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1. INTRODUCTION

We encounter phenomena or events which are associated with uncertainty.
Uncertainty emerges since we have less information than the total information
required to describe a system and its environment. Uncertainty and information
are closely associated. Since in an experiment the information provided is equal to
the amount of uncertainty removed. Entropy which is a measure of uncertainty
was first introduced by Shannon [34] in communication theory. It is useful to
estimate the probabilities of rare events (large deviation theory) and in the study
of likelihood-based inference principles. Shannon entropy is defined as the average
amount of information that we receive per event and was the first defined entropy.
For continuous case, it is given by

H(X) = −
∫ ∞

0
fX(x) log fX(x)dx,

where X is a non-negative absolutely continuous random variable with proba-
bility density function (pdf) fX , cumulative distribution function (cdf) FX and
survival function (sf) F̄X = 1−FX . Shannon entropy has various applications in
communication theory, mathematical, physical, engineering, biological and social
sciences as well. For further details on entropy one may refer Ash [2] and Cover
and Thomas [7].

Rao et al. [30] introduced the notion of cumulative residual entropy (CRE)
as :

E(X) = −
∫ ∞

0
F̄X(x) log F̄X(x)dx.

Some general results regarding this measure have been studied by Drissi et al [10]
and Rao [31]. CRE finds applications in image alignment and in the measurement
of similarity between images. Di Crescenzo and Longobardi [8] proposed an
entropy called cumulative past entropy (or cumulative entropy) i.e. CPE (or CE)
as :

CE(X) = −
∫ ∞

0
FX(x) logFX(x)dx.

Asadi and Zohrevand [1], Di Crescenzo and Longobardi [9], Khorashadizadeh et
al. [16] and Navarro et al. [23] investigated many aspects of CRE (CPE).

Lad et al. [19] defined an alternative measure of the uncertainty of a random
variable called extropy. For continuous non-negative random variable X the
extropy is defined as :

(1.1) J(X) = −1

2

∫ ∞

0
f2
X(x)dx = −1

2
E (fX(X)) .

Some results and properties of the extropy of order statistics and record values
are given by Qiu [26]. Qiu and Jia [27] derived some of the results of the residual
extropy of order statistics. Yang et al. [38] studied the bounds on extropy
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with a variational distance constraint. Qiu et al. [29] examined certain extropy
properties of mixed systems. To find out more about extropy, one may refer to
Krishnan et al. [17], Noughabi and Jarrahiferiz [24] and Raqab and Qiu [32].

Jahanshahi et al. [14] introduced the cumulative residual extropy (CRJ).
For continuous non-negative random variable X the cumulative residual extropy
(CRJ) as :

ξJ(X) = −1

2

∫ ∞

0
F̄ 2
X(x)dx.(1.2)

Kundu [18] proposed an extropy called cumulative past extropy (CPJ). For con-
tinuous non-negative random variable X the cumulative past extropy (CPJ) is
defined as :

ξ̄J(X) = −1

2

∫ ∞

0
F 2
X(x)dx.(1.3)

The idea behind this is to replace the density function by distribution function
in extropy (1.1). One can only define the cumulative past extropy for random
variables that have a limited range of possible values, as this measure would
be infinitely negative for any random variable with an unlimited range of values.
Kundu [18] studied extreme order statistics on cumulative residual (past) extropy.

Hashempour et al. [13] proposed a new measure called weighted cumula-
tive residual extropy. Mohammadi and Hashempour [21] studied a new measure
called interval weighted cumulative residual extropy. For continuous non-negative
random variable X the weighted cumulative residual extropy (WCRJ) is defined
as :

ξ1J(X) = −1

2

∫ ∞

0
xF̄ 2

X(x)dx.(1.4)

Tahmasebi and Toomaj [35] introduced negative cumulative extropy. For
continuous non-negative random variable X the negative cumulative extropy
(NCEX) can be defined as :

CJ (X) =
1

2

∫ ∞

0
(1− F 2

X(x))dx.(1.5)

Chaudhary et al. [6] proposed a new measure on general weighted negative cumu-
lative extropy. For absolutely continuous non-negative random variable X, with
weight w(x) > 0, the general weighted negative cumulative extropy (GWNCJ)
defined as :

η̄wJ(X) =
1

2

∫ ∞

0
w(x)(1− F 2

X(x))dx.(1.6)

This paper is organized in the following manner. In Section 2 we introduce
the generalised weighted cumulative past extropy (m-WCPJ) and study some of
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its properties. In Section 3 some bounds and inequalities are derived. In Section
4, we study the characterization of m-WCPJ based on the largest-order statistic.
Conditional WCPJ and some of its properties are discussed in Section 5. Section
6, provides the empirical estimator of GWCPJ. Application of empirical estimator
was discussed in Section 7. In Section 8 a statistical hypothesis testing procedure
is performed to assess the goodness of fit of a sample dataset to a standard uniform
distribution. Power of test is observed in Section 9. In Section 10 we introduce the
weighted neagative cumulative extropy and relationship of symmetric distribution
with weighted negative cumulative extropy (WNCEX) and weighted cumulative
past extropy (WCPJ) was derived. Application of estimator for symmetric test of
dataset was discussed in Section 11. In the end, Section 12 concludes this paper.

2. WEIGHTED CUMULATIVE PAST EXTROPY

Balakrishnan et al. [3] and Bansal and Gupta [5] independently introduced
the weighted extropy. Mohammadi and Hashempour [21] studied a new measure
called interval weighted cumulative past extropy. Weighted cumulative past ex-
tropy (WCPJ) is an information measure, which is a generalization of cumulative
past extropy. In this section, we study the properties of WCPJ.

Definition 2.1. Let X be a non-negative absolutely continuous random
variable with cdf FX . We define the m-WCPJ of X by

(2.1) ξ̄mJ(X) =
−1

2

∫ ∞

0
xmF 2

X(x)dx.

The introduction explains that, like the cumulative past extropy (CPJ), the
weighted cumulative past extropy (WCPJ) also has a value of negative infinity
for any random variable with an unbounded range of possible values. Therefore,
we must limit the definition of WCPJ to random variables with a limited range
of values. If we consider a non-negative random variable X with a bounded range
of possible values denoted by B, then the WCPJ of X is defined as follows:

(2.2) ξ̄mJ(X) =
−1

2

∫ supB

0
xmF 2

X(x)dx.

Let us consider some examples.

Example 2.1. Let X has U [a, b] distribution. Then CRJ and WCRJ of
the uniform distribution are

ξJ(X) = −b− a

6
, and, ξ1J(X) =

a− b

24
(3a+ b),

respectively. Then CPJ and m-WCPJ of the uniform distribution are

ξ̄J(X) = −b− a

6
, and,
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ξ̄mJ(X) = −
(
bm+1 · (b− a)2m2 + bm+1 · (b− a) (3b− 5a)m

+2bm+1 ·
(
b2 − 3ab+ 3a2

)
− 2am+3

)
/
(
2 (b− a)2 (m+ 1) (m+ 2) (m+ 3)

)
,

respectively. Note that for m = 1 ,

ξ̄1J(X) =

(
a+ 3b

4

)
ξ̄J(X) =

(
E(X) + b

2

)
ξ̄J(X).

If E(X)+b
2 > 1, then ξ̄1J(X) < ξ̄J(X), and if E(X)+b

2 < 1, then ξ̄1J(X) > ξ̄J(X).

Example 2.2. Let X follow power-law distribution with pdf fX(x) =
λxλ−1, x ∈ (0, 1), λ > 1. The CRJ and WCRJ of the distribution are

ξJ(X) = − λ2

(λ+ 1)(2λ+ 1)
, and, ξ1J(X) = − λ2

4(λ+ 1)(λ+ 2)
,

respectively. Note that

ξ1J(X) =

(
2λ+ 1

4(λ+ 2)

)
ξJ(X) =

(
2(λ+ 1)E(X) + 1

4(λ+ 2)

)
ξJ(X).

For λ = −7
2 , ξ1J(X) = ξJ(X). The CPJ and WCPJ of the distribution are

ξ̄J(X) = − 1

2(2λ+ 1)
, and, ξ̄mJ(X) = − 1

4λ+ 2m+ 2
.

We conclude that form = 1 , ξ̄1J(X) = 2λ+1
2λ+2 ξ̄J(X).Also, ξ̄1J(X) = − λ+2

4λ(λ+1)E(X2).

Theorem 2.1. Let X be a non-negative continuous random variable
with bounded support B for m-WCPJ, ξ̄mJ(X). Then we have

ξ̄mJ(X) =
−1

2
E(GF (X)),

where GF (t) =
∫ supB
t xmFX(x)dx.

Proof Using equation (2.2) and Fubini’s theorem, we have

ξ̄mJ(X) =
−1

2

∫ supB

0
xmF 2

X(x)dx =
−1

2

∫ supB

0
xmFX(x)

(∫ x

0
fX(t)dt

)
dx

=
−1

2

∫ supB

0
fX(t)

(∫ supB

t
xmFX(x)dx

)
dt =

−1

2

∫ supB

0
fX(t)GF (t)dt

=
−1

2
E(GF (X)).

■

Now we see the effect of linear transformation on WCPJ in the following
proposition
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Proposition 2.1. Let X be a non-negative random variable. If Y =
aX + b, a > 0, b ≥ 0, then

ξ̄mJ(Y ) =

m∑
i=0

(
m

i

)
aibm−iξ̄m−iJ(X)

Proof The proof holds using (2.2) and noting that FY (y) = FX

(
y−b
a

)
, y >

b. ■

Here we provide an upper bound for WCPJ in terms of extropy.

Theorem 2.2. Let X be a random variable with pdf fX(·) and extropy
J(X), with bounded support B then

(2.3) ξ̄mJ(X) ≤ C∗exp{2J(X)},

where C∗ = −1
2 exp{E

(
log(XmF 2

X(X))
)
}, and exp{x} := ex.

Proof Using the log-sum inequality, we have∫ supB

0
fX(x) log

(
fX(x)

xmF 2
X(x)

)
dx ≥ − log

(∫ supB

0
xmF 2

X(x)dx

)
.

Then it follows that∫ supB

0
fx(x) log fX(x)dx−

∫ supB

0
fX(x) log

(
xmF 2

X(x)
)
dx

≥ − log

(∫ supB

0
xmF 2

X(x)dx

)
.

Note that log f < f , hence

−
∫ supB

0
f2
X(x)dx+

∫ supB

0
fX(x) log

(
xmF 2

X(x)
)
dx

= 2J(X) + E
(
log
(
XmF 2

X(X)
))

≤ log
(
−2ξ̄mJ(X)

)
.(2.4)

Exponentiating both sides of (2.4), we have

ξ̄mJ(X) ≤ −1

2
exp{2J(X) + E

(
log
(
XmF 2

X(X)
))
},

Hence the result. ■

Theorem 2.3. X is degenerate, if and only if, ξ̄mJ(X) = 0.

Proof Suppose X be degenerate at point c, then by using the definition of
degenerate function and ξ̄mJ(X), we have ξ̄mJ(X) = 0. Now consider ξ̄mJ(X) =
0, i.e.,

∫∞
0 xmF 2

X(x)dx = 0. Noting that the integrand in the above integral is
non-negative, we have FX(x) = 0, for almost all x ∈ S, where S denotes the
support of random variable X, i.e., it is 0 in inf S and then 1.



On general weighted cumulative past extropy 7

3. SOME INEQUALITIES

This section deals with obtaining the lower and upper bounds for WCPJ.

Remark 3.1. Consider X be a non-negative random variable. then

(3.1) ξ̄mJ(X) ≥ −1

2

∫ supB

0
xmFX(x)dx.

Proposition 3.1. Consider a non-negative continuous random variable
X having cdf FX(·) and support [a, supB), a > 0. Then

(3.2) ξ̄mJ(X) ≤ amξ̄J(X).

Proof Note that∫ supB

a
xmF 2

X(x)dx ≥ am
∫ supB

a
F 2
X(x)dx

−1

2

∫ supB

a
xmF 2

X(x)dx ≤ −am

2

∫ supB

a
F 2
X(x)dx

ξ̄mJ(X) ≤ amξ̄J(X).

■

Corollary 3.1. Let X be a continuous random variable with cdf F that
takes values on [0, b] where b is finite. Then,

1. ξ̄mJ(X) ≤ −1
2(m+1)

(
bm+1 − E(Xm+1)

) [
log
(
bm+1−E(Xm+1)

bm+1

)
− 1
]
,

2. ξ̄mJ(X) ≥ bmξ̄J(X).

Proof Using log-sum inequality, we have∫ b

0
FX(t)tm log (FX(t)) dt ≥

∫ b

0
FX(t)tmdt log

(∫ b
0 FX(t)tmdt∫ b

0 tmdt

)

=

(
bm+1 − E(Xm+1)

m+ 1

)
log

(
bm+1 − E(Xm+1)

bm+1

)
Also note that logFX(t) ≤ FX(t)− 1, then∫ b

0
FX(t)tm logFX(t)dt ≤ −2ξ̄mJ(X)−

∫ b

0
tmFX(t)dt

= −2ξ̄mJ(X)−
(
bm+1 − E(Xm+1)

m+ 1

)
,
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Now using the above two inequalities, the first part follows. The second part can
be verified easily. ■

Consider two random variables X and Y having cdfs F and G, respectively.
Then X ≤st Y whenever F (x) ≥ G(x), ∀x ∈ R; where the notation X ≤st Y
means that X is less than or equal to Y in usual stochastic order. One may refer
Shaked and Shanthikumar [33] for detail of stochastic ordering. In the following
proposition, we show the ordering of WCPJ is implied by the usual stochastic
order.

Proposition 3.2. Let X1 and X2 be non-negative continuous random
variables. If X1 ≤st X2, then ξ̄mJ(X1) ≤ ξ̄mJ(X2).

Proof Using X1 ≤st X2 and (2.2), the result follows. ■

4. WCPJ BASED ON LARGEST-ORDER STATISTIC

Let X1, . . . , Xn be a random sample from a random variable X having
absolutely continuous cdf FX(x) and pdf fX(x). Then X1:n ≤ X2:n ≤ . . . ≤ Xn:n

be the ordered statistics to random sample X1, . . . , Xn. In the following, we
obtain the WCPJ of the largest-order statistic. The WCPJ of the nth-order
statistic is

(4.1) ξ̄mJ(Xn:n) = −1

2

∫ supB

0
xmF 2

Xn:n
(x)dx,

where F 2
Xn:n

(x) = F 2n
X (x). Using transformation u = FX(x) in (4.1),

(4.2) ξ̄mJ(Xn:n) = −1

2

∫ 1

0

u2n[F−1
X (u)]m

fX(F−1
X (u))

du,

where F−1
X (x) is the inverse function of FX(x).

Example 4.1. Let X have the uniform distribution on (0,1) with pdf
fX(x) = 1, x ∈ (0, 1). Then F−1

X (u) = u, u ∈ (0, 1) and fX(F−1
X (u)) = 1, u ∈

(0, 1), hence ξ̄mJ(Xn:n) =
−1

2(2n+m+ 1)
.

Example 4.2. let X follow power-law distribution with pdf fX(x) =

λxλ−1, λ > 1, x ∈ (0, 1).Then F−1
X (u) = u

1
λ , u ∈ (0, 1) and fX(F−1

X (u)) =

λu
λ−1
λ , u ∈ (0, 1), hence ξ̄mJ(Xn:n) =

−1

2(2nλ+m+ 1)
.
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Remark 4.1. Consider Λ = ξ̄mJ(Xn:n) − ξ̄mJ(X). Since F 2n
X (x) ≤

F 2
X(x), hence Λ ≥ 0.

For the proof of Theorem 4.1, we need the following lemma.

Lemma 4.1. [Lemma 4.1 of Hashempour et al. [13]] Let g be a contin-
uous function with support [0, 1], such that

∫ 1
0 g(y)ymdy = 0, for m ≥ 0, then

g(y) = 0, ∀ y ∈ [0, 1]

Theorem 4.1. LetX1, ..., Xn and Y1, ..., Yn be two non negative random
samples from continuous cdfs F (x) and G(x), respectively with common bounded
support. Then F (x) = G(x) if and only if ξ̄mJ(Xn:n) = ξ̄mJ(Yn:n), for all n

Proof The necessary condition is trivial. Hence, it remains to prove the
sufficient part. If ξ̄mJ(Xn:n) = ξ̄mJ(Yn:n), then we have

−1

2

∫ 1

0
u2n

(
[F−1(u)]m

f(F−1(u))
− [G−1(u)]m

g(G−1(u))

)
du = 0,

By using Lemma 4.1, it follows that

[F−1(u)]m

f(F−1(u))
=

[G−1(u)]m

g(G−1(u))

=⇒ [F−1(u)]m
dF−1(u)

du
= [G−1(u)]m

dG−1(u)

du
, u ∈ [0, 1],

since
dF−1(u)

du
=

1

f(F−1(u))
. Hence it follows F−1(u) = G−1(u), u ∈ [0, 1]. Thus

the proof is completed. ■

5. CONDITIONAL WEIGHTED PAST EXTROPY

Now we consider the conditional weighted cumulative past extropy (CWCPJ).
Consider a random variable Z on probability space (Ω,A, P ) such that E|Z| < ∞.
The conditional expectation of Z given sub σ-field G, where G ⊆ A, is denoted
by E(Z|G). For the random variable I(Z≤z), we denote E(I(Z≤z)|G) by FZ(z|G).

Definition 5.1. For a non-negative random variable X with bounded
support B, given σ-field G, the CWCPJ ξ̄mJ(X|G) is defined as

ξ̄mJ(X|G) =
−1

2

∫ supB

0
xmF 2

X(x|G)dx.(5.1)

Now we assume that the random variables are continuous and non-negative.
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Lemma 5.1. If G is a trivial σ-field, then ξ̄mJ(X|G) = ξ̄mJ(X).

Proof Since here FX(x|G) = FX(x), then the proof follows. ■

Proposition 5.1. If X ∈ Lp for some p > 2, then E[ξ̄mJ(X|G)|G∗] ≤
ξ̄mJ(X|G∗), provided that G∗ ⊆ G.

Proof Consider

E[ξ̄mJ(X|G)|G∗] =
−1

2

∫ supB

0
xmE

(
[P (X ≤ x|G)]2 |G∗

)
dx

≤ −1

2

∫ supB

0
xm [E (P (X ≤ x|G)|G∗)]2 dx

=
−1

2

∫ supB

0
xm
[
E
(
E(I(X≤x)|G)|G∗)]2 dx

=
−1

2

∫ supB

0
xm
[
E
(
I(X≤x)|G∗)]2 dx

=
−1

2

∫ supB

0
xmF 2

X(x|G∗)dx

= ξ̄mJ(X|G∗),

where the second step follows using Jensen’s inequality for convex function ϕ(x) =
x2. Hence the result. ■

In the following theorem, we investigate the relationship between condi-
tional extropy and ξ̄mJ(X|G).

Theorem 5.1. Let ξ̄mJ(X|G) is conditional past extropy. Then we
have

(5.2) ξ̄mJ(X|G) ≤ B∗exp{2J(X|G)},

where B∗ = −1
2 exp{E

(
log(XmF 2

X(X))|G
)
}

Proof The proof is on the similar lines as of Theorem 2.2, hence omitted.
■

Theorem 5.2. For a random variable X with bounded support B and
σ-field G, we have

E
(
ξ̄mJ(X|G)

)
≤ ξ̄mJ(X),(5.3)

and the equality holds if and only if X is independent of G.
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Proof If in Proposition 5.1, G∗ is trivial σ-field, then (5.3) can be easily
obtained. Now assume that X is independent of G, then

FX(x|G) = FX(x)

=⇒ ξ̄mJ(X|G) = ξ̄mJ(X).(5.4)

On taking expectation to both sides of (5.4), we get equality in (5.3). Conversely,
assume that equality in (5.3) holds. It is sufficient to show that FX(x|G) = FX(x),
to prove independence between X and σ-field G. Take U = FX(x|G), and since
the function ϕ(u) = u2 is convex hence E(U2) ≥ E2(U) = F 2

X(x), and also due
to equality in (5.3), we have∫ supB

0
xmE(U2)dx =

∫ supB

0
xmF 2

X(x)dx =

∫ supB

0
xmE2(U)dx.

Hence E(U2) = E2(U). Now using the Corollary 8.1 of Hashempour et al. [13],
we have FX(x|G) = FX(x). Hence the proof. ■

For the Markov property for non-negative random variables X, Y and Z,
we have the following proposition.

Proposition 5.2. Let X → Y → Z is a Markov chain, then

(5.5) ξ̄mJ(Z|X,Y ) = ξ̄mJ(Z|Y )

and

(5.6) E
(
ξ̄mJ(Z|Y )

)
≤ E

(
ξ̄mJ(Z|X)

)
.

Proof By the definition of ξ̄mJ(Z|X,Y ) and using the Markov property,
(5.5) holds.
Now letting G∗ = σ(X), G = σ(X,Y ) and X = Z in Proposition 5.1, we have

(5.7) ξ̄mJ(Z|X) ≥ E
(
ξ̄mJ(Z|X,Y )|X

)
Taking expectation on both sides of (5.7), we have

E
(
ξ̄mJ(Z|X)

)
≥ E

(
E
(
ξ̄mJ(Z|X,Y )|X

))
= E

(
ξ̄mJ(Z|X,Y )

)
= E

(
ξ̄mJ(Z|Y )

)
,

where the last equality holds using (5.5). Hence the result (5.6) holds. ■

6. EMPIRICAL GWCPJ

We want to create an estimator for the general Weighted Cumulative Past
Extropy (WCPJ) using the empirical m-WCPJ. To do this, we assume that we
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have a random sample of n non-negative, continuous, independent, and identi-
cally distributed random variables X1, . . . , Xn from a population with a cumu-
lative distribution function (cdf) FX(x). We will use the ”plug-in” method to
define the estimator by replacing the unknown quantities in the formula with
their empirical counterparts based on the sample. Specifically, we will define the
empirical general weighted cumulative past extropy as

(6.1) ξ̄mn J(X) =
−1

2

∫ ∞

0
xmF 2

n(x)dx.

where Fn(x) is the empirical distribution function. Suppose we have a random
sample of n observations, and let X1:n ≤ X2:n ≤ . . . ≤ Xn:n be the ordered
statistics to random sample X1, . . . , Xn. We can express the value of the empiri-
cal general weighted cumulative past extropy ξ̄mn J(X) in terms of these ordered
statistics. In other words, we can rewrite the formula for ξ̄mn J(X) in a way that
involves the ordered statistics of the sample.

The empirical measure of ξ̄mJ(X) = −1
2

∫∞
0 xmF 2

X(x)dx is obtained as

ξ̄mn J(X) = −1

2

∫ ∞

0
xmF 2

n(x)dx

= −1

2

n−1∑
i=1

∫ Xi+1:n

Xi:n

(
i

n

)2

xmdx

= − 1

2(m+ 1)

n−1∑
i=1

(Xm+1
i+1:n −Xm+1

i:n )

(
i

n

)2

.(6.2)

7. APPLICATION

To test the uniformity of a random sample X1, X2, ..., Xn, we use the em-
pirical weighted cumulative past extropy ξ̄mn J(X) obtained in equation (6.2) as a
test statistic. Before discussing this test statistic, we first need to understand a
property of the uniform distribution, which is defined on the interval (0,1). For
any random variable X with a cumulative distribution function F, and for any
probability value p in the interval (0,1), we define the function ϕm

p J(F ) as

ϕm
p J(F ) = −1

2

∫ p

0
xmF 2(x)dx, m ≥ 0.(7.1)

Example 7.1. If F0 is cdf of uniform random variable on interval (0, 1),

then ϕm
p J(F0) = − pm+3

2(m+3) and in particular, when m = 1, ϕ1
pJ(F0) = −p4

8 and

when m = 0, ϕ0
pJ(F0) = −p3

6 .
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In view of Lemma 4.1 and Example 7.1, the following proposition is ob-
tained.

Proposition 7.1. Let F0 is cdf of uniform random variable on interval
(0, 1). Suppose that for a cdf F in the class of cdfs defined on interval (0, 1),
ϕm
p J(F ) = ϕm

p J(F0). Then F (x) = F0(x), almost everywhere.

Proof Let ϕm
p J(F ) = ϕm

p J(F0), using (7.1) we get

∫ p

0
xm
(
F 2(x)− F 2

0 (x)
)
dx = 0, ∀ p ∈ (0, 1).

It is known that the (0, p) generate the Borel σ-algebra of Ω = (0, 1]. Therefore,
we can write ∫

B
xm
(
F 2(x)− F 2

0 (x)
)
dx = 0, ∀ B ⊆ (0, 1].

By Lemma 4.1, we conclude that F (x) = F0(x), almost everywhere.

Thus, ϕm
p J(F ) for p ∈ (0, 1) is uniquely determined by the uniform dis-

tribution in the sense that for some cdfs defined on (0, 1), they take a value less

than − pm+3

2(m+3) and for some of them, they take more than − pm+3

2(m+3) , and only for

the standard uniform distribution, we have ϕm
p J(F0) = − pm+3

2(m+3) . ■

8. THE TEST OF UNIFORMITY

We aim to develop a non-parametric test for the uniform goodness of fit
problem based on the GWCPJ measure. Specifically, we want to test if a random
sample of size n from an unknown distribution F is uniformly distributed on
the interval (0, 1). Our test statistic is ξ̄mn J(X), which is computed using the
empirical quantiles of the sample. We choose m = 1 for computational simplicity,
but the procedure is the same for other values of m. To determine the critical
region, we need to calculate G1(α) and G2(α), which are the lower and upper
bounds for the test statistic, respectively, based on the empirical distribution of
ξ̄mn J(X) under the standard uniform distribution. If ξ̄mn J(X) falls outside this
interval, we reject the null hypothesis H0 : F = F0 in favor of the alternative
hypothesis H1 : F ̸= F0. We estimate G1(α) and G2(α) using the 0.025-th and
0.975-th quantiles of the empirical distribution of ξ̄mn J(X), respectively, based
on 100,000 replications. We report the values of G1(α) and G2(α) for different
sample sizes in Table 1 at a significance level of 5% (α = 0.05).

Table 1. Values of G1(α) and G2(α), for α = 0.05



14 P. K. Sahu and N. Gupta

n 20 30 40 50
G1(α) -0.144891 -0.144001 -0.143339 -0.142433
G2(α) -0.066024 -0.078560 -0.085851 -0.090792

Simillary we can obtain for m = 2 . We report the values of G1(α) and G2(α)
for different sample sizes in Table 2 at a significance level of 5% (α = 0.05).

Table 2. Values of G1(α) and G2(α), for α = 0.05

n 20 30 40 50
G1(α) -0.109538 -0.110579 -0.110441 -0.110317
G2(α) -0.047356 -0.059339 -0.066270 -0.070851

9. POWER OF THE TEST

This section discusses the power of the proposed test statistic against al-
ternative Beta(1.5,1.5) and Beta(1.0,1.0) distributions at the significance level of
α = 0.05 and m = 1, for different sample sizes. The Beta distribution is chosen as
an alternative because it has support (0,1) like the standard uniform distribution.
Previous researchers has also examined the power of the WCPJ test against the
Beta(1.5,1.5) distribution for testing uniformity. The proposed test is found to
be more powerful for large sample sizes, and the power increases as the sample
size increases. As Beta(1,1) is equivalent to a standard uniform distribution, the
power of the test is equivalent to the size of the test. The power against Beta
(1.5,1.5) and Beta(1.0,1.0) for sample sizes of 40, 50, 100 and 150 are presented
in Table 3.

Table 3. Power of test against different alternative for α = 0.05 and m = 1

n 40 50 100 150
Beta(1.5,1.5) 0.08527 0.08509 0.08363 0.09927
Beta(1.0,1.0) 0.05046 0.05131 0.051 0.04934

10. WEIGHTED NEGATIVE CUMULATIVE EXTROPY

Tahmasebi and Toomaj [35] defined negative cumulative extropy and Chaud-
hary et al. [6] defined general weighted negative cumulative extropy.

Definition 10.1. Let X be a non-negative absolutely continuous ran-
dom variable with cdf FX . We define the WNCEX of X by

(10.1) ξwJ(X) =
1

2

∫ ∞

0
w(x)(1− F 2

X(x))dx.
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If w(x) = xm, m > 0, then we represent ξwJ(X) as ξmJ(X).

The Lemma by Fashandi and Ahmadi from [11] serves as a foundational
tool for creating various descriptions of symmetric distributions.

Lemma 10.1. (Fashandi and Ahmadi, [11]) Let X be a continuous ran-
dom variable with pdf fX and cdf FX with support SX . Then, the identity,

fX(F−1
X (u)) = fX(F−1

X (1− u)),

for almost all u ∈ (0, 12) if and only if that there exists a constant k such that
FX(k − x) + FX(k + x) = 1 for all x ∈ SX .

Let C denote the class of all continuous pdf fX , having cdf FX such that

fX
(
F−1
X (1− u)

)
≥ (≤)fX

(
F−1
X (u)

)
,

for all u ∈ (0, 12). It can be observed using Lemma 10.1 that F is symmertic if
and only if fX(F−1

X (u)) = fX(F−1
X (1− u)) for almost all u ∈ (0, 12). The class C

is non-empty and includes various distributions.

For any random variable X with an absolute continuous distribution function
(df) F (.) and the Lebsegue probability density function (pdf) f(.). Let lX =
inf{x ∈ R : F (x) > 0}, uX = sup{x ∈ R : F (x) < 1} and SX = (lX , uX), we can
define WNCEX and WCPJ with support SX as

ξw1J(X) =
1

2

∫
SX

w1(x)(1− F 2
X(x))dx,(10.2)

and

ξ̃w2J(X) = −1

2

∫
SX

w2(x)F
2
X(x)dx,(10.3)

respectively. The following theorem gives a relationship of symmetric distribution
with WNCEX and WCPJ.

Theorem 10.1. Let w1(x) = FX(x) in (10.2) and w2(x) =
F̄X(x)(1+F̄X(x))

FX(x)

in (10.3), then the following two statements are equivalent for any FX ∈ C :

(i) random variable X has a symmetric distribution;

(ii) ξw1J(X) = −ξ̃w2J(X).

Proof From (10.2), the WNCEX can be written as

ξw1J(X) =
1

2

∫
SX

w1(x)(1− F 2
X(x))dx =

1

2

∫ 1

0

u(1− u2)

fX(F−1
X (u))

du(10.4)
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and from (10.3) the WCPJ can be written as

ξ̃w2J(X) = −1

2

∫ 1

0

u(1− u2)

fX(F−1
X (1− u))

du.(10.5)

When ξw1J(X) = −ξ̃w2J(X) holds then from (10.4) and (10.5), we have

(10.6)

∫ 1

0
u(1− u2)η(u)du = 0,

where η(u) =
1

fX(F−1
X (u))

− 1

fX(F−1
X (1− u))

.(10.7)

Then as η(1− u) = −η(u), we can write (10.6) as∫ 1
2

0
η(u)u(1− u)(2u− 1)du = 0.(10.8)

Note that u(1 − u)(2u − 1) < 0 for all 0 ≤ u ≤ 1
2 . Since by assumption FX ∈

C, hence from (10.8) we have fX(F−1
X (u)) = fX(F−1

X (1 − u)), so Lemma 10.1
completes the proof. ■

Example 10.1. Let X have the uniform distribution on (a,b) with pdf
fX(x) = 1

b−a , x ∈ (a, b). For u ∈ (a, b) F−1(u) = (b− a)u+ a, F−1
X (1− u) = (b−

a)(1−u)+a, and fX(F−1
X (u)) = 1

b−a , fX(F−1
X (1−u)) = 1

b−a , Then fX(F−1
X (u)) =

fX(F−1
X (1− u)). The equality is true in C. It is symmetric.

Example 10.2. let X follow power-law distribution with pdf fX(x) =

λxλ−1, λ > 1, x ∈ (0, 1).Then F−1
X (u) = u

1
λ , u ∈ (0, 1) and fX(F−1

X (u)) =

λu
λ−1
λ , fX(F−1

X (1− u)) = λ(1− u)
λ−1
λ , u ∈ (0, 1) .

If λ > 1 then fX(F−1
X (u)) ≤ fX(F−1

X (1− u)) for u ∈ (0, 12).
If λ < 1 then fX(F−1

X (u)) ≤ fX(F−1
X (1− u)) for u ∈ (0, 12).

If λ = 1 then fX(F−1
X (u)) = fX(F−1

X (1− u)) for u ∈ (0, 12).
Thus power distribution belongs to class C and for u ∈ (0, 12), it is symmetric for
λ = 1.

11. APPLICATION

Assume that X1, X2, ..., XN is a random sample of size N taken from a
population with pdf fX and cdf FX . As discussed in section 10, for w1(x) = FX(x)

in (10.2) and w2(x) =
F̄X(x)(1+F̄X(x))

FX(x) in (10.3), the ξw1J(X) and ξ̃w2J(X)) can
be written as

ξw1J(X) =
1

2

∫ 1

0

u(1− u2)

fX(F−1
X (u))

du, and ξ̃w2J(X) = −1

2

∫ 1

0

u(1− u)(2− u)

fX(F−1
X (u))

du.
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We note from Theorem 10.1 that ξw1J(X) + ξ̃w2J(X) = 0 if and only if X is
symmetric distribution. This motivates us that

∆ = ξw1J(X) + ξ̃w2J(X)

can be used to test whether X is symmetric distribution. We can write,

∆ =
1

2

∫ 1

0

[
u(1− u2)− u(1− u)(2− u)

fX(F−1
X (u))

]
du

=
1

2

∫ 1

0
(−2u3 + 3u2 − u)

[
d

du
F−1
X (u)

]
du.

Small or large values of ∆ can be indicative of asymmetry, prompting the rejection
of the null hypothesis of symmetry. Therefore, we introduce a symmetry test
relying on the sample estimator of ∆. Drawing inspiration from Vasicek [36] and
adopting a methodology akin to Vasicek [36], Park [25], Xiong et al. [37], and
Jose and Sathar [15], we formulate an estimator for ∆ in the following manner:

∆̂ = − 1

2N

N∑
i=1

[
2

(
i

N + 1

)3

− 3

(
i

N + 1

)2

+

(
i

N + 1

)]
Xi+m:N −Xi−m:N

2m/N
.

Here window size m is a positive integer less than N
2 and Xr:N denotes rth

order statsitics from sample X1, X2, . . . XN . If i + m > N then we consider
Xi+m:N = XN :N and if i+m < 1 then we consider Xi−m:N = X1:N .

Dataset 1, sourced from Montgomery et al. [22], conforms to a normal
distribution, representing a symmetric model. The dataset, consisting of values
such as :
15.5, 23.75, 8.0, 17.0, 5.5, 19.0, 24.0, 2.5, 7.5, 11.0, 13.0, 3.75, 25.0,9.75, 22.0,
18.0, 6.0, 12.5, 2.0, 21.5.
The data set was also utilized by Jose and Sathar [15] and Gupta and Chaudhary
[12] in their proposed symmetry test, affirming its normal distribution and sym-
metry. This fact is verified by our test. The absolute value of the test statistics
∆̂ is 0.03246 with an estimated p-value 0.1054 when window size m = 2 and
sample size N = 20. Remarkably, our symmetry test based on ∆̂ does not lead
to the rejection of the null hypothesis. This outcome aligns with the dataset’s
adherence to a normal distribution, establishing it as a suitable model for the
data.

Dataset 2, sourced from Qiu and Jia [28], represents active repair times (in
hours) for an airborne communication transceiver. The dataset comprises values
such as:
0.2, 0.3, 0.5, 0.5, 0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.7, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0,1.1,
1.3,1.5,1.5, 1.5, 1.5, 2.0, 2.0, 2.2, 2.5, 3.0, 3.0, 3.3, 3.3, 4.0, 4.0, 4.5, 4.7, 5.0, 5.4,
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5.4, 7.0, 7.5, 8.8, 9.0, 10.3, 22.0, 24.5.
and has been employed by Xiong et al. [37] in their proposed test of symmetry.
As per Qiu and Jia [28], Dataset 2 can be adequately modeled by the inverse
Gaussian (IG) distribution. It’s worth noting that the IG distribution is inher-
ently asymmetric, as highlighted by Xiong et al. [37] and Qiu and Jia [28]. Our
conducted test affirms this asymmetry, revealing an absolute value of the test
statistic ∆̂ as 0.5679, along with an estimated p-value of 0.0. These computa-
tions were conducted under the conditions of a window size m = 2 and a sample
size N of 45. Remarkably, our symmetry test based on ∆̂ successfully rejects
the null hypothesis. This rejection aligns with the inherent asymmetry of the
dataset, as indicated by its fit to the inverse Gaussian distribution.

Now consider the dataset 3 such as :
0.014, 0.034, 0.059, 0.061, 0.069, 0.080, 0.123, 0.142, 0.165, 0.210, 0.381, 0.464,
0.479, 0.556, 0.574, 0.839, 0.917, 0.969, 0.991, 1.064, 1.088, 1.091, 1.174, 1.270,
1.275, 1.355, 1.397, 1.477, 1.578, 1.649, 1.702, 1.893, 1.932, 2.001, 2.161, 2.292,
2.326, 2.337, 2.628, 2.785, 2.811, 2.886, 2.993, 3.122, 3.248, 3.715, 3.790, 3.857,
3.912, 4.100.
from Lawless [20] which represents the quantity of 1000 cycles to failure for electri-
cal appliances in a life test. Xiong et al. [37] used this dataset for their proposed
test of symmetry. The absolute value of the test statistics ∆̂ is 0.0486 with an
estimated p-value 0.0034 when window size m = 2 and sample size N = 50. Our
test based on ∆̂ succeeds in rejecting the null hypothesis that the dataset does
not follow symmetry.

See Table 4 for the value of test statistics and p-value for different datasets
based on the specific window size and sample size of each dataset.

Table 4. Description of models fitted

Dataset N m |∆̂| p-value
Dataset 1 20 2 0.0343 0.1054
Dataset 2 45 2 0.5679 0.0
Dataset 3 50 2 0.0486 0.0034

When conducting tests at a 5% significance level, a p-value below 0.05
signals an asymmetric nature, while a p-value above 0.05 suggests symmetry
in the data. Table 4 confirms that the newly proposed test effectively discerns
the symmetry or asymmetry of the distribution within random samples. The ob-
served p-values, at the 5%significance level, indicate that Datasets 2 and 3 exhibit
asymmetries in the distribution of their random samples. Conversely, Datasets 1
presents moderate p-values, implying acceptance of symmetry in their distribu-
tions. Consequently, we can affirm that the test statistic accurately identifies the
presence or absence of symmetry in the distribution of the random variable.
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12. CONCLUSION

The introduction section of the paper highlights the various studies and
generalizations of the concept of extropy. The paper then proceeds to define and
analyze GWCPJ, and conditional WCPJ. To estimate GWCPJ, non-parametric
estimators and empirical distribution functions have been proposed. Addition-
ally, upper and lower bounds for WCPJ have been derived, and several results
pertaining to WCPJ have been presented .

Furthermore, a new test of uniformity has also been proposed based on
GWCPJ, which can be used to determine whether a given dataset follows a uni-
form distribution. Also we have studied the relationship of symmetric distribution
with weighted negative cumulative extropy (WNCEX) and weighted cumulative
past extropy (WCPJ) and formulated an estimator for symmetry test of data set.

ACKNOWLEDGMENTS

PKS would like to thank Quality Improvement Program (QIP), All In-
dia Council for Technical Education, Government of India (Student Unique Id:
FP2200759) for financial assistance. The authors are thankful to the Professor
Maria Isabel Fraga Alves Editor-in-Chief, Associate Editor and referees for their
valuable suggestions which significantly improved this manuscript.

REFERENCES

[1] Asadi, M. and Zohrevand, Y. (2007). On the dynamic cumulative residual entropy.
Journal of Statistical Planning and Inference 137 (6): 1931–41.

[2] Ash, R. (1990). Information Theory. Dover Publications Inc, New York.

[3] Bagnoli, M. and Bergstrom, T. (2005). Log-concave probability and its applica-
tions. Economic Theory, 26, 455-469.

[4] Balakrishnan, N., Buono, F. and Longobardi, M. (2020). On weighted extropies,
Communications in Statistics-Theory and Methods 1–31.

[5] Bansal, S. and Gupta, N. (2021). Weighted extropies and past extropy of order
statistics and k-record values. Communications in Statistics-Theory and Methods
1-24.

[6] Chaudhary, S. K., Gupta, N. and Sahu, P. K. (2023) On general weighted cumula-
tive residual extropy and general weighted negative cumulative extropy, Statistics,
57:5, 1117-1141.



20 P. K. Sahu and N. Gupta

[7] Cover T.M. and Thomas, J.A. (2006). Elements of information theory. 2nd ed.
Hoboken (NJ): Wiley.

[8] Di Crescenzo A. and Longobardi, M. (2009). On cumulative entropies. J Statist
Plann Inference. 139: 4072–4087.

[9] Di Crescenzo, A. and Longobardi, M. (2013). Stochastic comparisons of cumula-
tive entropies. In Stochastic orders in reliability and risk, eds. H. Li and X. Li,
Lecture Notes in Statistics 208, 167–82. New York: Springer.

[10] Drissi, N., Chonavel, T. and Boucher, J.M. (2008). Generalized cumulative resid-
ual entropy for distributions with unrestricted supports. J Electr Comput Eng ;
Article ID 790607:5.

[11] Fashandi, M. and Ahmadi, J. (2012) Characterizations of symmetric distributions
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