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based on a higher (or third) order model. Sequential third-order response surface
designs are beneficial for such situations, which allow for experimenting with a few
additional runs and fitting a third-order model without discarding the first-stage ex-
perimental runs and generated responses. Sequential experimentation is useful in
practice since it is more economical and requires fewer resources. For symmetric as
well as mixed-level factors, methods of construction of sequential third-order design
have been proposed in the paper that satisfies the necessary moment matrix require-
ment and ensure rotatability. Additionally, the proposed designs have smaller runs,
making it more cost-effective to attain the best response. A comparison of the pro-
posed design with existing sequential designs is also made on the basis of design size,
G-efficiency and prediction capability using FDS and VDG plots.

Keywords:

• Lack of fit; moment matrix; response surface methodology; rotatability; sequential
design; third-order model.

AMS Subject Classification:

• 49A05, 78B26.
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1. INTRODUCTION

Response surface methodology (RSM) is a statistical technique used to de-
sign, analyse and optimise complex systems by identifying relationships between
the input variables and output responses. It involves creating a mathematical
model of the system using a set of experimental data points that are collected
from a series of well-designed experiments.

The second-order response model is typically very popular for experimenters
who wish to estimate the second-order model due to its high efficiency and sim-
ple structure. However, sometimes second-order model representations become
unrealistic and inadequate due to the lack of fit caused by the presence of third
or higher-order relationships in the true response surface model. Thus, regard-
ing various design criteria, the second-order response surface designs might not
be precise and efficient enough to express the real model of the systems or pro-
cesses accurately. A higher-order model, or third-order design, would be helpful
in this situation. A thorough explanation of the RSM and a detailed review on
Response Surface Designs (RSD) can be found in Myers [33], Khuri and Cornell
[28], Box and Draper [6] [7], Khuri [27], Myers et al. [34] and Anderson and
Whitcomb [2] with a detailed review available in Hemavathi et al. [22]. RSD
can be classified as designs suitable for experimentation either in a sequential or
non-sequential manner. In the sequential approach, the design points/runs that
fit the response surface model of sequential order are executed in stages without
discarding preceding design points, whereas in non-sequential experimentation,
the new set of design points is experimented with if the preceding model founds
inadequate (significant lack of fit). The design constructed with an equal num-
ber of levels for all the factors is called symmetric response surface design, and
the design with unequal levels (mixed levels) of factors is asymmetric response
surface design (Hemavathi et al. [21]).

Sequential and non-sequential response surface designs are both used in
experiments to optimise a response surface or explore the optimal conditions for
a given factor. Sequential designs rely on the outcome of the previous experi-
ment to guide decisions for the next experiment, which allows for more efficient
use of resources and faster convergence to the optimal conditions. Non-sequential
designs, however, are less efficient but do not rely on the results of previous exper-
iments. Instead, the design is pre-determined, and all experiments are conducted
based on this design.

A first-order design is considered first-order rotatable design (FORD) when
it ensures that the variance of the estimated response remains consistent for all
points located at equal distances from the design centre. RSM begins with screen-
ing and selecting input factors that affect response by experimenting FORD. The
process proceeds with the assumption of fitting the first-order with interaction
and then a higher-order model by sequential experimentation. A higher-order
model, such as a quadratic, full second-order, or even a cubic model, will be
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required if significant curvature is discovered. Higher-order designs offer more
precise responses to predict more complex systems. Sequential experimentation
is more practical since it is more cost-effective and requires fewer resources.

A design earns the label of a second-order rotatable design (SORD) when
it successfully incorporates a second-order model while preserving the property
of rotatability. Similarly, when a design fits a third-order model while still main-
taining the rotatability property, it is referred to as a third-order rotatable design
(TORD) by Hemavathi et al. [22]. Gardiner et al. [19] studied third-order design
in detail and constructed sequential third-order rotatable design for three and four
factors. Draper [15] constructed a third-order rotatable design (TORD) in 4 di-
mensions, which requires 96 runs and is a combination of 4 second-order rotatable
design (SORD) arrangements. A third-order rotatable design in 3 dimensions,
combining two second-order rotatable arrangements constructed by Draper [16].
Thaker and Das [37] obtained sequential TORD up to eleven factors. Das and
Narasimham [11] proposed sequential third-order designs that can be used to es-
timate a complete third-order model in case the second-order model shows a lack
of fit. However, these designs have very large run sizes. Third-order rotatable
designs, both sequential and non-sequential, up to 15 factors have been obtained
with the help of doubly balanced incomplete block designs and complementary
BIB designs. Adhikary and Panda [1] gave mixed-order response surface designs
like FORD-SORD, FORD. TORD, and SORD-TORD and discussed their analy-
sis and construction. Huda [23] and [24] obtained some new third-order rotatable
designs in 5, 6, 7 and 8 dimensions in sequential set-up. Construction of TORDs
for factor, v = 6 available in Mutiso and Koske [32] and Mutiso [31].

Arshad et al. [4] constructed an augmented Box-Behnken design (ABBD)
using combinations of factorial, axial, and complementary design points. These
augmented designs can be used to estimate the parameters of a third-order re-
sponse surface model. Rashid et al. [36] developed Augmented Fractional Box-
Behnken designs (AFBBD)using combinations of fractional Box-Behnken design
points, factorial design points, axial design points and complementary design
points. Arshad et al. [3] developed sequential third-order designs for the esti-
mation of a complete third-order model in case the second-order model’s lack
of fit is exhibited. These designs have smaller run sizes as compared to Das-
Narasimham designs and are symmetric in each. By merging SORDs, Cornelious
[8] and [9] created TORDs for v = 4 factors in 56 points and for v = 5 factors
in 134 points. Cornelious and Cruyff [10] presented an illustrative case study of
sequential TORD for v = 4 in 80 points.

There may be situations where the number of levels for all the factors stud-
ied in the experiment are not the same. For fitting second-order response sur-
faces, Ramchander [35] obtained asymmetrical response surface designs of type
3 × 5v. Draper and Stoneman [18] studied the number of runs required to fit
the response surface model to mixed two-level and three-level factorial designs
and mixed two-level and four-level designs. Mehta and Das [30] demonstrated
how an orthogonal transformation might be used to convert a second-order sym-
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metric rotatable design into a second-order asymmetric rotatable design. Dey
[14] discussed techniques for creating partially rotatable second-order asymmet-
ric response designs of the kind 3v × 5. Compared to the conventional rotatable
response surface designs for a quadratic response surface, Das et al. [12] provided
variously modified and/or rotatable response surface symmetric and asymmetric
designs. Some asymmetric third-order designs that are appropriate for sequential
experiments were introduced by Hemavathi et al. [21].

This article presents a method of constructing a series of Sequential Third-
order Rotatable Designs (STORDs) for symmetric and asymmetric levels of fac-
tors. The first stage design can be utilized to fit the second-order model, and
further, a third-order model may be fitted with the addition of a few more runs
without discarding the initial design. The proposed designs are more cost-effective
in terms of the number of runs in obtaining the optimal response.

2. Response Surface Model

The response surface that depicts the relationship between the response
and the factors influencing it is expressed as

(2.1) yu = f(x1u, x2u, ..., xvu) + eu,

where u = 1,2,...,N, yu is the response obtained from the uth treatment combi-
nation, and xiu is the level of the ith(i = 1, 2, ...,v) factor in the uth treatment
combination. The function f describes the form in which the response and the
input variables are related. eu is the random error associated with the uth ob-
servation that is independently and normally distributed with mean zero and
common variance σ2.In matrix notation, the relationship can be expressed as:

(2.2) Y = Xβ + e

where Y = (y1y2...yN )′ is anN×1 vector of observations, X is aN×(p+1) matrix
of independent variables, β = (β0β1...βp)

′ is a (p + 1) × 1 vector of parameters
and e = (e1e2...eN )′ is N × 1 vector of random errors distributed as N(0, σ2IN ).
For a second-order response surface model with v factors, the function f in 2.1
is of the form:

(2.3) f(xu) = β0 +
v∑

i=1

βixiu +
v∑

i≤j=1

βijxiuxju u = 1, 2, ..., N

where β0, βi, βii and βij are the intercept, linear regression, quadratic and interac-
tion coefficients, respectively. The total number of parameters p in this complete
second-order model to be estimated are

(
v+2
2

)
. For v = 2, the second-order

response surface model takes the following form:

(2.4) y = β0 + β1x1 + β2x2 + β12x1x2 + β11x
2
1 + β22x

2
2 + e
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For a third-order response surface model with v factors, the function f in 2.1 is
of the form:

(2.5) f(xu) = β0 +
v∑

i=1

βixiu +
v∑

i≤j≤k=1

βijkxiuxjuxku u = 1, 2, ..., N

where β0, βi, βii, βiii, βij and βijk are the intercept, linear regression, quadratic,
cubic, second and third-order interaction coefficients, respectively. The total
number of parameters p in this complete third-order model to be estimated are(
v+3
3

)
. For v = 3, the third-order response surface model takes the following

form:

y = β0 + β1x1 + β2x2 + β3x3 + β12x1x2 + β13x1x3 + β23x2x3 + β11x
2
1 + β22x

2
2

+ β33x
2
3 + β122x1x

2
2 + β133x1x

2
3 + β113x

2
1x3 + β233x2x3

2 + β123x1x2x3

+ β111x
3
1 + β222x

3
2 + β333x

3
3 + e

(2.6)

The conditions for near-orthogonal estimation of parameters and constancy of
variances of all parameters for second and third-order models are given in the ap-
pendix. The design point that satisfies the respective conditions is called second-
order and third-order rotatable design, respectively.

According to Gardiner’s ordering [19], the components in the matrix (X)
for the third-order model are written as follows:

[x0 x21 x22 ... x2v xi x3i xix
2
i xix

2
2, ...xix

2
v x1x2 x1x3...xv−1xv

x1x2x3 x1x2x4...xv−2xv−1xv]
(2.7)

Some of the properties that must be considered when choosing a response surface
design are given by Box and Draper [5], which was further emphasized by Khuri
and Cornell [28].

3. Sequential Third-order Response Surface Designs

This section presents the method of constructing sequential third-order
response surface designs for symmetric and asymmetric factor levels. The design
is constructed in two stages, denoted by S1 and S2.

3.1. TORDs with Symmetric Factor Levels

In stage 1, 2v factorial with levels ±a or a fraction of 2v factorial is taken
along with the 2v axial points with levels ±α where α =

√
v and an appropriate

number of centre points (nc) to prevent the singularity of the design. The S1
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design is a second-order rotatable design. A formal test for lack of fit is conducted
following the estimation of the second-order model. If a significant lack of fit is
seen in the second-order model, then it is important to estimate some or all
of the third-order elements that could be present. For S2, consider a Balanced
Incomplete Block (BIB) design with parameters (v, b, r, k, λ) (Dey[13]). This
design can be expressed in terms of the incidence matrix of order b× v with the
elements 0 and a. By multiplying each of these b combinations by 2v with levels
1 and -1 or a fraction of it, i.e. 2k(k < v), b × 2k design points are obtained.
Combining the design points of S1 and S2, the Sequential Third-order Rotatable
Design (STORD) is obtained that consists of v quantitative factors with each
factor at levels ±a, ±

√
v and 0.

Example 3.1. For v = 3, S1 of the design is created by (a, a, a) ×
1
22

3, (α, 0, 0) × 2, which results in 10 runs and for S2, consider a BIB design
with parameters (3, 3, 2, 2, 1). The 3× 3 incidence matrix is written as

N3×3 =

a a 0
a 0 a
0 a a


The following 12 design points are obtained by multiplying each combination
of the incidence matrix by the 22 combinations of +1 and -1:

N12×3 =

±a ±a 0
±a 0 ±a
0 ±a ±a


For a = 1, α =

√
v = 1.7321(Ramchander [35]) S1 and S2 together result in

a STORD in 22 runs with the design X as:

X =



1
2(±a ±a ±a)
±a 0 0
0 ±a 0
0 0 ±a
±a ±a 0
±a 0 ±a
0 ±a ±a


In the design for v = 3, each factor has 5 levels. The variances of estimated
response i.e. V (ŷ) obtained in S1 i.e. for a second-order design after adding 3
centre runs are as 0.3333 σ2, 0.85σ2 and 0.9333σ2 . Further, the variances of esti-
mated response i.e. V (ŷ) obtained by taking S1 and S2 together for a third-order
design are 0.8636σ2 ,0.9394σ2 and 1σ2 . It can be seen that there are three dif-
ferent variances based on the three different input factorial combinations taking
into account the distance from the design centre. Thus, the final design is also
rotatable.

There are 20 parameters in the third-order model. The variance of these es-
timated parameters are obtained as follows:
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V (β̂0) = 1σ2, V (β̂i) = 0.9090σ2, V (β̂ii) = 2σ2, i = 1, 2, 3;V (β̂ijj) = V (β̂ij)

= 0.3636σ2, i ̸= j = 1, 2, 3;V (β̂iii) = 6.3636σ2, i = 1, 2, 3; V (β̂123) = 0.1818σ2

It is seen that the parameters of a certain order are estimated with the same
variance.

Note: G-efficiency = p
N×max(v(x))x∈R

, where max(v(x))x∈R is the maximum
prediction variance over the design space R. The G-efficiency criterion seeks to
maximize a design’s ability to predict by reducing the variances of the predicted
values.

Table 3.1 presents a list of STORD for 3 to 9 factors. It includes the
number of factors (v), number of runs (N), variances of predicted response V (ŷ)

σ2 ,
design points, and G-efficiency. The variance of the estimated response and the
variance of estimated parameters has been obtained using a computer programme
developed in SAS IML (Varghese et al.[38]).

Table 3.1: Sequential Third Order Rotatable Designs for factors ranging
from 3 to 9

v N V (ŷ)
σ2 Design Points G-Efficiency

(a = 1, α =
√
v)

3 22+nc 0.8636 S1 : (a, a, a)× 1
22

3 0.9091
0.9394 (α, 0, 0)× 2
1.0000 S2 : a(3, 3, 2, 2, 1)

4 48+nc 0.6167 S1 : (a, a, a, a)× 1
22

4 0.8663
0.8417 (α, 0, 0, 0)× 2

S2 : a(4, 6, 3, 2, 1)

5 66+nc 0.0643 S1 : (a, a, a, a, a)× 1
22

5 0.8214
0.7892 (α, 0, 0, 0, 0)× 2
0.8591 S2 : a(5, 10, 4, 2, 1)
0.9740

6 124+nc 0.0597 S1 : (a, a, a, a, a, a)× 1
22

6 0.7931
0.5891 (α, 0, 0, 0, 0, 0)× 2
0.8339 S2 : a(6, 10, 5, 3, 2)

7 162+nc 0.0211 S1 : (a, a, a, a, a, a, a)× 1
22

7 0.7393
0.5369 (α, 0, 0, 0, 0, 0, 0)× 2
0.8686 S2 : a(7, 21, 6, 2, 1)
0.9777

8 372+nc 0.0226 S1 : (a, a, a, a, a, a, a, a)× 1
22

8 0.5555
0.3265 (α, 0, 0, 0, 0, 0, 0)× 2
0.6172 S2 : a(8, 14, 7, 4, 3)
0.79844

9 562+nc 0.2969 S1 : (a, a, a, a, a, a, a, a, a)× 1
22

9 0.4886
0.4690 (α, 0, 0, 0, 0, 0, 0, 0)× 2
0.8012 S2 : a(9, 18, 8, 4, 3)
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The proposed STORD has smaller runs as compared to other existing sequential
designs and upto seven factors G-efficiency is considerably high.

3.2. TORDs with Asymmetric Factor Levels

Let the design matrix X = (x1ux2u...xvu), where xiu, i = 1, 2, .., v is a
vector of order N × 1 given in 3.1, be transformed to Z through a conformable
orthonormal transformation matrix B as given below

Z = BX

B is a transformation matrix of order v × v such that its elements bii satisfy the
relations:

v∑
i=1

b2ii = 1 ∀i = 1, 2, ..., v;
v∑

i=1 i ̸=k

bijbkj = 0 ∀i ̸= j ̸= k = 1, 2, ..., v

Adding an appropriate number of centre points (nc), the design Z obtained satis-
fies the conditions for near-orthogonal estimation of parameters and constancy of
variances of linear and quadratic parameters for a second-order model and third-
order model are given in the Appendix. The design so obtained is a Sequential
Asymmetrical Third-order Rotatable Design (SATORD), which is rotatable. It
can be noted that the transformed asymmetrical design Z’s estimated response
and G-efficiency variances are equivalent to those of the analogous symmetrical
design X.

Example 3.2. For v = 3, consider the X as given in Example 3.1. Let

B =


3
5

4
5 0

−4
5

3
5 0

0 0 1


TheZ matrix so obtained has first two factors at 9 levels as±7

5a,±
7
5a,±

3
5b,±

4
5b,

0 and 3rd factor has 5 levels for S1 for fitting of a second-order model.

When S1 and S2 are taken together for fitting a third-order model, then
the first two factors have 13 levels while the third factor has 5 levels. Along
with the previously mentioned 9 levels, there are an additional 4 levels of first
two factors resulting in SATORD which are ±3

5a,±
4
5a. The variances of these

estimated parameters are obtained as follows:

V (β̂0) = 1σ2, V (β̂i) = 0.8182σ2, V (β̂ii) = 1.363σ2, i = 1, 2, 3;

V (β̂ijj) = V (β̂ij) = 0.3636σ2, i ̸= j = 1, 2, 3;V (β̂iii) = 3σ2, i = 1, 2, 3;

V (β̂123) = 0.1818σ2
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It is clear that the parameters of a certain order are estimated with the same vari-
ance; specifically, the variances of the linear coefficients, quadratic coefficients,
second-order interaction coefficients, cubic coefficients and third-order interaction
coefficients are all similar. Additionally, it can be seen that interaction coefficient
variances are comparable to those of symmetrical designs. Additionally, the pre-
dicted response variances are also the same as those of the symmetrical design.

This design for 3 factors require 22 runs which is less than the design constructed
by Hemavathi et al.[21] in 46 runs.

A list of sequential asymmetrical third-order rotatable designs is presented
in Table 3.2, along with the factor levels and orthonormal transformation matri-
ces that were used.

Table 3.2: SATORD for factors ranging from 3 to 9

v N Design Points Levels B
(a = 1)

3(i) 22+nc S1 : (a, a, a)× 1
22

3 S1 : (9, 9, 5)

(α, 0, 0)× 2 S1 + S2 : (13, 13, 5)

[
Q0 0
0T 1

]
S2 : a(3, 3, 2, 2, 1)

3(ii) 22+nc S1 : (a, a, a)× 1
22

3 S1 : (9, 9, 5)

(α, 0, 0)× 2 S1 + S2 : (13, 13, 5)

[
Q1 0
0T 1

]
S2 : a(3, 3, 2, 2, 1)

4(i) 48+nc S1 : (a, a, a, a)× 1
22

4 S1 : (9, 9, 5, 5)

(α, 0, 0, 0)× 2 S1 + S2 : (13, 13, 5, 5)

[
Q1 0
0T I2×2

]
S2 : a(4, 6, 3, 2, 1)

4(ii) 48+nc S1 : (a, a, a, a)× 1
22

4 S1 : (7, 5, 3, 5)

(α, 0, 0, 0)× 2 S1 + S2 : (7, 9, 5, 5)

[
Q2 0
0T 1

]
S2 : a(4, 6, 3, 2, 1)

5(i) 66+nc S1 : (a, a, a, a, a)× 1
22

5 S1 : (11, 11, 11, 5, 5)

(α, 0, 0, 0, 0)× 2 S1 + S2 : (11, 11, 11, 5, 5)

[
Q3 0
0T I2×2

]
S2 : a(5, 10, 4, 2, 1)

5(ii) 48+nc S1 : (a, a, a, a, a)× 1
22

5 S1 : (9, 9, 5, 5, 5)

(α, 0, 0, 0, 0)× 2 S1 + S2 : (13, 13, 5, 5, 5)

[
Q0 0
0T I3×3

]
S2 : a(5, 10, 4, 2, 1)

6(i) 124+nc S1 : (a, a, a, a, a, a)× 1
22

6 S1 : (9, 9, 5, 5, 5, 5)

(α, 0, 0, 0, 0, 0)× 2 S1 + S2 : (13, 13, 5, 5, 5, 5)

[
Q0 0
0T I4×4

]
S2 : a(6, 10, 5, 3, 2)
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6(ii) 48+nc S1 : (a, a, a, a, a, a)× 1
22

6 S1 : (7, 9, 5, 5, 5, 5)

(α, 0, 0, 0, 0, 0)× 2 S1 + S2 : (9, 13, 7, 5, 5, 5)

[
Q2 0
0T I3×3

]
S2 : a(6, 10, 5, 3, 2)

7(i) 162+nc S1 : (a, a, a, a, a, a, a)× 1
22

7 S1 : (11, 11, 11, 7, 5, 9, 5)

(α, 0, 0, 0, 0, 0, 0)× 2 S1 + S2 : (15, 15, 15, 9, 7, 11, 5)

 Q3 03×3 0
03×3 Q2 0
0T 0T 1


S2 : a(7, 21, 6, 2, 1)

7(ii) 162+nc S1 : (a, a, a, a, a, a, a)× 1
22

7 S1 : (11, 11, 11, 9, 9, 5, 5)

(α, 0, 0, 0, 0, 0, 0)× 2 S1 + S2 : (15, 15, 15, 13, 13, 5, 5)

 Q3 03×2 0
02×3 Q0 0
0T 0T I2×2


S2 : a(7, 21, 6, 2, 1)

8(i) 372+nc S1 : (a, a, a, a, a, a, a, a)× 1
22

8 S1 : (9
2, 56)

(α, 0, 0, 0, 0, 0, 0, 0)× 2 S1 + S2 : (13
,56)

[
Q0 0
0T I6×6

]
S2 : a(8, 14, 7, 4, 3)

8(ii) 372+nc S1 : (a, a, a, a, a, a, a, a)× 1
22

8 S1 : (13
5, 53)

(α, 0, 0, 0, 0, 0, 0, 0)× 2 S1 + S2 : (11
3, 92, 53)

 Q3 03×2 0
02×3 Q0 0
0T 0T I3×3


S2 : a(8, 14, 7, 4, 3)

8(iii) 372+nc S1 : (a, a, a, a, a, a, a, a)× 1
22

8 S1 : (7, 7, 5, 7, 7, 5, 5, 5)

(α, 0, 0, 0, 0, 0, 0, 0)× 2 S1 + S2 : (9, 11, 7, 9, 11, 7, 5, 5)

 Q2 03×3 0T

03×3 Q2 0
0T 0T I2×2


S2 : a(8, 14, 7, 4, 3)

9(i) 562+nc S1 : (a, a, a, a, a, a, a, a, a)× 1
22

9 S1 : (7, 5, 9, 11, 7, 5, 9, 5, 5)

(α, 0, 0, 0, 0, 0, 0, 0, 0)× 2 S1 + S2 : (11, 7, 13, 17, 9, 7, 13, 5, 5)

 Q4 04×3 0
03×4 Q2 0
0T 0T I2×2


S2 : a(9, 18, 8, 4, 3)

9(ii) 562+nc S1 : (a, a, a, a, a, a, a, a, a)× 1
22

9 S1 : (9, 9, 5
7)

(α, 0, 0, 0, 0, 0, 0, 0, 0)× 2 S1 + S2 : (13, 13, 5
7)

[
Q0 0
0T I7×7

]
S2 : a(9, 18, 8, 4, 3)

9(iii) 562+nc S1 : (a, a, a, a, a, a, a, a, a)× 1
22

9 S1 : (7, 9, 5, 7, 9, 5, 5, 5, 5)

(α, 0, 0, 0, 0, 0, 0, 0, 0)× 2 S1 + S2 : (9, 13, 7, 9, 13, 7, 5, 5, 5)

 Q2 03×3 0
03×3 Q2 0
0T 0T I3×3


S2 : a(9, 18, 8, 4, 3)

where, Q0 =

 3
5

4
5

−4
5

3
5

 , Q1 =

√
3
2

1
2

−1
2

√
3
2

, Q2 =


1√
3

1√
6

1√
2

1√
3

1√
6

− 1√
2

1√
3
− 2√

6
0

,
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Q3 =


1
3

2
3 −2

3

−2
3

2
3

1
3

2
3

1
3

2
3

, Q4 =



1
2

1√
2

1√
6

1√
12

1
2 − 1√

2
1√
6

1√
12

1
2 0 − 2√

6
1√
12

1
2 0 0 − 3√

12


The variance of estimated response and G-efficiency are identical to those of
the symmetrical designs shown in Table 3.1. Levels of factors depend on the
orthonormal transformation matrix used.

4. Comparative Study

On the basis of the design runs, G-efficiency and prediction ability, a com-
parison of the proposed design (STORD) with the existing sequential designs,
namely, the new augmented Box-Behnken design (NABBD) by Arshad et al.[3],
the augmented Fractional Box-Behnken design (AFBBD) by Rashid et al.[36],
the Augmented Box-Behnken Design (ABBD) by Arshad et al.[4] and Das and
Narasimham [11] made sequential design (say, DND).

One of the critical characteristics of a design that must be maintained is
run size. When the experimental material is expensive, an experimenter may
prefer design of minimum runs, which is cost effective. Table 4.1 and Figure 4.1
both compare the runs of all the designs for easier review.

Table 4.1: Comparison of sequential designs with respect to runs

Factors STORD NABBD ABBD AFBBD DND

3 22 - 26 20 40

4 48 64 48 42 72

5 66 140 82 62 192

6 124 172 172 124 260

7 162 182 182 154 238

8 372 448 464 - 480

9 562 828 842 - 1256

The G-efficiency of all the designs are calculated and listed in Table 4.2
and Figure 4.2 for better evaluation, is used to compare all of the designs.
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Figure 4.1: Comparison of STORD and other sequential designs with
respect to runs

Table 4.2: G-efficiency of STORD, NABBD, ABBD , AFBBD and DND

Factors STORD NABBD ABBD AFBBD DND

3 90.91 - 63.70 83.33 81.18

4 86.63 74.48 60.58 76.09 71.09

5 82.13 90.40 66.57 77.00 30.97

6 79.31 67.71 52.15 76.38 73.18

7 73.93 71.21 60.63 76.43 78.70

8 55.56 77.56 40.06 - 71.91

9 48.86 70.84 15.71 - 57.57

Figure 4.2: Comparison of STORD and other sequential designs with
respect to G-Efficiency
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Table 4.1 and 4.2 and Figures 4.1 and 4.2 show that STORDs are much
smaller than NABBD for each factor from 3 to 9. STORDs perform better for
factors 4, 6, and 7 in terms of G-efficiency. In addition, it should be remem-
bered that while STORD is rotatable for all factors, NABBD is not. Run-wise,
STORDs are larger than AFBBD. In contrast to STORDs, which are rotatable
and have parameter estimates that are nearly orthogonal, AFBBDs do not satisfy
the moment matrix criterion, meaning that all parameters are correlated and de-
signs are only partially rotatable. Consider using STORDs if you want responses
to be estimated with the same accuracy. In terms of design runs size STORD is
smaller than ABBDs, and in terms of G-efficiencies, STORDs are much better
than ABBDs. STORDs are substantially smaller than DNDs in terms of runs.
STORDs are only effective for factors 3,4,5 and 6 in terms of G-efficiencies. Both
designs possess the property of rotatability.

Variance Dispersion Graphs (VDGs) can be used to analyse a response
surface design with spherical parts (Giovannitti-Jensen and Myers [20]). The
maximum, lowest and average scaled variance curves represent the predicted value
on a hypersphere. Each value is plotted in relation to the circumference of the
hypersphere. The degree of rotatability of the Scaled Prediction Variance (SPV)
at any specific radius of spheres is indicated by comparing the highest and lowest
SPV values across the range of radii.

The Fraction of Design Space (FDS) can be used to examine how well the
design’s predictions perform across the whole design space (Zahran et al.[39]).
The volume of the design region, as well as the maximum, minimum and quan-
tiles of the SPV distribution, are plotted in FDS. The assumption is that an
SPV’s design is better if it occupies a larger portion of the design space, which is
close to the minimum. Additionally, the SPV distribution for that design is more
stable the flatter the line is. For the design in Table 4.1 for v = 4, the FDS and
VDG for each of the aforementioned designs are plotted and displayed in Figure
4.3 and Figure 4.4.

Figure 4.3: FDS plot for v= 4 for different designs
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Figure 4.4: VDG plot for v = 4 for different designs

Figure 4.3 FDS plot illustrates that the slope of the curve which indicates how
quickly the design approaches the maximum value of the Scaled Prediction Vari-
ance (SPV), with a slope that is closer to horizontal being desirable. ABBD
performed worst from centre to periphery, reaches a very high SPV value as
compared to other designs. When STORD have steady SPV from the origin to
the periphery, NABBD performs best there. DND performs about the same as
STORD but slightly poorer in the perimeter. This is once more made much
more obvious by the VDG plot in Figure 4.4. The SPV profiles of the STORD,
DND, and NABBD are similar up to a distance of 1.5 from the origin, and as
the designs are rotatable, the minimum, maximum, and average SPV curves are
the same. While STORD, max, min, and average SPV are not comparable at
the perimeter, DND and NABBD have the most stable SPV profiles. The SPV
profile of ABBD is most erratic and performs worst at the periphery. AFBBD
do not exhibit property of rotatability.

4.1. Summary and conclusion

Third-order design in symmetric, as well as asymmetric factor levels suit-
able for sequential experimentation, is proposed in this article which is termed
as Sequential Third-order Rotatable Design (STORD). Designs are obtained by
taking factorial points and axial points in S1 of the design and BIB design in
S2 of the design. S1 of the design is second-order rotatable design and satis-
fies all second-order moment matrix criteria; if there exists a lack of fit of the
second-order model, then without discarding S1 design points, S2 is augmented
in S1 to form third-order design which is rotatable as well as satisfy all moment
matrix criterion. The most crucial feature of the suggested design is that it uses
fewer resources and is smaller than all sequential designs that already exist and
have all of the desired design characteristics. This characteristic makes the de-
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sign easy to use and affordable. Using orthonormal transformation, designs with
symmetric levels are converted to designs with asymmetric levels resulting in Se-
quential Asymmetrical Third-order Rotatable Design (SATORD), which broad-
ens the applicability of the suggested design. A catalogue of both designs with
their G-efficiency, variances of estimated response, number of runs, levels and
transformation matrix has been prepared and presented. A comparison of pro-
posed designs with existing designs, have also been made in terms of design size
and G-efficiencies. Additionally, using the Fraction of Design Space (FDS) plot
and the Variance Dispersion Graph (VDG), a comparison of the designs’ ability
to predict the effects of four factors has been made.

STORDs satisfy all the properties of good response surface design including
good fit of the model, cost effectiveness, sequential build up of the design and
rotatability property. AFBBD, ABBD, NABBD do not possess rotatability prop-
erty and DNDs are not cost effective. Overall, STORDs and SATORDs are best
if small run design is more desirable for an experimenter other than rotatabil-
ity, particularly when the experimental material is expensive, predicted response
precision, and uncorrelated parameter estimations are taken into account. The
proposed design ensures considerably high G-efficiencies and performs well in
terms of prediction capability.
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Appendix

The conditions for near-orthogonal estimation of parameters and constancy
of variances of linear and quadratic parameters for a second-order model (Hema-
vathi et al. [21]) are:

N∑
u=1

2∏
i=1

xwi
iu = 0 for wi = 0, 1 or 3 and

∑
wi ≤ 4

N∑
u=1

x2iu = Nλ2 ∀i = 1, 2, ..., v

N∑
u=1

x2iux
2
ju = Nλ4 ∀i ̸= j = 1, 2, ..., v

N∑
u=1

x4iu = 3Nλ4 ∀i = 1, 2, ..., v

N∑
u=1

x4iu = 3
N∑

u=1

x2iux
2
ju = 3Nλ4 ∀i ̸= j = 1, 2, ..., v

λ4

λ2
2

>
v

v + 2

In addition to the above, the other conditions for a third-order model (Hemavathi
et al. [22]) are:

N∑
u=1

2∏
i=1

x6iu = 15Nλ6 ∀i = 1, 2, ..., v

N∑
u=1

x2iux
2
jux

2
ku = Nλ6 ∀i ̸= j ̸= k = 1, 2, ..., v

N∑
u=1

x4iux
2
ju = ... =

N∑
u=1

x2jux
4
ku = 3Nλ6 ∀i ̸= j ̸= k = 1, 2, ..., v

N∑
u=1

x6iu = 5
N∑

u=1

x2iux
4
ju

N∑
u=1

x4iux
2
ju = 3

N∑
u=1

x2iux
2
jux

2
ku

λ2λ6

λ2
4

>
v + 2

v + 4

where all sum of powers and products up to ≤ 6 are zeros.
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