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1 Introduction

Does the structure of the Fisher Information Matrix (FIM, hereafter) matter in
model specification and selection? Does the FIM matter in testing and/or in
inference analysis particularly in the two way random effects panel data model?
Which FIM results are more relevant or appealing? Observed or exact FIM
results?

This paper seeks to get the FIM of the two-way random effects panel data
model in the absence or presence of heteroscedasticity. The approach developed
follows that in [1, 4, 3, 17, 18, 20, 24] and [28]. The FIM crucially depends on the
variance covariance matrix. This matrix is obtained in four cases (homoscedas-
ticity, heteroscedasticity on the unobservable individual effect, heteroscedasticity
on the composite term and heteroscedasticity on both individual and compos-
ite terms); the paper does not consider groupwise heteroscedasticity or group
membership heteroscedasticity as well as cluster heteroscedasticity (see [10, 15]
and [19]) for example on the unobservable time effect.

This paper rather focuses on an alternative simple procedure for obtain-
ing the FIM that accounts for homoscedasticity and/or various heteroscedasticity
schemes in the two-way random effect model. It proposes a case-by-case approach
rather than an elaborated sequence of steps and built-in functions used by earlier
researchers.

The contributions of this paper are therefore twofold: (i) the derivation of
the FIM based on different forms of homoscedasticity and/or heteroskedasticity;
an important aspect in model specification; (ii) and thereby the exploration of
how to choose the correct model specification in this context.

To do that, we develop a new and efficient procedure for computing the
FIM in the two-way random effect model; the new procedure is obtained under
homoscedasticity as well as well as various cases of heteroscedasticity.

The remainder of the paper is organized as follows: Section 2 describes
the mathematical problem to be addressed. Section 3 sets out some preliminary
results. Section 4 presents the main results while Section 5 discusses some com-
putational issues. Section 6 provides two real data examples with discussions.
Section 7 concludes the paper.
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2 The mathematical problem

This section deals with the mathematical problem to address and some back-
ground information.

2.1 The FIM and related problem

We are interested in the derivation and computation of the FIM for the two-way
random effects model (commonly encountered in theoretical as well as empirical
studies) in the presence of various forms of heteroskedasticity.

Let Y = (Y1, ..., Yn) be a random sample, and let f(Y |θ) denote the prob-
ability density function for some model of the data, which has parameter vector
θ = (θ1, ..., θr)

′. Then the FIM In(θ) of sample size n is given by the r × r
symmetric matrix whose ij-th element is

(2.1) In(θ)i,j = −E
[
∂2 ln f(Y | θ)

∂θi∂θj

]
.

This definition strictly corresponds to the expected FIM. If no expectation is
taken we obtain a data-dependent quantity that is called the observed FIM. We
are interested in the derivation and computation of the expected FIM for the
two-way random effects panel data model in the presence of heteroskedasticity.

2.2 The two way error components model

We consider the following two way error components model

(2.2) yit = α+X ′itβ + uit; i = 1, · · · , N ; t = 1, · · · , T

with i denoting households, individuals, firms, countries, etc., and t denoting
time. The subscript i, therefore, denotes the cross-section dimension whereas t
denotes the time-series dimension. yit is the dependent variable for i at time t.
β is a K × 1 scalar, Xit is it-th observation on K explanatory variables. In this
paper, we deal with two-way error components disturbances

(2.3) uit = µi + λt + νit,

where µi denotes the unobservable individual effect, λt denotes the unobservable
time effect and νit is the remainder stochastic disturbance term. µi, λt account for
any individual specific effect or time-specific effect not included in the regression.
In vector form, (2.2) can be written as

(2.4) u = Zµµ+ Zλλ+ ν,

where Zµ = IN⊗iT , IN is an identity matrix of dimension N , iT is a vector of ones
of dimension T and ⊗ denotes Kronecker product. Zµ is a selector matrix of ones



4 P. TAKAM et al.

and zeros, or simply the matrix of individual dummies included in the regression
to estimate the µi (assuming they are fixed parameters to be estimated). Likewise,
Zλ = iN ⊗ IT is the matrix of time dummies of ones which may be included
in the regression to estimate the λt (assuming they are fixed parameters to be
estimated). µ, λ and ν are defined as in [1].

In vector form (2.2) can be written as

(2.5) y = αiNT +Xβ + u = Zγ + u,

where y is NT × 1, X is NT ×K, Z = [iNT , X], γ′ = (α′, β′) and iNT is a vector
of ones.

2.3 Variance-covariance matrix of u

To obtain the variance-covariance matrix of the overall error term u, we assume
the following.

Assumption A1. (General case): The vectors λ, ν and µ are pairwise
independent. Each of them is identically and independently normally distributed
with mean 0 and variances σ2

λIT , σ2
νdiag(hν(w′iθν)) and σ2

µdiag(hµ(z′iθµ)). hν
and hµ are differentiable functions from R to R+, wi = (w1i, ..., wpi)

′ ∈ Rp and
zi = (z1i, ..., zqi)

′ ∈ Rq are defined as in [3].

In the following, we set Dν = diag(hν(w′iθν)) and Dµ = diag(hµ(z′iθµ)).
Based on the general assumption A1, the variance-covariance matrix of the com-
posite disturbance u is defined by

Ω = E(uu′) = σ2
µZµDµZ

′
µ + σ2

λZλZ
′
λ + σ2

νDν ⊗ IT .

Therefore,
Ω = σ2

µDµ ⊗ iT i′T + σ2
λiN i

′
N ⊗ IT + σ2

νDν ⊗ IT
which can be simplified to

(2.6) Ω = σ2
ν(Dν ⊗ IT ) + σ2

µ(Dµ ⊗ JT ) + σ2
λ(JN ⊗ IT )

with JT = iT i
′
T and JN = iN i

′
N .

2.4 Inverse of error variance-covariance matrix: Ω−1

In order to get Ω−1, we use the spectral decomposition in [32]. After replacing
JN by NJN , IN by EN + JN , JT by TJT and IT by ET + JT and collecting
terms with the same matrices, we obtain

(2.7) Ω =
[
σ2
νDν + σ2

λJN
]
⊗ ET +

[
σ2
νDν + Tσ2

µDµ + σ2
λJN

]
⊗ JT .



Fisher information matrix for two-way random effects model with heteroscedasticity 5

The spectral decomposition allows us to write

(2.8) Ω−1 = C1 ⊗ ET + C2 ⊗ JT

with C1 = ζ(σ2
νDν , 0) and C2 = ζ(σ2

νDν , σ
2
µDµ), where

ζ(X1, X2) =
[
X1 + TX2 + σ2

λ

(
iN i
′
N

)]−1

= (X1 + TX2)−1 −
σ2
λ (X1 + TX2)−1 JN (X1 + TX2)−1(

1 + σ2
λi
′
N (X1 + TX2)−1 iN

) .

The formula used to obtain the inverse of X1+TX2+σ2
λ (iN i

′
N ) is provided by [9].

3 Some preliminary results

This section deals with the derivation of E
[
−d2`(θ | u)

]
, where `(θ | y) is the

log-likelihood of observations. The relationship between this expectation and the
FIM is given by

E
[
−d2`(θ | y)

]
=

r∑
i=1

r∑
j=1

E
[
−∂

2`(θ | y)

∂θi∂θj

]
dθidθj

=
r∑
i=1

r∑
j=1

In(θ)i,jdθidθj

= (dθ)′In(θ)(dθ),(3.1)

where dθ = (dθ1, ..., dθr)
′.

3.1 First order derivatives of the log-likelihood function

If µi, λt and νit are independent and identically normally distributed (from as-
sumptionA1), the joint distribution of y = (y11, ..., y1T , y21, ..., y2T , ..., yN1, ..., yNT )′

is the NT -multivariate normal distribution and the likelihood of the observations
is

L(θ | y) =
1

(2π)
NT
2 |Ω|

1
2

exp

(
−1

2
(y −Xβ)′Ω−1(y −Xβ)

)
.

Since u = y −Xβ,

L(θ | u) =
1

(2π)
NT
2 |Ω|

1
2

exp

(
−1

2
u′Ω−1u

)
.

By taking the logarithm of the likelihood of observations

(3.2) `(θ | u) = lnL (θ | u) = C − 1

2
ln |Ω| − 1

2
u′Ω−1u,
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where θ = (σ2
ν , σ

2
µ, σ

2
λ, θ
′
ν , θ
′
µ, β

′)′ ∈ Rr (with r = p + q + k + 3) is the vector of

parameters and C = −NT
2 ln(2π) is a constant.

We observe that the log-likelihood is continuous and at least twice differ-
entiable with respect to each parameter. The first and second order differentials
are given by the following.

Lemma 3.1. The first order differential of L is

(3.3) d`(θ | u) = −1

2
tr
(
Ω−1dΩ

)
− u′Ω−1du+

1

2
u′Ω−1dΩ · Ω−1u.

The differential of u is du = −Xdβ. The differential of Ω is

dΩ = (Dν ⊗ IT )dσ2
ν + (Dµ ⊗ JT )dσ2

µ + (JN ⊗ IT )dσ2
λ

+σ2
ν

p∑
j=1

(D∗ν,j ⊗ IT )dθν,j + σ2
µ

q∑
j′=1

(D∗µ,j′ ⊗ JT )dθµ,j′ ,

where D∗ν,j =
∂Dν

∂θν,j
for j = 1, ..., p and D∗µ,j′ =

∂Dµ

∂θµ,j′
for j′ = 1, ..., q.

Proof of Lemma 3.1: We have

d`(θ | u) = 0− 1

2
d ln |Ω| − 1

2
d
(
u′Ω−1u

)
= −1

2
tr
(
Ω−1dΩ

)
− 1

2
d
(
u′Ω−1u

)
,

where we used the formula d ln |Ω| = tr
(
Ω−1dΩ

)
. We also have

d
(
u′Ω−1u

)
= d

(
u′Ω−1u

)
u

+ u′d
(
Ω−1

)
u

=
∂

∂u

(
u′Ω−1u

)
du+ u′dΩ−1u

= 2u′Ω−1du− u′Ω−1dΩ · Ω−1u,

where we used the fact that dX−1 = −X−1dX ·X−1.

3.2 Second order derivatives of the log likelihood function

Lemma 3.2. The second order differential of L is

d2`(θ | u) =
1

2
tr
(
Ω−1dΩ · Ω−1dΩ

)
− 1

2
tr
(
Ω−1d2Ω

)
−u′Ω−1dΩ · Ω−1dΩ · Ω−1u+

1

2
u′Ω−1d2Ω · Ω−1u

+u′Ω−1dΩ · Ω−1du− du′Ω−1du.(3.4)
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Proof of Lemma 3.2: We have

d2`(θ | u) = −1

2
tr
(
d
[
Ω−1dΩ

])
− d

(
u′Ω−1du

)
+

1

2
d
(
u′Ω−1dΩ · Ω−1u

)
= −1

2
γ1 − γ2 +

1

2
γ3,

where

γ1 = tr
(
d
(
Ω−1

)
dΩ + Ω−1d2Ω

)
= tr

(
−Ω−1dΩ · Ω−1dΩ + Ω−1d2Ω

)
= −tr

(
Ω−1dΩ · Ω−1dΩ

)
+ tr

(
Ω−1d2Ω

)
,

γ2 = d
(
u′Ω−1du

)
= d

(
u′Ω−1du

)
u

+ d
(
u′Ω−1du

)
Ω

= d
(
u′Ω−1

)
u
du+ u′Ω−1d (du)u + u′d

(
Ω−1

)
Ω
du

= du′Ω−1du+ 0− u′Ω−1dΩ · dΩ−1du

and

γ3 = d
(
u′Ω−1dΩ · Ω−1u

)
= d

(
u′Ω−1dΩ · Ω−1u

)
u

+ d
(
u′Ω−1dΩ · Ω−1u

)
Ω

= 2u′Ω−1dΩ · Ω−1du+ γa3 ,

where

γa3 = d
(
u′Ω−1dΩ · Ω−1u

)
Ω

= d
(
u′Ω−1

)
Ω
dΩ · Ω−1u+ u′Ω−1d

(
dΩ · Ω−1u

)
Ω

= d
(
u′Ω−1

)
Ω
dΩ · Ω−1u+ γb3 = −u′Ω−1dΩ.Ω−1dΩ.Ω−1u+ γb3

with

γb3 = u′Ω−1d
(
dΩ · Ω−1u

)
Ω

= u′Ω−1
[
d2Ω · Ω−1u+ dΩ · d

(
Ω−1

)
u
]

= u′Ω−1d2Ω · Ω−1u− u′Ω−1dΩ · Ω−1dΩ · Ω−1u.

We deduce the final result (3.4).

3.3 Expectation of d2`

By taking the expectation of −d2`(θ | u), we obtain after some algebra the
following Lemma.

Lemma 3.3. Assuming that |d2`(θ | u)| is integrable,

(3.5) E
(
−d2`(θ | u)

)
=

1

2
tr
(
Ω−1dΩ.Ω−1dΩ

)
+ dβ′X ′Ω−1Xdβ.

Proof of Lemma 3.3: The proof uses the equality

E
(
u′Au

)
= E

(
tr
(
u′Au

))
= E

[
tr(Auu′)

]
= tr

(
E
[
(Auu′)

])
= Atr

(
Ω
)
,
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where u is a random vector and A is a matrix of constant terms. The expectation
of d2` is then given by

E
(
d2`(θ | u)

)
=

1

2
κ0 −

1

2
κ1 − κ2 +

1

2
κ3 + κ4 − κ5,

where

κ0 = tr
(
Ω−1dΩ · Ω−1dΩ

)
, κ1 = tr

(
Ω−1d2Ω

)
,

κ2 = E
[
u′Ω−1dΩ · Ω−1dΩ · Ω−1u

]
= tr

[
Ω−1dΩ · Ω−1dΩ · Ω−1E(uu′)

]
= tr

[
Ω−1dΩ · Ω−1dΩ · Ω−1Ω

]
= tr

[
Ω−1dΩ · Ω−1dΩ

]
,

κ3 = E
[
u′Ω−1d2Ω · Ω−1u

]
= tr

[
Ω−1d2Ω

]
,

κ4 = E
[
u′Ω−1dΩ · Ω−1du

]
= −E

[
u′Ω−1dΩ · Ω−1Xdβ

]
= −E

[
u
]′

Ω−1dΩ · Ω−1Xdβ = 0,

and

κ5 = E
[
du′Ω−1du

]
= E

[
dβ′X ′Ω−1Xdβ

]
.

We obtain that κ1 = κ3, κ4 = 0 and κ0 = κ2. We deduce that E
(
d2`(θ | u)

)
=

−1
2κ0 − κ5 and E

(
−d2`(θ | u)

)
= 1

2κ0 + κ5 which is the desired result.

The following is an important Lemma based on symmetric matrices.

Lemma 3.4. If A is a symmetric and square matrix of order p+ q, for a
given vector z = (x, y) ∈ Rp+q, where x = (x1, ..., xp)

′ ∈ Rp, y = (y1, ..., yq)
′ ∈ Rq,

we have the following equality

z′Az = x′Apx+ 2x′Ap,qy + y′Aqy,

where

A =

[
Ap Ap,q
A′p,q Aq

]
,

where Ap, Aq and Ap,q are matrices of dimensions of (p, p), (q, q) and (p, q)
respectively.

Proof of Lemma 3.4: The proof of this Lemma is straightforward.
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4 Main results

We now turn to the main results obtained in this paper. The vector of parameters
is denoted by θ = (θ1, ..., θr)

′, where θ1 = σ2
ν ; θ2 = σ2

µ; θ3 = σ2
λ;
(
θj+3 =

θν,j
)

1≤j≤p;
(
θj+p+3 = θµ,j

)
1≤j≤q and

(
θq+p+3+j = βj

)
1≤j≤k. We denote by θ the

vector of dimension (p + q + 3) defined by θj = θj for j = 1, ..., p + q + 3. The
following proposition gives the relationship between the FIM at θ, the FIM at θ
and the FIM at β.

Proposition 4.1. If dθ = (dθ
′
, dβ′)′ with dβ = (dβ1, ..., dβk)

′ ∈ Rk and
dθ = (dσ2

ν , dσ
2
µ, dσ

2
λ, {dθν,j}j=1,...,p , {dθµ,j}j=1,...,q)

′ ∈ Rp+q+3, we have

(dθ)′In(θ)(dθ) = (dθ)′In(θ)(dθ) + 2(dθ)′In(θ, β)(dβ) + (dβ)′In(β)(dβ),(4.1)

where

In(θ) =

 In(θ) In(θ, β)

In(θ, β) In(β)


and

In(θ) = E
[
−∂

2`(u | θ)
∂θi∂θj

]
1≤i,j≤p+q+3

, In(β) = E
[
−∂

2`(u | θ)
∂βi∂βj

]
1≤i,j≤k

,

In(θ, β) = E
[
−∂

2`(u | θ)
∂θi∂βj

]
1≤j≤k

1≤i≤p+q+3

.

Proof of Proposition 4.1: Using Lemma 3.4, the proof is straightfor-
ward.

At this stage, computing the FIM requires the derivation of tr
(
Ω−1dΩ.Ω−1dΩ

)
.

By multiplying dΩ (given in (3.4)) with the expression of Ω−1 from equation (2.8),
we obtain

Ω−1dΩ = [C1Dν ⊗ ET + C2Dν ⊗ JT︸ ︷︷ ︸
Ω1

]dσ2
ν +

(
C2Dµ ⊗ TJT︸ ︷︷ ︸

Ω2

)
dσ2

µ

+[C1JN ⊗ ET + C2JN ⊗ JT︸ ︷︷ ︸
Ω3

]dσ2
λ +

p∑
j1=1

(
σ2
ν(C1D

∗
ν,j1 ⊗ ET + C2D

∗
ν,j1 ⊗ JT )︸ ︷︷ ︸

Ω3+j1

)
dθν,j1

+

q∑
j2=1

(
σ2
µ(C2D

∗
µ,j2 ⊗ TJT )︸ ︷︷ ︸

Ωp+3+j2

)
dθµ,j2 =

p+q+3∑
j=1

Ωjdθj =

r−k∑
j=1

Ωjdθj .
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We deduce that the trace of Ω−1dΩ.Ω−1dΩ is

tr
(
Ω−1dΩ.Ω−1dΩ

)
=

r−k∑
i=1

r−k∑
j=1

tr (ΩiΩj) dθidθj .

From Lemma 3.3, the expectation of −d2`(u | θ) can be written as

Eθ
[
−d2`(u | θ)

]
=

r−k∑
i=1

r−k∑
j=1

1

2
tr (ΩiΩj) dθidθj + (dβ)′(X ′Ω−1X)(dβ).(4.2)

By comparing equations (3.1), (4.1) and (4.2), we deduce that

In(θ, β) = O with In(β) = X ′Ω−1X.

The derivation of the FIM In(θ) is then based on the derivation of In(θ). From
equation (4.2), the terms of In(θ) are given by In(θ)i,j = ai,j = 1

2tr (ΩiΩj) or in
matrix form as

In(θ) =



a1,1 a1,2 a1,3 a1,4
1×p a1,5

1×q

a2,1 a2,2 a2,3 a2,4
1×p a2,5

1×q

a3,1 a3,2 a3,3 a3,4
1×p a3,5

1×q

a4,1
p×1 a4,2

p×1 a4,3
p×1 a4,4

p×p a4,5
p×q

a5,1
q×1 a5,2

q×1 a5,3
q×1 a5,4

q×p a5,5
q×q


.

In(θ) is a symmetric block matrix where the terms in boxes are also matrices
with the dimensions indicated at the top of the boxes. We need to evaluate the
components of θ:

ai,j = aj,i =
1

2
tr(ΩiΩj) for i, j ∈ {1, 2, 3};

ai,4(j1) = a′4,i(j1) =
1

2
tr(ΩiΩj1+3) for i = 1 : 3 and for j1 = 1 : p;

ai,5(j2) = a′5,i(j2) =
1

2
tr(ΩiΩp+3+j2) for i = 1 : 3 and for j2 = 1 : q;

a4,4(j1, j2) =
1

2
tr(Ωj1+3Ωj2+3) for 1 ≤ j1, j2 ≤ p;

a4,5(j1, j2) = a′5,4(j1, j2) =
1

2
tr(Ωj1+3Ωj2+p+3) for 1 ≤ j1 ≤ p, 1 ≤ j2 ≤ q;

a5,5(j1, j2) =
1

2
tr(Ωj1+p+3Ωj2+p+3) for 1 ≤ j1, j2 ≤ q.

Remark 4.1. In order to evaluate the components of θ, we will use the
fact that ETJT = O, E2

T = ET , tr
(
JT
)

= 1 and tr
(
ET
)

= T − 1.
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From the Remark 4.1 we will show how the components of θ can be written
in terms of C1, C2, JN , Dν and Dµ.

To illustrate the computation of ai,j , we give, for example, the details of
calculating a1,1. By the definition, a1,1 = 1

2tr(Ω2
1) with Ω2

1 = C1DνC1Dν ⊗E2
T +

C1DνC2Dν ⊗ ETJT + C2DνC1Dν ⊗ JTET + C2DνC2Dν ⊗ J
2
T . Now using the

fact that ETJT = O, E2
T = ET , J

2
T = JT , tr

(
JT
)

= 1, tr
(
ET
)

= T − 1 and

taking the trace of Ω2
1, we obtain a1,1 = (T−1)

2 tr
[
C1DνC1Dν

]
+ 1

2tr
[
C2DνC2Dν

]
.

The other coefficients are obtained in the same way. The coefficients are given in
Appendix A.

Remark 4.2. A quick inspection of the elements of In(θ) in Appendix B
reveals that they are all written as linear combinations of tr

(
C1M1C2M2

)
, where

M1 ∈ {diag(ηi), JN} and M2 ∈ {diag(ψi), JN} [i.e. either diagonal matrices or
square matrices of ones].

To have the final expressions of ai,j , it suffices to evaluate the quantity
tr
(
C1M1C2M2

)
in the following cases:

• Case 1: tr
(
C1M1C2M2

)
, where M1 = diag(ηi) and M2 = diag(ψi) are

diagonal matrices.

• Case 2: tr
(
C1M1C2M2

)
, where M1 = JN and M2 = diag(ψi) or M1 =

diag(ηi) and M2 = JN , that is one is a diagonal matrix while the other is
a square matrix of ones.

• Case 3: tr
(
C1M1C2M2

)
, where M1 = JN and M2 = JN are all square

matrices of ones.

Before evaluating the three previous quantities above, we make the following
important remark to ease the calculation of traces.

Remark 4.3. Using the expressions of C1 and C2 given by equation (2.9),
we can prove that

Cl = D−1
l −

σ2
λD
−1
l JND

−1
l

1 + σ2
λi
′
ND

−1
l iN

= ς(Dl, 0), l = 1, 2

with D1 = diag(ϑ−1
i ) and D2 = diag(φ−1

i ).

In fact, by definition of C1 and C2, we have C1 = ς(σ2
νDν , 0) and C2 =

ς(σ2
νDν , σ

2
µDµ) which can also be written as C2 = ς(σ2

νDν + Tσ2
µDµ, 0). We then

deduce that

(4.3) ϑ−1
i = σ2

νhν(w′iθν) and φ−1
i = σ2

νhν(w′iθν) + Tσ2
µhµ(z′iθµ).

We can also observe that in the case of homokedasticity, ϑi = 1/σ2
ν and φi =

1/(σ2
ν + Tσ2

µ).
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5 Some computational issues

If we derive a specific formula for the calculation of tr
(
C1M1C2M2

)
, it will defini-

tively ease the computation of the FIM In(θ) and thereby that of the FIM In(θ).
We consider matrices D1, D2, C1, C2, M1 and M2 as defined earlier. According to
the definition of M1 and M2, tr

(
C1M1C2M2

)
is obtained through the real valued

functions Ψi(i = 1, 2, 3) given by the following propositions.

Proposition 5.1. If M1 = diag(ηi) 6= iN i
′
N and M2 = diag(ψi) 6= iN i

′
N

then

tr
(
C1M1C2M2

)
= Ψ1(ϑ, η, φ, ψ) =< η � ϑ, ψ � φ > −

σ2
λ < η � ϑ, ψ � φ� φ >

1 + σ2
λi
′
Nφ

−
σ2
λ < η � ϑ� ϑ, ψ � φ >

1 + σ2
λi
′
Nϑ

+
σ4
λ < η, ϑ� φ >< ψ, ϑ� φ >
(1 + σ2

λi
′
Nϑ)(1 + σ2

λi
′
Nφ)

(5.1)

with <,> and � denoting the inner and Hardamar products, respectively.

Proof of Proposition 5.1: The proof follows since

tr
(
C1M1C2M2

)
= tr

[(
D−1

1 M1 −
σ2
λD
−1
1 i′N iND

−1
1 M1

1 + σ2
λi
′
ND

−1
1 iN

)(
D−1

2 M2 −
σ2
λD
−1
2 i′N iND

−1
2 M2

1 + σ2
λi
′
ND

−1
2 iN

)]

= tr
(
D−1

1 M1D
−1
2 M2

)
−
σ2
λi
′
ND

−1
2 M2D

−1
1 M1D

−1
2 iN

1 + σ2
λi
′
ND

−1
2 iN

−
σ2
λi
′
ND

−1
1 M1D

−1
2 M2D

−1
1 iN

1 + σ2
λi
′
ND

−1
1 iN

+
σ4
λ

(
i′ND

−1
1 M1D

−1
2 iN

) (
i′ND

−1
2 M2D

−1
1 iN

)(
1 + σ2

λi
′
ND

−1
1 iN

) (
1 + σ2

λi
′
ND

−1
2 iN

)
=

N∑
i=1

ϑiηiψiφi −
σ2
λ

∑N
i=1 ηiϑiψiφ

2
i

1 + σ2
λ

∑N
i=1 φi

−
σ2
λ

∑N
i=1 ηiϑ

2
iψiφi

1 + σ2
λ

∑N
i=1 ϑi

+
σ4
λ

(∑N
i=1 ϑiηiφi

)(∑N
i=1 ϑiψiφi

)
(

1 + σ2
λ

∑N
i=1 ϑi

)(
1 + σ2

λ

∑N
i=1 φi

)
= < η � ϑ, ψ � φ > −

σ2
λ < η � ϑ, ψ � φ� φ >

1 + σ2
λi
′
Nφ

−
σ2
λ < η � ϑ� ϑ, ψ � φ >

1 + σ2
λi
′
Nϑ

+
σ4
λ < η, ϑ� φ >< ψ, ϑ� φ >
(1 + σ2

λi
′
Nϑ)(1 + σ2

λi
′
Nφ)

.

Proposition 5.2. If M1 = diag(ηi) and M2 = iN i
′
N , then

(5.2) tr (C1M1C2M2) = Ψ2(ϑ, η, φ) =
< η, ϑ� φ >(

1 + σ2
λi
′
Nϑ
) (

1 + σ2
λi
′
Nφ
) .

For M1 = iN i
′
N and M2 = diag(ψi), we just need to interchange the subscripts 1

and 2 leading to Ψ2(η, ϑ, φ).
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Proof of Proposition 5.2: We have

tr
(
C1M1C2M2

)
= tr

(
i′ND

−1
1 M1D

−1
2 iN

)
−
σ2
λ(i′ND

−1
2 iN )(i′ND

−1
1 M1D

−1
2 iN )

1 + σ2
λi
′
ND

−1
2 iN

−
σ2
λ(i′ND

−1
1 M1D

−1
2 iN )(i′ND

−1
1 iN )

1 + σ2
λi
′
ND

−1
1 iN

+
σ4
λ

(
(i′ND

−1
1 M1D

−1
2 iN )

) (
i′ND

−1
2 iN

)
(i′ND

−1
1 iN )(

1 + σ2
λi
′
ND

−1
1 iN

) (
1 + σ2

λi
′
ND

−1
2 iN

) .

Now if B = i′ND
−1
1 M1D

−1
2 iN (which is a scalar), observing that i′ND

−1
1 iN = i′Nϑ

and i′ND
−1
2 iN = i′Nφ, we have

tr
(
C1M1C2M2

)
= B −

σ2
λ(i′Nφ)B

1 + σ2
λi
′
Nφ
−
σ2
λB(i′Nϑ)

1 + σ2
λi
′
Nϑ

+
σ4
λB (i′Nφ) (i′Nϑ)(

1 + σ2
λi
′
Nϑ
) (

1 + σ2
λi
′
Nφ
)

=
B(

1 + σ2
λi
′
Nϑ
) (

1 + σ2
λi
′
Nφ
) =

< η, ϑ� φ >(
1 + σ2

λi
′
Nϑ
) (

1 + σ2
λi
′
Nφ
) .

We deduce that for M1 = iN i
′
N and M2 = diag(ψi),

tr (C1M1C2M2) = tr (C1M2C2M1)

=
< ψ, ϑ� φ >

(1 + σ2
λi
′
Nφ)(1 + σ2

λi
′
Nϑ)

since tr(IJ) = tr(JI) for any matrices I and J where the matrix product holds.

Proposition 5.3. If M1 = iN i
′
N = M2, then

(5.3) tr (C1M1C2M2) = Ψ3(ϑ, φ) =
(i′Nφ)(i′Nϑ)

(1 + σ2
λi
′
Nφ)(1 + σ2

λi
′
Nϑ)

.

Proof of Proposition 5.3: Since for the case M2 = iN i
′
N the result

depends on M1 through B (B is the matrix used in the proof of Proposition 5.2),
replacing M1 by iN i

′
N in the expression of B, we immediately obtain

tr (C1M1C2M2) =
i′ND

−1
2 M1D

−1
1 iN

(1 + σ2
λi
′
ND

−1
2 iN )(1 + σ2

λi
′
ND

−1
1 iN )

=
(i′ND

−1
2 iN )(i′ND

−1
1 iN )

(1 + σ2
λi
′
ND

−1
2 iN )(1 + σ2

λi
′
ND

−1
1 iN )

=
(i′Nφ)(i′Nϑ)

(1 + σ2
λi
′
Nφ)(1 + σ2

λi
′
Nϑ)

.
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Before stating the important result that gives the final expression of the
FIM, we introduce the following notations:

Dν = diag(hν(w′iθν)) = diag(ηi) with ηi = hν(w′iθν);

Dµ = diag(hµ(z′iθµ)) = diag(ηi) with ψi = hµ(z′iθµ);

D∗ν,j = diag(h′ν(ω′iθν)wi,j) = diag(ηji ) with ηji = h′ν(ω′iθν)ωi,j ;

D∗µ,j = diag(h′µ(z′iθµ)zi,j) = diag(ψji ) with ψji = h′µ(z′iθµ)zi,j ;

C1 = ς(D1, 0) with D1 = diag(ϑ−1
i );

C2 = ς(D2, 0) with D2 = diag(φ−1
i );

where ϑ−1
i = σ2

νhν(w′iθν) and φ−1
i = σ2

νhν(w′iθν) + Tσ2
µhµ(z′iθµ). We also set

ηj = (ηji )
N
i=1; η = (ηi)

N
i=1; ψj = (ψji )

N
i=1; ψ = (ψi)

N
i=1; φ = (φi)

N
i=1 and

ϑ = (ϑi)
N
i=1.

Proposition 5.4. If y is a two-way error components model in the form
y = Xβ + u, where u satisfies assumption A1, the FIM evaluated at θ is

In(θ) =

 In(θ) O

O X ′Ω−1X

 ,
where the coefficients of In(θ) described in Appendix B are now written in terms of
Ψ1(ϑ, η, φ, ψ), Ψ2(ϑ, η, φ) and Ψ3(ϑ, φ). These expressions are given in Appendix
C.

Proof of Proposition 5.4: The proof is straightforward, see Appendix
B.

We can summarize the use of our method in practice. Given a two way
error components model, the computation of the FIM is based on the following
steps:

Step 1: Identify η = (ηi), ψ = (ψi) which are the vectors derived from Dν = diag(ηi)
and Dµ = diag(ψi);

Step 2: Compute Ω (from equation (3.4)) and then Ω−1;

Step 3: Deduce values of ϑi and φi from equation (4.3);

Step 4: Identify η∗ = (ηji ) and ψ∗ = (ψji ) which are the matrices obtained from

D∗ν,j = diag(ηji ) for j = 1, ..., p and D∗µ,j = diag(ψji ) for j = 1, ..., q;

Step 5: Obtain values of the parameters θ ∈ Rp+q+3+k (which can be estimated
using some observations);

Step 6: Observations xi,t for i = 1, ..., N and t = 1, ..., T are needed to compute
X ′Ω−1X.
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The above information is input in our code named FIM.FUN. The code has
been written in the R language and is available as supplementary material.

6 Two real data examples

We now consider two real data examples to illustrate the above analysis. For
consistency and comparative purposes, asymptotic as well as exact results are
obtained in the homoscedasticity case while only exact results are obtained in
the heteroscedasticity case.

6.1 Example 1: Public capital productivity (Homoscedasticity
case)

6.1.1 Model specification

Following [23, 6], we re-consider the following Cobb-Douglas production relation-
ship investigating the productivity of public capital in private production,

(6.1) ln(yit) = β0 +β1 ln(Pcit)+β2 ln(PSit)+β3 ln(Lit)+β4Uempit
+µi+λt+εit,

where yit = gross state product; Pcit = public capital; PSit = private capital;
Lit = labour input as payrolls; Uempit

= unemployment rate; β0, ..., β4 = coef-
ficients to be estimated; µi = the unobservable individual effect; εit = the rest
of the perturbation. Data are from 48 US states (i.e N = 48) observed over the
period 1970 to 1986, (i.e T = 7). The data are obtained from the Wiley web
site at www.wiley.com/go/baltagi3e. Following a common unjustified practice
[1],[6, 15, 23, 30] and [34], we assume that errors are homoskedastic. We con-
sider estimating the above model based on four estimators: (i) Swamy and Arora
(residuals obtained from solving a system of 3 equations); (ii) Wallace and Hus-
sain (OLS residuals); (iii) Wansbeek and Kapteyn (LSDV residuals); (iv) max-
imum likelihood (ML residuals). Results based on the following restrictions (i)
(β1 = 0)(one restriction); (ii)(β1 = 0, β2 = 0); (β1 = 0, β3 = 0); (β1 = 0, β4 = 0)
(two restrictions); and (iii) (β1 = 0, β2 = 0, β3 = 0); (β1 = 0, β2 = 0, β4 = 0) and
(β1 = 0, β3 = 0, β4 = 0) (three restrictions) are reported below.

6.1.2 Results

In Table 1a estimations are done based on the FIM based on the observed in-
formation matrix. Rather, in Table 1b we used the FIM which relies on exact
information matrix developed by the authors.

The results are based on the FIM with homoscedastic errors. In Table 1a,
results clearly indicate that irrespective of the estimator used and no matter how



16 P. TAKAM et al.

many restrictions are used, public capital remains important and productive in
private production. The results are consistent with the study by [6] and [23]. In
Table 1b the FIM is now based on exact information matrix. Comparing Table
1a and 1b, we notice that results are close. This means that asymptotic results
based on the Central Limit Theorem adequately approximate our results in many
cases.

6.1.3 Discussion

Some inconsistencies still exist when applying the linear restriction tests. For
example, the number of times some test results are not available (i.e., NA) remain
relatively high. Possible reason could be that the sample size is not very large.
This could explain why the Wald, Likelihood ratio (LR) and Lagrange multiplier
(LM) tests give negative values.
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6.2 Example 2: Public capital productivity (Double Heteroscedas-
ticity case)

6.2.1 Model specification

We still consider the model described previously, i.e.,

(6.2) ln(yit) = β0 +β1 ln(Pcit)+β2 ln(PSit)+β3 ln(Lit)+β4Uempit
+µi+λt+εit,

Next, we assume that the analysis is more complex and thereby proceed
methodically. As will be seen later, the FIM here is based on heteroscedasticity of
the two errors involved. The following steps are important to understand results
reported in Table 2.

6.2.2 Total Number of Parameters

The total number of parameters is 16 since θν ∈ R4 and θµ ∈ R4 (in fact they
correspond to four independent variables).

6.2.3 Existence of Heteroscedasticity

We check the possibility of single or double heteroscedasticity on the individual
term (µi) as well as on the rest of the perturbation (νit). Indeed, the double het-
eroscedasticity case based on the above data set is confirmed following [15], using
the so called L1, L2 and L3 tests e.g., see [15]. This step is crucial because having
heteroscedasticity on the individual term (µi) or on the rest of the perturbation
(νit) or both will obviously affect the structure of the variance covariance matrix
of the error terms and thereby the FIM.

6.2.4 Expression of the Variances

For the variances, we use the expression given in [29] such that σ2
νit = σ2

ν(1 +
θ′νxi.)

2 and σ2
µi = σ2

µ(1+θ′µxi.)
2, where xi. is the vector of four values correspond-

ing to the mean of each independent variable. [29] also proposed some alternative
forms by replacing (1+δ′xi.)

2 by exp(δxi.) for δ ∈ {θν , θµ}. As results, we present
the Wald, LR and LM tests obtained by the approximations described in [3] and
then obtain the same statistics with our approach, assuming the existence of het-
eroscedasticity and estimating the parameters θν and θµ by maximum likelihood.
Then, we re-calculate the previous tests in the case of heteroscedasticity.
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6.2.5 Forms of Heteroscedasticity

In the absence of any discrimination test, we consider all potential forms of het-
eroscedasticity. In the literature, four potential cases exist: (i) hν(x) = (1 + x)2

and hµ(x) = (1 + x)2, (ii) hν(x) = (1 + x)2 and hµ(x) = exp(x), (iii) hν(x) =
exp(x) and hµ(x) = (1 + x)2 and (iv) hν(x) = exp(x) and hµ(x) = exp(x). To
conserve space and for the sake of conciseness, we present results related to case
(i). Cases (ii), (iii) and (iv) results are available as supplementary material.

6.2.6 Results

In Table 2 the FIM involves exact information matrix based on double het-
eroscedasticity on the unobservable individual term as well as on the rest of the
perturbation; since as previously indicated double heteroscedasticity case based
on the above data set is confirmed using the so called L1, L2 and L3 tests e.g.,
see [15]. It should be noticed that using any other information matrix (for exam-
ple based on heteroscedasticity on the unobservable individual term or the rest
of the perturbation) would have resulted in serious mis-specification and thereby
mis-leading results.

Results reported are based on the FIM with exact information matrix and
with double heteroscedastic errors; a case not addressed by existing testing pro-
cedures. Results clearly indicate that irrespective of the estimator used and no
matter how many restrictions are used, public capital remains essential in private
production. The results which are consistent with the study by [6] and [23]. are
based on a new testing procedure.

6.2.7 Discussion

Some inconsistencies have been resolved. For example, the number of times some
test results are not available remains relatively reasonable. A possible reason
could be that the correct specification is used and the information is based on
exact information. Note also in this case that the Hessian matrix is always invert-
ible. The advantages of our new approach based on heteroscedasticity compared
to the homoscedastic case are that (i) correct specification is used; (ii) correct
information matrix is considered; (iii) correct estimated standard errors and the
associated t-statistics are reported; (iv) correct F-statistics and their probabili-
ties are reported; (v) testing procedure based on Wald, LR and LM tests is now
using correct information and therefore gives fewer puzzling results.



Fisher information matrix for two-way random effects model with heteroscedasticity 21

6.2.8 Further comments

Some questions remain pending: (i) What if heteroscedasticity was not consid-
ered when there is one or double heteroscedasticity? A case of mis-specification
and thereby misleading results since the appropriate variance-covariance matrix
and thereby the appropriate FIM has not been taken into account. (ii) What if
heteroscedasticity was only on the individual term, µi; when double heteroscedas-
ticity has been assumed? Additional computations undertaken indicate some
misleading and puzzling results as this is a serious case of mis-specification. (iii)
What if heteroscedasticity was only on the rest of the perturbation, νit; when
double heteroscedasticity or no heteroscedasticity has been assumed? Again, this
case a serious case of mis-specification and would lead to serious inconsistencies.
(iv) Other inappropriate cases not mentioned here will lead to mis-specifications
as well.
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7 Final remarks

Correct model specification and selection have severe effects on modeling exer-
cises. In this context, the Fisher Information Matrix (FIM) is critical. In this
paper, we present a new approach to estimating the FIM in the specific case of the
two-way random effects panel data model with and without heteroscedasticity.
This is an attempt to possibly resolve earlier complexity in the use of the famous
Cramer-Rao inequality statistic, an important aspect of which is the FIM. We
derive the FIM of the two-way random effects panel data model in general as well
as in specific cases of heteroscedasticity and homoscedasticity. Some examples
based on real data are provided.
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8 Appendices

8.1 Appendix A: Derivation of the coefficients ai,j, ai,j(i), ai,j(j), ai,j(i, j).

The coefficients ai,j and ai,j are given by

a1,1 =
(T − 1)

2
tr
[
C1DνC1Dν
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+
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8.2 Appendix B: Proof of Proposition 5.4

The terms of In(θ) are written in terms Ψ1, Ψ2 and Ψ3 by replacing tr(C1M1C2M2)
by the corresponding Ψi according to the following rule: C1 ↔ ϑ, C2 ↔ φ,
Dν ↔ ψ and Dµ ↔ η. For example,

a1,1 =
(T − 1)

2
tr
[
C1DνC1Dν

]
+

1

2
tr
[
C2DνC2Dν

]
=

(T − 1)

2
Ψ1(ϑ, ψ, ϑ, ψ) +

1

2
Ψ1(φ, ψ, φ, ψ).

We obtain the other terms in the following way:

a2,2 =
T

2
Ψ1(φ, η, φ, ψ),

a3,3 =
(T − 1)

2
Ψ3(ϑ, ϑ) +

1

2
Ψ3(φ, φ),

a1,2 = a2,1 =
T

2
Ψ1(φ, η, φ, ψ),

a1,3 = a3,1 =
(T − 1)

2
Ψ2(ϑ, η, ϑ) +

1

2
Ψ2(φ, η, φ),

a2,3 = a3,2 =
T

2
Ψ2(φ, ψ, φ),

a1,4(i) = σ2
ν

(
T

2
Ψ1(φ, ψ, φ, ηi)

)
, i = 1 : p,

a1,5(j) = σ2
µ

(
T

2
Ψ1(φ, η, φ, ψj

)
, j = 1 : q,

a2,4(i) = σ2
ν

(
T

2
tr
[
C2DµC2D

∗
ν,i

])
, i = 1 : p,

a2,5(j) = σ2
µ

(
T 2

2
Ψ1(φ, ψ, φ, ψj)

)
, j = 1 : q,

a3,4(i) = a′4,3(i) = σ2
ν

(
(T − 1)

2
Ψ2(ϑ, ηi, ϑ) +

1

2
Ψ2(φ, ηi, φ)

)
, i = 1 : p,
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a3,5(i) = σ2
µ

(
T

2
Ψ2(φ, ψj , φ)

)
, j = 1 : q,

a4,4(i, j) = σ4
ν

(
(T − 1)

2
Ψ1(ϑ, ηi, ϑ, ηj) +

1

2
Ψ1(φ, ηi, φ, ηj)

)
, 1 ≤ i, j ≤ p,

a4,5(i, j) = a′5,4(i, j)σ2
µσ

2
ν

(
T

2
tr
[
C2D

∗
ν,iC2D

∗
µ,j

])
, 1 ≤ i,≤ p; 1 ≤ j ≤ q,

a5,5(i, j) = σ4
ν

(
T 2

2
Ψ1(φ, ψi, φ, ψj)

)
, 1 ≤ i, j ≤ q.

8.3 Appendix C: Gradient of logarithm of likelihood function

By Lemma 3.1,

d`(θ | u) = −1

2
tr
(
Ω−1dΩ

)
− u′Ω−1du+

1

2
u′Ω−1dΩ · Ω−1u.

Since from Proposition (4.1), .Ω−1dΩ =
r−k∑
j=1

Ωjdθj , we have

d`(θ | u) = −1

2

r−k∑
j=1

tr (Ωj) dθj + u′Ω−1Xdβ +
1

2

r−k∑
j=1

u′Ωj · Ω−1udθj ,

where

tr(Ω1) = (T − 1)tr(C1Dν) + tr(C2Dν),

tr(Ω2) = T tr(C2Dµ),

tr(Ω3) = (T − 1)tr(C1JN ) + tr(C2JN ),

tr(Ω3+j1) = σ2
ν

(
tr(C1D

∗
ν,j1)(T − 1) + tr(C2D

∗
ν,j1)

)
, 1 ≤ j1 ≤ p,

tr(Ωp+3+j2) = σ2
µtr(C2D

∗
µ,j2)T, 1 ≤ j2 ≤ q.

We then deduce that

∂`(θ | u)

∂σ2
ν

= −1

2
[(T − 1)tr(C1Dν) + tr(C2Dν)] +

1

2
u′Ω1Ω−1u,

∂`(θ | u)

∂σ2
µ

= −1

2
[T tr(C2Dµ)] +

1

2
u′Ω2Ω−1u,

∂`(θ | u)

∂σ2
λ

= −1

2
[(T − 1)tr(C1JN ) + tr(C2JN )] +

1

2
u′Ω3Ω−1u,

∂`(θ | u)

∂θ∗ν,j1
= −1

2

[
σ2
νtr(C1D

∗
ν,j1)(T − 1) + σ2

νtr(C2D
∗
ν,j1)

]
+

1

2
u′Ω3+j1Ω−1u, 1 ≤ j1 ≤ p,

∂`(θ | u)

∂θ∗µ,j2
= −1

2

[
σ2
µtr(C2D

∗
µ,j2)T

]
+

1

2
u′Ω3+p+j2Ω−1u, 1 ≤ j2 ≤ q,

∂`(θ | u)

∂βk
= u′Ω−1X[k], 1 ≤ k ≤ K.
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