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1. INTRODUCTION

Relating the standard deviation (σ) to the range is a well-studied topic (see
[2, 6, 8, 9]). However, most of the results found in the literature in this regard
propose inequalities or relationships that depend on the shape of the population
distribution. Matsushita et al. [4, 5] recently suggested a power law between σ
and the semi-range ℓ without knowing the population distribution, but assuming
symmetric truncated forms restricted to ℓ ≪ 1. They argued that truncation is
a phenomenon naturally generated by the sampling process. In their approach,
conditional distribution properties can link the usual unbounded distribution for
describing unobserved data.

Here, we obtain a general closed-form expression for the variance of trun-
cated distributions valid for all ℓ > 0. We start with the general case (Section
2.1) by considering a truncated variable X over the interval [a, b] based on a
cumulative distribution function G with unbounded support as a skewing func-
tion. We present a general form for the centralized moment of order p > 0,
E[(X − c)p], where c ∈ (a, b) denotes a centering parameter. We also derive its
asymptotic behavior as the support’s semi-range tends to zero and ∞, as well as
some interesting inequalities.

Section 2.2 presents some properties and examples regarding the symmet-
rically truncated distribution as a particular case. Importantly, we deduce the
form of the ratio σ/ℓ as a function of G and ℓ. We illustrate the established
result with an example using actual financial data (Section 3). They consist of
16 million tick-by-tick returns of four currencies against the US dollar transacted
on foreign exchange markets. Finally, Section 4 makes some brief concluding
remarks.

2. MAIN RESULTS

2.1. General case

Suppose we have a random variable with cumulative distribution function
(CDF) G(x) and with infinite support. Based on G, given two real numbers a
and b, such that a < b, we have

FX(x) =
G(x)−G(a)

G(b)−G(a)
, a < x < b,(2.1)

to be the truncated CDF of a random variable X with support (a, b). Then, we
have the following result concerning its moments.
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Theorem 2.1. Let c and p be real numbers such that a < c < b and
p > 0. Then, the p-th moment about c is given by

E[(X − c)p] =
1

G(b)−G(a)

[
(b− c)pG(b)− (a− c)pG(a)− pIG(c; a− c, b− c, p)

]
,

(2.2)

where IG(c; s, t, p) is defined as

IG(c; s, t, p) =

∫ t

s
yp−1G(y + c) dy, s < t.

Proof: From (2.1), we have

(2.3) E[(X − c)p] =
1

G(b)−G(a)

∫ b

a
(x− c)p dG(x)

=
p

G(b)−G(a)

{∫ c

a

[ ∫ x−c

0
yp−1 dy

]
dG(x) +

∫ b

c

[ ∫ x−c

0
yp−1 dy

]
dG(x)

}
.

Upon changing the order of integration, the expression in (2.3) can be written as

=
p

G(b)−G(a)

{∫ a−c

0
yp−1

[ ∫ y+c

a
dG(x)

]
dy +

∫ b−c

0
yp−1

[ ∫ b

y+c
dG(x)

]
dy

}
=

1

G(b)−G(a)
[(b− c)pG(b)− (a− c)pG(a)]

− p

G(b)−G(a)

∫ 0

a−c
yp−1G(y + c) dy − p

G(b)−G(a)

∫ b−c

0
yp−1G(y + c) dy,

which completes the proof of the theorem.

Corollary 2.1. Under the conditions of Theorem 2.1, we have

E[(X − c)p] ⩽

(b− c)p[1− FX(c)] + (a− c)pFX(c), if p is even,

(b− c)p[1− FX(c)], if p is odd,

where FX is as given in (2.1).

Proof: It is evident that

IG(c; a− c, b− c, p) = IG(c; a− c, 0, p) + IG(c; 0, b− c, p).(2.4)

Assuming p to be even, for a− c < y < 0, we have yp−1G(c) < yp−1G(y +
c) < yp−1G(a), and for 0 < y < b − c, we have yp−1G(c) < yp−1G(y + c) <
yp−1G(b). Consequently, we get

IG(c; a− c, 0, p) ⩾ −G(c)(c− a)p

p
and IG(c; 0, b− c, p) ⩾

G(c)(b− c)p

p
.(2.5)
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Now, upon using the inequalities in (2.5) into (2.4), we obtain

IG(c; a− c, b− c, p) ⩾
G(c)

p

[
(b− c)p − (c− a)p

]
.(2.6)

Using the inequality in (2.6) in the expression (2.2) of Theorem 2.1, we get

(2.7)

E[(X−c)p] ⩽
1

G(b)−G(a)

{
(b−c)pG(b)−(a−c)pG(a)−G(c)

[
(b−c)p−(c−a)p

]}
.

From (2.1), the right-hand side of the inequality (2.7) can be rewritten as

= (b− c)p[1− FX(c)] + (a− c)pFX(c).

This proves the inequality for the case when p is even.

The inequality for the case when p is odd can be established in an analogous
manner.

When p is even, a lower bound for E[(X − c)p] can be established as below.

Proposition 2.1. Under the conditions of Theorem 2.1, for p even, we
have

E[(X − c)p] ⩾ (t− c)p [FX(b)− FX(t)] , if c < t < b.

Proof: Suppose p is even. Then, as (X−c)p ⩾ 0 and (X−c)p ⩾ (t−c)p

for X > t > c, it is clear that

E[(X − c)p] ⩾ E
[
(X − c)p1{X>t}

]
⩾ (t− c)p E

[
1{X>t}

]
,

which yields the required result.

Proposition 2.2. Under the conditions of Theorem 2.1, we have

min
a<c<b

E[(X − c)p] ⩽


(
b− a

2

)p

, if p is even,

0, if p ⩾ 1 is odd.

Proof: Suppose p is even. In this case, from Corollary 2.1, we have

E[(X − c)p] ⩽ (b− c)p[1− FX(c)] + (a− c)pFX(c) ⩽ S(F (c))T (c),(2.8)
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where S(F (c)) = max {1− FX(c), FX(c)} and T (c) = (b − c)p + (a − c)p. As
FX(c) = 1/2 is a minimum point of M(F (c)), we have

min
0<F (c)<1

S(F (c)) =
1

2
.

Taking the minimum over 0 < F (c) < 1 in (2.8), we get

E[(X − c)p] ⩽
1

2
T (c).(2.9)

Now, taking the minimum over a < c < b in (2.9) and using the fact that the
function T (c) reaches a minimum value at the point c = (a+ b)/2, we get

min
a<c<b

E[(X − c)p] ⩽
1

2
T

(
a+ b

2

)
=

(
b− a

2

)p

.

This proves the inequality for the case when p is even. Further, the inequality
for the case when p is odd trivially follows from Corollary 2.1.

Proposition 2.3. The variance σ2 = Var(X) can be expressed as

σ2 =
1

G(b)−G(a)

[
(b− µ)2G(b)− (a− µ)2G(a)− 2IG(µ; a− µ, b− µ)

]
,

where µ = E(X) and

IG(µ; s, t) =

∫ t

s
yG(y + µ) dy, s < t.

Proof: By taking c = µ and p = 2 in Theorem 2.1, we readily obtain
the required result.

Proposition 2.4. The Popoviciu inequality [6] on variances given by

σ2 ⩽

(
b− a

2

)2

,

follows from Proposition 2.2.

Proof: The proof follows immediately by setting p = 2 in Proposition
2.2.

A reverse form of Popoviciu’s inequality can be obtained upon taking p =
2, c = µ = E(X) and t = (µ+ b)/2 in Proposition 2.1.

Proposition 2.5. We have

σ2 ⩾

(
b− µ

2

)2 [
FX(b)− FX

(
µ+ b

2

)]
.
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Asymptotic behavior

In the following theorem, we establish the asymptotic behaviour of the p-th
moment.

Theorem 2.2. If X is distributed as in (2.1), then we have

lim
b−a
2

−→0+
E
[(

X − a

b− a

)p ]
=

1

p+ 1
, p > −1,

and

lim
b−a
2

−→∞
E
[(

X − a

b− a

)p ]
=

1

2p
.

Proof: From (2.1), we find (for 0 < z < 1)

FX−a
b−a

(z) =
G
(
z(b− a) + a

)
−G(a)

G(b)−G(a)
=

G
(
b−a
2 (2z − 1) + a+b

2

)
−G

(
a+b
2 − b−a

2

)
G
(
b−a
2 + a+b

2

)
−G

(
a+b
2 − b−a

2

) .

Now, it is a simple task to verify that

lim
b−a
2

−→0
FX−a

b−a
(z) = FU (z), ∀z ∈ R,

and

lim
b−a
2

−→∞
FX−a

b−a
(z) = FY (z), ∀z ̸= 1

2
,

where U ∼ U(0, 1) and Y is a discrete random variable such that P(Y = 1/2) = 1.

Moreover, we note that [(X − a)/(b− a)]p is uniformly integrable because
0 < (X − a)/(b − a) < 1. As convergence in distribution along with uniform
integrability imply convergence in mean (cf. [1], Theorem 5.4), we have

lim
b−a
2

−→0+
E
[(

X − a

b− a

)p ]
= E(Up), p > −1,

and

lim
b−a
2

−→∞
E
[(

X − a

b− a

)p ]
= E(Y p),

which completes the proof of the theorem.

Corollary 2.2. We further have

lim
b−a
2

−→0+

σ2 + (µ− a)2

(b− a)2
=

1

3
and lim

b−a
2

−→∞

σ2

(b− a)2
= 0,

where µ = E(X) and σ2 = Var(X).

Proof: By taking p = 2 in Theorem 2.2, the above results follow readily.
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2.2. Symmetric case

In this section, we assume that G is a skewing function, i.e., it is such that
G(x) ⩾ 0 and G(−x) = 1 − G(x), and X is as distributed in (2.1) with a = −ℓ
and b = ℓ > 0; that is, X has its CDF as

FX(x) =
G(x) +G(ℓ)− 1

2G(ℓ)− 1
, −ℓ < x < ℓ.(2.10)

Proposition 2.6. The variance σ2 can be expressed as

σ2 = ℓ2H(ℓ),

where

H(ℓ) = 1− 2C(ℓ)− 1

2G(ℓ)− 1
,

with C(ℓ) = C(ℓ,G) being defined as

C(ℓ) =
2

ℓ2

∫ ℓ

0
yG(y) dy.

Moreover, 1/2 ⩽ C(ℓ) ⩽ G(ℓ).

Proof: As G is a skewing function, we have µ = E(X) = 0. Moreover,
IG(µ; a− µ, b− µ) in Proposition 2.3 satisfies the identity

IG(µ; a− µ, b− µ) = ℓ2
[
C(ℓ)− 1

2

]
.(2.11)

Upon substituting (2.11) in Proposition 2.3 and carrying out some simple alge-
braic steps, the required result follows.

Remark 2.1. It is useful to observe that, knowing C(ℓ) (see Table 1 for
some explicit examples of these constants), Proposition 2.6 gives a more informa-
tive result than Popoviciu’s inequality and present in particular a method for the
exact calculation of the variance of truncated distributions of the form in (2.10).

Table 1: Some examples of constants C(ℓ), for use in Proposition 2.6.

Distribution G(x) C(ℓ)

Normal Φ(x) 1
2ℓ2

{
ℓ
[
ℓ+ exp

(
− ℓ2

2

)√
2
π

]
+ (ℓ2 − 1)erf

(
ℓ√
2

)}
Student-t (ν = 2) 1

2

(
1 +

√
x2

x2+1

)
1
2ℓ2

{
ℓ2 + 1

ℓ

√
ℓ2

2+ℓ2

[
2ℓ+ ℓ3 − 2

√
2 + ℓ2arcsinh( ℓ√

2
)
]}

Cauchy 1
π arctan(x) + 1

2
1

2πℓ2

[
ℓ(ℓπ − 2) + 2(1 + ℓ2) arctan(ℓ)

]
Laplace 1

2 + 1
2sgn(x)[1− exp(−|x|)] 1

ℓ2
exp(−ℓ)

[
1 + ℓ+ exp(ℓ)(ℓ2 − 1)

]
Logistic 1

1+exp(−x)
2
ℓ2

{
π2

12 + ℓ log[1 + exp(ℓ)] + Li2[− exp(ℓ)]
}
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In Table 1, Φ is the CDF of a standard normal distribution, Li2[z] =
−
∫ z
0 log(1 − x)/xdx is the polylogarithm function of order 2, and erf(z) =

(2/
√
π)

∫ z
0 exp(−x2)dx is the error function.

Proposition 2.7. We further have

lim
ℓ−→0+

H(ℓ) = lim
ℓ−→0+

σ2

ℓ2
=

1

3
and lim

ℓ−→∞
H(ℓ) = lim

ℓ−→∞

σ2

ℓ2
= 0.

Proof: Upon taking a = −ℓ, b = ℓ and µ = 0 in Corollary 2.2, the
required result follows.

Next, we present two further examples in addition to these in Table 1.

Example 2.1. Let X have a truncated symmetric standard Cauchy dis-
tribution with density function f(x) = (2 arctan ℓ)−1 ·

(
1 + x2

)−1
if |x| < ℓ, with

ℓ ⩽ 1, and f(x) = 0 if |y| > ℓ. As its variance is σ2 = ℓ/ arctan ℓ − 1 (see [3], p.
322), we obtain

H(ℓ) =
1

ℓ arctan ℓ
− 1

ℓ2
.

Example 2.2. Let X have a symmetrically truncated standard Gaus-
sian distribution with density function f(x) = {

√
2π[1− 2Φ(−ℓ)]}−1 exp(−x2/2)

if |x| < ℓ, where ℓ ⩽ 1 and Φ is the standard Gaussian cumulative distribu-
tion function, and f(x) = 0 if |x| > ℓ. As its variance can be expressed as
σ2 = 1− 2ℓf(ℓ) (see [3], p. 158), we find

H(ℓ) =
1

ℓ2
− 2

ℓ3f(ℓ)
.

In both these examples, we observe that H(ℓ) → 1/3 as ℓ ↓ 0 and H(ℓ) ↑ 0 as
ℓ ↑ ∞, as stated in Proposition 2.7. However,

ℓH(ℓ) =
σ2

ℓ

behaves differently as ℓ ↑ ∞. In the first example, ℓH(ℓ) → 2/π, but in the second
example, we find ℓH(ℓ) → 0.

3. ILLUSTRATION WITH FINANCIAL DATA

We illustrate the results developed here with intraday spot exchange rate
data of four currencies against the US dollar transacted on the foreign exchange
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(Forex) market. There are 16 million tick-by-tick returns of bid prices provided
by Tick Data, LLC (Table 2). Following the discussion regarding the truncated
nature of the past [4, 5], we consider the symmetric case here.

For each currency, let {Xij} denote the jth return observed on day
i = 1, . . . , d (Table 2). Taking the daily sample standard deviation si and the
maximum daily absolute return ℓi = max1≤j≤ni{Xij}, where ni denotes the sam-

ple size on day i with n =
∑d

i=1 ni, Figure 1 depicts the daily sample ratios
{si/ℓi} in the form of dots.

Now, consider the general sequence ignoring days as {Xt}, where t =
1, . . . , n. Letting ℓ∗ = max1≤t≤n{Xt}, we generated a grid of 1,000 truncation
points, {ℓ : ℓ = mℓ∗/1000,where m = 1, . . . , 1000}. For each ℓ over this grid,
we obtained the sample standard deviation of the conditional (truncated) data
{Xt : |Xt| ≤ ℓ}. In this way, we empirically find the form of the ratio σ/ℓ for the
returns of each currency (Figure 1). Then, Proposition 2.6 provides a feasible and
practical way of describing the relationship between the variance and the cutoff
ℓ. For small ℓ, Matsushita et al. [4, 5] proposed the power law σβ/ℓ ≈ ζ from a
second-order approximation, where β > 0 and ζ are real constants. So, we may
approximate σ/ℓ as

σ

ℓ
≈ ζ1/βℓ−1+1/β.

Figure 2 depicts the log-log plots of this approximate result, and shows the validity
of such a power law approximation for σ/ℓ. Considering the symmetric case,
Figure 1 illustrates how H1/2(ℓ) = σ/ℓ goes to zero as ℓ increases from the actual
data. This decay approximately follows a power law of form H1/2(ℓ) ∝ ℓ−1+1/β

(Figure 2), which is consistent with previous findings [4]. However, while we put
forward a general form for any ℓ > 0, the power law is valid only for ℓ close to
zero [5]. Thus, our results can be applied to analyze other types of data besides
financial data.

Table 2: Intraday spot exchange rate data description.
Country Currency Code Period Number of days (d) Data points (n)

Britain British pound GBP 31 Aug 08 − 12 Jun 15 2,116 2,754,615
Canada Canadian dollar CAD 12 Jun 00 − 12 Jun 15 4,419 3,931,202
Japan Japanese yen JPY 30 May 00 − 12 Jun 15 4,598 4,804,463
Switzerland Swiss franc CHF 30 May 00 − 12 Jun 15 4,587 4,838,100

Total 15,720 16,328,380

Source: Tick Data, LLC.
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Figure 1: Display of ℓ versus the sample ratio σ/ℓ (lines) from data de-
scribed in Table 2, where dots represent daily values.
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Figure 2: Display of ln ℓ versus ln(σ/ℓ) (dashed lines) from data described
in Table 2, where dots represent daily values.

4. CONCLUDING REMARKS

In this work, we have presented a general approach for understanding the
relationship between the variance and the range of a general family of truncated
distributions based on skewing functions. We have established a closed-form
expression for its moments and their asymptotic behavior as the support’s semi-
range tends to zero and ∞.

As discussed previously by Matsushita et al. [4, 5], if the truncated form
arises naturally from the past, the function relating truncation length and stan-
dard deviation may assist in connecting the bounded past and unbounded future
data. For this reason, we expect our results to be useful in many practical situa-
tions like the one demonstrated here with a real financial data.
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