes and with different pa-

rameter values of µ and φ. Specifically, we considered sample sizes of n = 5, 10, 15, . . . , 60.

We generated N = 1, 000 samples from (1.1) for three arbitrarily chosen sets of parameter

values, µ and φ, specifically (µ, φ) = (3, 1), (µ, φ) = (1, 2), and (µ, φ) = (0.5, 1).

We ran the MCMC algorithm described in Section 4 to obtain 5,500 observations of

posterior distributions. The first 500 observations were discarded as the burn-in period, with

a thinning interval of 5 draws. Therefore, we obtained two chains with the size of 1000 to

compute the posterior summaries. The choice of initial values was made through the moment

estimators given by Yılmaz et al. (2021):

µ̂0 = x− γs
√
6

π
, φ̂0 =

s
√
6

π
,

where x is the mean, s is the empirical variance and γ ≈ 0.5772.

The convergence of the generated Markov chains was checked using the Geweke test

(Geweke, 1992). This test is based on comparing the means of the first 10% and last 50%

of the chain. It indicates that if the samples are drawn from the stationary distribution (the

posterior distribution in our context), then the means of these two parts should be roughly

equal. Geweke’s statistic is calculated under the assumption that the two parts of the chain

are asymptotically independent. Under this condition, the statistic follows an asymptotically

standard normal distribution. Consequently, the chains are considered to have converged if

the absolute value of the statistic is less than 1.96.

Additionally, we have included the results of the maximum likelihood estimators (MLEs)

and the posterior distribution obtained using a highly informative prior considered in Yılmaz

et al. (2021) to compare our results. This prior specifies a standard normal distribution for

µ and a gamma distribution for φ with a mean equal to 1 and a variance equal to 0.25.

The MLEs were computed by maximizing the log-likelihood function (Elkahlout, 2006),

which is derived by applying the logarithm to the likelihood function in (3.2). This approach

follows the frequentist method of statistical inference (Bickel and Doksum, 2015). We report

the empirical bias and the variance for each parameter

Bias(θi) =
1

N

N∑
j=1

(θ̂i,j − θi) , Var(θi) =
1

N

N∑
j=1

(θ̂i,j − θi)
2, for i = 1, 2,

where θi =
1
N

∑N
j=1 θ̂i,j , and θ = (θ1, θ2) = (µ, φ). In addition, the 95% credibility interval

coverage probabilities (CP) were computed for θi’s, defined as the proportion of the total

intervals covering the true parameter. Adequate performance would see these probabilities
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fall within the neighborhood of 0.95. The empirical bias, variance, and CP for all estimators

versus sample sizes are plotted in Figures 1 to 3, respectively, for both different parameter

values.
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Figure 1: Plot of empirical bias, variance and coverage probabilities versus
sample size n for estimation of µ = 3 and φ = 1.
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Figure 2: Plot of empirical bias, variance and coverage probabilities versus
sample size n for estimation of µ = 1 and φ = 2

Upon examining Figures 1 to 3, we conclude that some estimators, such as the MLE



16 F. A. Moala, A. B. Moala, N. Jerez-Lillo, and P. L. Ramos

10 20 30 40 50 60

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

n

B
ia

s 
(µ

)

10 20 30 40 50 60

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

n

V
ar

 (
µ)

Jeffreys
Reference
Informative
MLE

10 20 30 40 50 60

0.
86

0.
88

0.
90

0.
92

0.
94

0.
96

0.
98

n

C
P

 (
µ)

10 20 30 40 50 60

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

n

B
ia

s 
(ϕ

)

10 20 30 40 50 60

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

n

V
ar

 (
ϕ)

10 20 30 40 50 60

0.
80

0.
85

0.
90

0.
95

1.
00

n

C
P

 (
ϕ)

Figure 3: Plot of empirical bias, variance and coverage probabilities versus
sample size n for estimation of µ = 0.5 and φ = 1

and two priors (reference and informative), exhibit bias for small n for both parameter,

while the Jeffreys prior returns nearly unbiased estimates. Most importantly, the bias for

the informative prior requires a large n to decrease, while the biases of the objective priors

tend towards zero for small samples. Additionally, the variance decreases as the sample

size increases. Although the informative prior has the smallest variance, this is expected as

the variance of the prior is small, providing less variability in the obtained estimates. This

consequently leads to highly biased estimates, especially when they are far from the mean of

the prior distribution. These results show that misspecifying the hyperparameters may lead to

biased results, while our proposed Bayesian approach does not require any hyperparameters.

The effect of the proposed priors on the posterior estimates is also compared in terms of

coverage probabilities (CP). As expected, as the sample size increases, the objective Bayesian

credible intervals converge quickly to the nominal level of 0.95. On the other hand, infor-

mative priors tend to overestimate the nominal levels in almost all cases, resulting in poor

coverage probabilities. The objective Bayesian estimator based on the reference prior per-

formed better than the one based on the Jeffreys prior under this criterion, although both

converged rapidly with relatively small sample sizes. Overall, we obtained unbiased estimates

with accurate coverage probabilities when considering the objective Jeffreys prior, which is

therefore recommended for future research in real applications.

It is worth mentioning that the Geweke test results are displayed in Figures 5 to 7 in the

Appendix. From the cited figures, we conclude that all chains generated for any parameter

across different scenarios and sample sizes exhibit a statistic with an absolute value less than

1.96, indicating convergence of the chains and validating our results.
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6. APPLICATION TO RAINFALL DATA

Intense rainfall leads to flooding, road damage, soil erosion, and agricultural damage,

among other effects. Understanding the behavior of maximum rainfall is crucial for planning

in hydraulic engineering, such as flood control, dam construction, and agronomy, including

determining the optimal time for planting and soil conservation. Plans for any such con-

structions must be based on extreme rainfall amounts. Therefore, given the socio-economic

significance of the Presidente Prudente region, this application holds great relevance. Maxi-

mum rainfall data were obtained from the Meteorological Station of Presidente Prudente city

(BR) for the 61-year period from January 1963 to July 2023. The daily rainfall data were

grouped into monthly periods, and the maximum daily rainfall observed for each month was

extracted.

The Gumbel distribution demonstrated a good fit to the data for representing maximum

rainfall. To illustrate this, we generated a QQ plot, shown in Figure 8 in the Appendix. This

plot is constructed by comparing the maximum precipitation observed each month with the

estimated values provided by the fitted model. When the dataset closely adheres to the

assumed theoretical distribution, the points on the QQ plot will align along a straight line.

Thus, the proposed priors for Bayesian analysis and the maximum likelihood approach are

discussed for this application.

Estimators with respective variance for both parameters, µ and φ, considering each

month of the year are shown in Tables 1 and 2. In addition, the 95% confidence intervals for

each parameter are presented in Tables 3 and 4 in Appendix.

Table 1: Point estimation (estimators and standard deviation) of the pa-
rameter µ according to the months under priors and MLE.

Months Jeffreys Reference MLE

January 46.7096 (3.2615) 47.5729 (3.7387) 47.2349 (3.2974)
February 45.0349 (3.1456) 44.904 (3.1639) 45.0114 (3.387)
March 31.9277 (2.0745) 31.9566 (2.1516) 32.0212 (2.1439)
April 23.9767 (1.9534) 23.9521 (1.9643) 24.1009 (2.0171)
May 25.3515 (2.1033) 25.601 (2.1123) 25.6014 (2.1468)
June 17.5677 (1.9444) 17.6311 (2.0497) 17.639 (2.0923)
July 9.944 (1.5921) 10.0523 (1.6684) 10.0977 (1.628)

August 9.6276 (1.511) 9.6842 (1.4825) 9.7598 (1.4895)
September 18.6523 (1.6726) 18.5852 (1.7823) 18.6351 (1.7566)
October 33.1487 (1.9727) 33.1306 (2.0811) 33.2378 (2.0478)
November 34.1598 (2.6151) 34.2821 (2.5381) 34.5918 (2.5407)
December 37.7792 (2.3374) 37.5001 (2.3224) 37.871 (2.3928)

Observing Tables 1 and 2, we can verify that the Bayesian estimators obtained with

both priors and also under MLE have presented very similar results. This diagnosis corrob-

orates the results obtained from the simulation study due to the moderate sample size (61

years). Furthermore, it is observed that the estimators of the parameters µ and φ are smaller

in the driest periods (June, July, August and September) than in the wettest periods. It

is possible to understand these results through the expectation of the Gumbel distribution,

that is, the expected value of average daily precipitation for drier months will be smaller
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Table 2: Point estimation (estimators and standard deviation) of the pa-
rameter φ according to the months for the priors and MLE.

Months Jeffreys Reference MLE

January 27.4284 (2.6008) 27.5976 (2.5839) 27.121 (2.4417)
February 28.3781 (2.6937) 28.6375 (2.8157) 28.043 (2.5081)
March 17.8589 (1.7001) 17.9738 (1.7181) 17.633 (1.5875)
April 17.0329 (1.5519) 17.0683 (1.5758) 16.8104 (1.4937)
May 17.9724 (1.6102) 18.1243 (1.6678) 17.7749 (1.5897)
June 17.5586 (1.7558) 17.5882 (1.6821) 17.3233 (1.5494)
July 13.6033 (1.3885) 13.6232 (1.3693) 13.3905 (1.2056)

August 12.2443 (1.2242) 12.3407 (1.2506) 12.0866 (1.103)
September 14.6174 (1.3967) 14.7846 (1.4432) 14.448 (1.3008)
October 16.863 (1.5163) 17.0649 (1.5436) 16.73 (1.5164)
November 20.7403 (2.0058) 20.9183 (1.99) 20.4747 (1.8814)
December 19.5828 (1.8549) 19.8357 (1.8831) 19.4165 (1.7719)

providing smaller µ and φ values. Now, comparing the confidence intervals (MLE) and cred-

ibility (Bayesian) presented in Tables 3 and 4 (in the Appendix) for the parameters µ and

φ we can see that the intervals are slightly different for both parameters. However, when

comparing the credibility intervals obtained under the Jeffreys and Reference priors, there are

no differences. As well as the behavior observed for the point estimators, the 95% intervals of

the parameters in the driest periods also presented lower limits than in the rainiest periods.

In addition, due to the little variability in maximum rainfall, these intervals have presented

shorter lengths for the drier months than for the rainy ones.

Return levels are a common measure of extreme events such as in hydrological and

climatology applications. Through the inversion of the Gumbel distribution function, we can

define the p-th upper quantile as

(6.1) xp = µ − φ log (− log (1− p)) .

The value xp is referred to as the return level. Formally, in the context of extreme

rainfall, xp represents the daily rainfall amount surpassed by the annual maximum each year

with a probability of p. Estimates of the return level under the MLE can be easily derived by

substituting the estimators for µ and φ into equation (6.1) due to the one-to-one invariance.

Under the Bayesian approach, the included an additional step after step 3 in the MCMC

procedure where

xi,p = µi − φi log (− log (1− p)) .

The chain can be constructed due to the invariance properties of the MCMC and the assumed

posterior. There is no need to set additional information or hyperparameters in the MCMC,

as it is already constructed for the chains of µ and φ. The credibility intervals are obtained

using the percentiles of the obtained chain, and the estimate is the posterior mean.

The estimators obtained by the maximum likelihood and Bayesian methods of the max-

imum probable daily rainfall for the return times of 2, 4, 10, 20, and 40 years or, respectively,

probability levels: 50, 75, 90, 95, and 97.5 percent, determined for the monthly and annual

periods are shown in Figure 4. As the Jeffreys and Reference priors have presented similar
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results from the simulation and Jeffreys prior is invariant under transformations we have used

a Bayesian inference with Jeffreys prior to evalue return levels estimators.
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Figure 4: Return level plots for Gumbel distribution of Presidente Pru-
dente annual maximum daily rainfall under Bayesian approach.

Figure 4 illustrates that the Bayesian estimator provides both point estimates and

95% credibility intervals, offering a measure of uncertainty. Notably, these intervals widen

as the time interval increases, indicating a growing level of uncertainty associated with the

estimations. Moreover, the depicted return levels show a discernible upward trend, with the

scale varying from month to month. Particularly during the summer season, the scale tends

to be lower than that observed in winter.

7. CONCLUSION

The Gumbel distribution is one of the most commonly used probabilistic tools for

calculating extreme events. In this paper, we considered the estimation of the parameters of

the Gumbel distribution using the Bayesian approach under objective priors. Objective priors

can be determined immediately to carry out a Bayesian analysis for the model of interest,

as there are several such proposed priors in the literature. Furthermore, informative priors,

based on subjective methods, are often more challenging to apply in practice. Therefore, in

this paper, the main objective priors have been derived for the Gumbel distribution such as

Jeffreys, MDI, Tibshirani, and reference priors. Some of these priors have not been considered
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in Bayesian analysis under Gumbel distribution applications in the literature, due to their

similar results from the simulation study.

This study has provided a general form for these objective priors, establishing a method

capable of being updated automatically without the need for expert intervention. It allows

for quick and straightforward performance of Bayesian analysis from both the theoretical and

computational points of view. Also, we have observed that the reference, MDI, and Tibshi-

rani priors have the same form. Therefore, the obtained posterior has excellent properties,

such as one-to-one invariance, consistent marginalization, consistent sampling properties, and

coverage probabilities, making it easier to obtain the posterior of these functions through the

MCMC algorithm. Although Jeffreys’ prior differs from these three priors, it performs quite

similarly to Jeffreys regardless of the sample size, based on the simulation study. On the

other hand, the reference prior provided more accurate credibility intervals.

Importantly, it has also been shown that all studied improper priors in this paper lead

to proper posterior distributions, which does not occur in many other distributions such

as the Generalized Exponential, Gamma, Generalized Gamma, Generalized Extreme Value

(GEV), and other distributions (see for instance, Ramos et al., 2023). Northrop and Attalides

(2016) and Zhang and Shaby (2023) considered such priors for a generalized version, but the

priors obtained differ when reduced to the Gumbel distribution. Moreover, the posterior

obtained with the Jeffreys priors and the MDPI returns improper posteriors, which prevents

the posterior distribution from being a probability distribution, and therefore it cannot be

used in Bayesian inference. In contrast, our approach yields a proper posterior with prior

distributions of the form π(µ, φ) ∝ φ−k for k ≥ 1 for sample sizes n ≥ 2. The reference priors

for the GEV model depend on the order of the parameters, and more importantly, they do not

align with ours when the generalized model is reduced to the Gumbel distribution. Hence,

our results cannot be viewed as particular cases within more general models.

The estimators of the parameters of the Gumbel distribution obtained by the maximum

likelihood method are slightly different from the Bayesian estimators, but those obtained by

the Bayesian analysis provided more accurate estimates, primarily for small sample sizes.

Overall, the Gumbel distribution was successfully applied to analyze the data of maximum

monthly rainfall, effectively reproducing the rainfall regime in the Presidente Prudente re-

gion. There are a large number of possible extensions to this current work. The presence of

censoring, covariates, and long-term survival are common in practice. Our approach should

be investigated further in these contexts.
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CODE AVAILABILITY

All the functions and procedures concerning implementation included in the article

have been implemented in R Core Team. The codes will be available as https://github.

com/njerezlillo/objectivepriorsgumbel/tree/main.
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A. BOXPLOTS
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Figure 5: Boxplots of Geweke test results for chains generated for µ (first
row) and φ (second row) in Scenario 1, across different sample
sizes. The columns correspond to the prior types: Jeffreys (left),
reference (middle), and informative (right).
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Figure 6: Boxplots of Geweke test results for chains generated for µ (first
row) and φ (second row) in Scenario 2, across different sample
sizes. The columns correspond to the prior types: Jeffreys (left),
reference (middle), and informative (right).
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Figure 7: Boxplots of Geweke test results for chains generated for µ (first
row) and φ (second row) in Scenario 3, across different sample
sizes. The columns correspond to the prior types: Jeffreys (left),
reference (middle), and informative (right).
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B. QQ PLOTS
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Figure 8: QQ plots comparing the observed maximum precipitation each
month to the estimated values provided by the fitted Gumbel
model.
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C. 95% CONFIDENCE INTERVALS

Table 3: 95% Interval estimation of the parameter µ, according to the
months under priors and MLE.

Months Jeffreys Reference MLE

January (40.7292; 52.8546) (40.4019; 53.1493) (40.7719; 9.7604)
February (37.9284; 52.7275) (37.9918; 53.6106) (38.3728; 10.0256)
March (27.5315; 36.2134) (27.6261; 36.0207) (27.8192; 6.3458)
April (19.9457; 27.9605) (20.0557; 27.8602) (20.1474; 5.9707)
May (21.1885; 29.3611) (21.2016; 29.336) (21.3936; 6.3547)
June (13.546; 21.3465) (13.5243; 21.5384) (13.5381; 6.1932)
July (6.7146; 13.0758) (6.8429; 13.0597) (6.9067; 4.819)

August (6.7487; 12.5928) (6.7724; 12.6878) (6.8403; 4.409)
September (15.1897; 21.6401) (15.1324; 21.8419) (15.1921; 5.1996)
October (29.0812; 36.974) (29.1051; 37.1372) (29.2242; 6.0614)
November (29.3227; 38.9873) (29.4344; 39.0837) (29.612; 7.5204)
December (33.0443; 42.1171) (33.1589; 42.2736) (33.1811; 7.0827)

Table 4: 95% Interval estimation of the parameter φ, according to the
months under priors and MLE.

Months Jeffreys Reference MLE

January (22.9506; 33.3489) (23.1399; 33.8644) (22.3352; 7.2276)
February (23.4822; 34.1252) (23.5924; 34.5519) (23.1271; 7.4239)
March (14.805; 21.3189) (14.7842; 21.6177) (14.5215; 4.6991)
April (14.2517; 20.2367) (14.3139; 20.2949) (13.8828; 4.4213)
May (15.1106; 21.0789) (15.1129; 21.4296) (14.659; 4.7056)
June (14.5891; 21.336) (14.6928; 21.4387) (14.2866; 4.5861)
July (11.1347; 16.3576) (11.2307; 16.5023) (11.0276; 3.5685)

August (10.0519; 14.7935) (10.2132; 14.9868) (9.9248; 3.2648)
September (12.1823; 17.6832) (12.2646; 17.9292) (11.8985; 3.8503)
October (14.1854; 20.1829) (14.2351; 20.2954) (13.7579; 4.4885)
November (17.1318; 24.816) (17.384; 25.3427) (16.7872; 5.5689)
December (16.3583; 23.5061) (16.4848; 23.7801) (15.9436; 5.2448)
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