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Abstract:

� The negative binomial (NB) regression model is commonly used to model overdisper-
sed count data. However, the NB regression model is not suitable for highly overdis-
persed data, for which the Poisson-inverse Gaussian (PIG) regression model is often
used instead. The maximum likelihood (ML) estimator is typically used to estimate
the coe�cients of the PIG regression model. However, when multicollinearity exists
among the explanatory variables, the ML estimator's variance can become in�ated. To
address this issue, we propose PIG ridge regression (PIGRR) and quantile-based ridge
regression estimators for the PIG regression model. We also suggest using a Wald-
type method to calculate the con�dence interval on the mean response function of
the PIGRR. To evaluate the performance of these proposed methods, we conducted a
Monte Carlo simulation study, considering mean squared error and average con�dence
lengths as performance criteria. Additionally, we analyzed the tra�c fatalities dataset
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to demonstrate the bene�ts of the proposed estimators for practitioners dealing with
multicollinearity issues in real datasets.
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1. INTRODUCTION

Count data is commonly analyzed in many real-world applications. This
includes examples such as the number of days lost due to work accidents, the
number of occurrences of thunderstorms in a calendar year, or the number of
insurance claims. The Poisson distribution is the primary choice for modeling
such data due to its simplicity, but it assumes that the mean and variance of
the distribution are equal, known as the equidispersion assumption. This makes
the Poisson distribution unsuitable for modeling overdispersed data, where the
variance is larger than the mean. Various factors can cause overdispersion, such
as an insu�cient number of interaction terms in the regression model or the
omission of important explanatory variables.

Various statistical distributions have been proposed to model overdispersed
data, with the negative binomial (NB) distribution being the most popular. The
NB distribution allows for the variance to exceed the mean of the data and can be
obtained as a mixture of Poisson and gamma distributions. In regression models,
when the dependent variable, yi, takes the form of non-negative integers or counts,
the NB regression model, which is a particular case of generalized linear models
(GLMs), can be applied. The NB regression model is widely used in applied areas
such as social, economic, and health sciences [30]. The coe�cients of the NB
regression model can be estimated using the maximum likelihood (ML) estimation
method, which involves solving a non-linear equation through iterative algorithms
such as the iterative weighted least squares (IWLS) algorithm.

The PIG distribution is another distribution used to model overdispersed
data that is discussed in the literature. It is a special case of the Sichel distribu-
tion with two parameters [45]. Like the NB distribution, the PIG distribution can
also be expressed as a mixture of distributions [48]. However, the PIG distribu-
tion uses a mixture of the Poisson and inverse Gaussian distributions, while the
NB distribution uses a gamma distribution as the mixing distribution. The PIG
distribution is particularly useful for count data with longer tails and larger kur-
tosis, making it an alternative to the NB distribution [14]. The PIG distribution
is better suited for data with a high initial peak that may be skewed to the right,
giving it a modeling capacity superior to that of the NB distribution [17]. Furt-
hermore, the PIG distribution has an easily obtainable likelihood function that
has a closed-form representation, making parameter estimation relatively simp-
le [49]. These properties make the PIG distribution more e�ective than the NB
distribution in dealing with highly overdispersed data. The PIG distribution has
been applied in a variety of contexts, including modeling vehicle crash data in
Zha et al. [49] and comparing NB and PIG regression models for horseshoe crabs
data in Putri et al. [39].

In regression models, another issue that can arise is the problem of mul-
ticollinearity. This occurs when the explanatory variables are highly correlated
with each other, as de�ned by Frisch [15]. Multicollinearity has a negative impact
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on the ML estimator, resulting in estimated coe�cients with larger variances and
unreliable inference. Con�dence intervals for unknown parameters may also have
a wider range than usual, and it becomes di�cult to estimate the unique e�ects
of the explanatory variables. To address this issue, Hoerl and Kennard introduced
the Ridge estimator in the linear regression model (LRM). Since then, many di�e-
rent biased estimators have been proposed to combat multicollinearity, including
the Liu estimator [23], Liu-type estimator [24], and two-parameter estimator [38]
and [42], among others.

In GLMs, the problem of multicollinearity was �rst addressed by Schaefer et
al. [43], who proposed the Ridge estimator for logistic regression, a particular case
of GLMs [43]. Since then, the Ridge estimator has been adapted for other special
cases of GLMs. For instance, Månsson and Shukur [29] introduced the Ridge esti-
mator in the Poisson regression model and Locking et al. [25] de�ned it for the
Probit regression model. Algamal [5] proposed the Ridge estimator for gamma
and inverse Gaussian regression models, while Månsson [30] developed it for the
negative binomial model. Khalaf et al. [21] introduced the Ridge estimator in the
Tobit regression model, and Qasim et al. [41] proposed it for the Beta regres-
sion model. Recently, Awwad et al. [8] proposed two-parameter estimators for the
logistic regression model. Other biased estimators have also been proposed by dif-
ferent authors to address multicollinearity in GLMs (see, e.g., [1]- [4], [6], [7], [9],
[10], [11], [13], [22], [26], [27], [28], [35], [36], [37], [40], [42], [46], [47]). To the best
of our knowledge, no Ridge regression or quantile-based ridge regression estima-
tors have been de�ned for the PIG regression model. Moreover, we suggest using
a Wald-type method to calculate the con�dence interval for the mean response
function of the PIG ridge regression (PIGRR). Gómez-Déniz and Calderín-Ojeda
[16] investigated the mixture of Poisson-reciprocal inverse Gaussian distributions,
which, under speci�c conditions, outperforms the PIG model. This paper introdu-
ces the PIGRR and a con�dence interval that can be extended to a mixed Poisson
regression model utilizing the reciprocal inverse Gaussian as the mixing distribu-
tion . The implementation of these enhancements holds substantial potential for
advancing future research.

This paper is organized as follows. In Section 2, we introduce the PIG
regression model, and an estimation of the parameters is given. In Section 3,
we de�ne the Ridge estimator for the PIG regression model and propose some
estimators of the Ridge parameter, also, the Wald con�dence interval is given. In
Section 4, the Monte Carlo simulation study is conducted. In Section 5, we give
a real data example. Finally, the paper ended with conclusions.

2. METHODOLOGY

In this section, we present the PIG regression model and introduce the
ridge regression estimator, which was de�ned by Hoerl and Kennard [18, 19] in
the PIG regression model. Furthermore, we introduce the properties of matrix
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mean squared error (MMSE) and scalar mean squared error (MSE). We will also
propose certain biasing parameters to improve the performance of the proposed
estimator.

2.1. The Poisson-inverse Gaussian regression model

The probability mass function (pmf) of the PIG distribution is given as

(2.1) P (yi;µi, τ) =

(
2αi

π

) 1
2 µyi

i exp
(
1
τ

)
Kyi− 1

2
(αi)

(αiτ)
yi yi!

, yi = 0, 1, 2, . . .

where αi =
√
1+2µiτ

τ and Ks (·) is the modi�ed Bessel function of the second kind
[45]. The mean and variance are given as respectively

(2.2) E (Yi) = µi,

(2.3) V ar (Yi) = µi (1 + τµi) .

In the regression framework, generally, the mean of the response variable is mode-
led. Because V ar(Yi) > E(Yi), the PIG model is suitable to model overdispersed
data.

Let Y1, Y2, . . . , Yn be n independent random variables from the PIG distri-
bution with the parameters µ and τ (Yi ∼ PIG(µ, τ)). Then, we assume that the
mean of Yi satis�es the following functional relation:

(2.4) g (µi) = ηi = xTi β, i = 1, 2, . . . , n

where ηi is the linear predictor, xTi = (xi1, xi2, . . . , xin) denotes the vector of
covariates, and β = (β1, β2, . . . , βp) is the regression coe�cient's vector with size
p. It is assumed that the mean link function g : (0,∞) → R is strictly monotonic
and twice di�erentiable. In literature, there are di�erent link functions such as
identity link function (g(µ) = µ), logarithmic link function (g(µ) = log (µ)), and
square root link function (g(µ) =

√
µ) for more details about the link function,

please see [31]. In this study, we use the log link function.

Generally, the estimate of β is usually found using the ML estimation met-
hod. The likelihood function of the PIG is given as

L (µ, τ ; y) =

n∏
i=1

P (yi;µ, τ)(2.5)

=

n∏
i=1

(
2αi

π

) 1
2 µyi exp

(
1
τ

)
Kyi− 1

2
(αi)

(αiτ)
yi yi!

.
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The log-likelihood function is obtained by taking the natural logarithm of both
sides of the Eq. (2.5) as follows

ℓ (µ, τ ; y) =

n∑
i=1

{
1

2
log (2αi)−

1

2
log (π) + yi log (µi) +

1

τ
+ log

(
Kyi− 1

2
(αi)

)
− yi log (αi)− yi log (τ)− log (yi!)} .(2.6)

When we take µi = exp
(
xTi β

)
, the log-likelihood function is rewritten as follows

ℓ (β, τ ; y) =

n∑
i=1

{ 1

2
log

2

√
1 + 2 exp

(
xTi β

)
τ

τ

− 1

2
log (π)

+ yi log
(
exp

(
xTi β

))
+

1

τ
+ log

Kyi− 1
2


√
1 + 2 exp

(
xTi β

)
τ

τ


− yi log


√

1 + 2 exp
(
xTi β

)
τ

− yi log (τ)− log (yi!)

 .(2.7)

The vector of coe�cients using the ML estimation method is estimated by solving
the following equation

S (β) =
∂ℓ (β, τ ; y)

∂β

=
n∑

i=1

xi

yi −
Ryi− 1

2

(√
1+2 exp(xT

i β)τ
τ

)
(
1 + 2 exp

(
xTi β

)
τ
) 1

2

exp
(
xTi β

)

 = 0,(2.8)

where Rν (z) = Kν+1(z)
Kν(z)

is calculated recursively as R− 1
2
(z) = 1; Rν (z) = 2ν

z +
1

Rν−1(z)
.

Since the Eq. (2.8) is a nonlinear, S (β) can not be solved explicitly. Itera-
tive methods, such as Newton-Raphson or Iteratively Reweighted Least Squares
(IRLS), are necessary to solve this equation. When estimating unknown coe�-
cients using the IRLS algorithm, the unknown parameters are obtained in each
iteration as follows:

(2.9) β(m+1) = β(m) + I−1
(
β(m)

)
S
(
β(m)

)
,

where S
(
β(m)

)
is the score vector evaluated at β(m) and I−1

(
β(m)

)
is the Fisher

information matrix evaluated at β(m). When convergence holds, the vector of
coe�cients can be obtained as follows

(2.10) β̂ML = (D)−1XT Ŵ û,
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where ûi = log (µ̂i) +
(yi−µ̂i)

µ̂i
, W = diag

(
µ̂i

1+τ̂ µ̂i

)
and D = XT ŴX. Also, to

estimate dispersion parameter τ , partial derivative of the log-likelihood function
is obtained as

S (τ) =
∂ℓ (β, τ ; y)

∂β

=
n∑

i=1

{
− 1

τ2
− yi

τ

+ Ryi− 1
2


√

1 + 2 exp
(
xTi β

)
τ

τ

 1 + τ exp
(
xTi β

)
τ2
(
1 + 2 exp

(
xTi β

)) 1
2

 = 0.

The covariance matrix of the ML estimator is obtained as follows,

(2.11) Cov
(
β̂ML

)
∼= (D)−1 .

The asymptotic mean squared error (MSE) of ML estimator can be de�ned as

(2.12) MSE
(
β̂ML

)
∼= tr

[
(D)−1

]
=

p∑
j=1

1

λj
,

where λj is the jth eigenvalue of the XT ŴX matrix. When the explanatory
variables in a PIG regression model are highly intercorrelated, it results in a
multicollinearity problem. This often causes the matrix of weighted cross products
to become ill-conditioned, with some eigenvalues being small. As a consequence,
the estimated MSE of the ML estimator is in�ated. To overcome this issue, we
propose a biased estimator, the PIGRR estimator.

3. Poisson Inverse Gaussian Ridge Regression

We propose PIGRR method as a solution to the problem caused by multi-
collinearity applied to count data on overdispersion case. Let B̂ be any estimator
of the parameter vector β. The di�erence between the log-likelihood functions
assessed at ML estimate and B̂

diff (ℓ) = ℓmax − ℓ
(
B̂
)
.

By following Segerstedt [44], we de�ne the PIGRR as the solution of the optimi-
zation problem

min B̂T B̂ subject to diff (ℓ) = c0

where c0 is the �xed number and by developing the Lagrange function, we de�ne

Q
(
B̂, k

)
= B̂T B̂ −

(
2

k

)[ n∑
i=1

{
1

2
log

(
2αi

π

)
+ yi log

(
exp

(
xTi β

))
+

1

τ

+ log
(
Kyi− 1

2
(αi)

)
− yi log

(αi

τ

)
− log (yi!)

}
+(c0 − ℓmax)] ,
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where αi =

√
1+2 exp(xT

i β)τ
τ , 2

k is the Lagrange multiplier and Q
(
B̂, k

)
is a p× 1

vector with elements qj

(
B̂, k

)

qj

(
B̂, k

)
=

∂Q
(
B̂, k

)
∂B̂j

= 2B̂j −
(
2

k

) ∂ℓ
(
B̂
)

∂B̂j

= 2B̂j −
(
2

k

) n∑
i=1

[(
yi − exp

(
xTi β

)
exp

(
xTi β

) [
1 + τ exp

(
xTi β

)])

×
∂ exp

(
xTi β

)
∂ηi

xij

]
, j = 1, 2, . . . , p.(3.1)

Now de�ne H
(
B̂, k

)
is p × p matrix with elements hjq

(
B̂, k

)
and taking the

second order derivates of qj

(
B̂, k

)
as

hjq

(
B̂, k

)
=

∂2Q
(
B̂, k

)
∂B̂j∂B̂q

= 2δjq −
(
2

k

) ∂2ℓ
(
B̂
)

∂B̂j∂B̂q

Taking the expectation of both sides of Eq. (3.1) as

E

∂2Q
(
B̂, k

)
∂B̂j∂B̂q

 = 2

δjq − (1

k

)
E

−
∂ℓ
(
B̂
)

∂B̂j

∂ℓ
(
B̂
)

∂B̂q


 ,

= 2

δjq + (1

k

) n∑
i=1

xijxiq

exp
(
xTi β

) [
1 + τ exp

(
xTi β

)] {∂ exp
(
xTi β

)
∂ηi

}2
 ,(3.2)

where δjq =

{
1 if j = q

0 otherwise
. By means of the Fisher scoring method in this case

yields

(3.3) H
(
B̂(m), k

)
β̂ (k)(m+1) = H

(
B̂(m), k

)
β̂ (k)(m) +Q

(
B̂(m), k

)
,

where qj

(
B̂, k

)
and hjq

(
B̂, k

)
are the elements of the vector H

(
B̂(m), k

)
and

matrix Q
(
B̂(m), k

)
, respectively, and both can be assessed at the preliminary

estimate β̂ (k)(m). From Eqs (3.1-3.2), identifying that

Q
(
B̂(m), k

)
= 2β̂ (k)(m) −

(
2

k

)[
XT Ŵ û−Dβ̂ (k)(m)

]
.
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H
(
B̂(m), k

)
=

(
−2

k

)
[D + kI] .

Now, the Eq.(3.3) is equivalent to

(D + kI) β̂ (k)(m+1) =

(
2β̂ (k)(m) −

(
2

k

)[
XTWu−Dβ̂ (k)(m)

]
−
(
2

k

)
(D + kI) β̂ (k)(m)

)(
−k

2

)
(D + kI)−1

(D + kI) β̂ (k)(m+1) = XTWu.

When the successive estimates β̂ (k)(m) converges to β̂ (k) as m → ∞, then we
�nd the following PIGRR estimator

(3.4) β̂PIGRR = β̂ (k) = (D (k))−1XTWu,

where k is the ridge parameter and D (k) = (D + kI).

The mean squared error (MSE) of β̂PIGRR equals

MSE
(
β̂PIGRR

)
∼= E

[(
β̂PIGRR − β

)T (
β̂PIGRR − β

)]
∼= tr

[
(D (k))−1D (D (k))−1

]
+ k2βT (D (k))−2 β

∼=
p∑

j=1

λj

(λj + k)2
+

p∑
j=1

k2α2
j

(λj + k)2
,(3.5)

where λj (λ1, λ2, . . . , λp) > 0 is the eigenvalues of the matrix D, α2
j is the jth

element of T T β̂ML and T is the matrix whose columns are the eigenvectors of
the matrix D such that D = ξΛξT , where Λ = diag (λj). Månsson and Shukur
[29] investigated the MSE properties of the Poisson ridge regression, and these
properties are same for the PIGRR. Månsson and Shukur [29] showed that Poisson
ridge regression is superior to the ML estimator in terms of scalar MSE. Similarly,
the β̂PIGRR is also superior to the β̂ML when k > 0.

3.1. Proposed estimators of ridge parameter k

The performance of the PIGRR method depends on the choice of ridge
parameter (k). Therefore, we suggest some new methods for estimating k. First,

we derive the optimal value of k by taking the derivative of MSE
(
β̂PIGRR

)
with

respect to k

(3.6)
∂MSE

(
β̂PIGRR

)
∂k

= −2

p∑
j=1

λj

(
1− kα2

j

)
(λj + k)3

.
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By equating Eq. (3.6) to zero, we �nd the value of k that minimizesMSE
(
β̂PIGRR

)
as

(3.7) kj =
1

α2
j

.

Di�erent estimators of k recommended by Månsson and Shukur [29] for the Pois-
son regression and some of these estimators are generalized for the PIGRR:

k̂1 =
1

α2
max

; k̂2 =

 p∏
j=1

1

mj

 1
p

; k̂3 = max

(
1

mj

)
,

where α2
max is the maximum value of α2

j and mj = (k)
1
2 . By following Qasim et

al. [41], we suggest k̂4 estimator for the PIGRR:

k̂4 =
p∑p

j=1 α
2
j

.

Now, we propose a quantile-based ridge estimation. Let X be a continuous random
variable with a cumulative distribution function (cdf) F (x). Then the qth quantile
of a population is denoted as Q (q) and characterized the functional inverse of the
cdf taken at q, such as

(3.8) Q (q) = F−1 (q) = inf [x : F (x) ≥ q]

for predetermined 0 < q < 1. The Eq.(3.8) can also be de�ned as P [x ≤ Q (q)] =
q, which indicates that 100q% of the observations less than or equal to the popu-
lation quantile Q (q).

By means of Eq. (3.7), we begin by setting S1 =
(
L, k(1)

)
, S2 = [ k(1), k(2)

)
,

. . ., Sp−1 = [ k(p),U
)
, where k(1), k(2), . . . , k(p) are order statistics of kj(j = 1, 2, . . . , p),

and L and U are lower and upper bounds of k (which can be > 0 and ∞, respecti-
vely). In addition, the qth quantile of Qq lies in one of these intervals. As a result,
the quantile-based ridge estimator can be computed as

P [k ≤ Q (q)] = q, 0 < q < 1.

The qth quantile can also be expressed as P [k > Q (q)] = 1−q. We set four levels
(q = 0.25, 0.50, 0.75, 0.95) of the quantiles and therefore, we propose four di�erent
quantile-based ridge estimators for the PIGRR, namely, Q0.25,Q0.50,Q0.75 and
Q0.95. These ridge estimators are proposed in order to get the lowest MSE of the
PIGRR.

3.2. Wald con�dence interval

We �rst examine the coverage properties of Wald-type con�dence intervals
on the mean response function, µi = exp

(
xTi β

)
. Recall that in the LRM, a con�-

dence interval on E (y|x = x0) with p parameter is

ŷ (x0)± tα
2
,n−pσ̂

√
xT0 (XTX)−1 x0.
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Myers and Montgomery [33] provide an analogous illustration for the GLMs.
The asymptotic 100 (1− α)% con�dence interval on the mean response function
at the point x0 as follows

(3.9) µ̂ (x0)± zα
2

√
cT0

(
CT Ŵ−1C

)−1
c0,

where µ̂ (x0) is the estimated mean response function at the point of x0, C is
the matrix of derivatives stimulated by the Taylor series expansion applied in the
GLMs, W = diag {V ar (yi)}, where V ar (yi) = b̈ (θ) a (ϕ) from the exponential
family of distribution, and c0 is the vector of these derivatives. By following Mc-
Cullagh and Nelder [31] and Myers et al. [34], the development of Eq. (3.9) is
relatively simple. The PIG regression is the member of the exponential family of
distribution. For a link, say, g (µ) = xTβ, we have µ = g−1

(
xTβ

)
and its estima-

ted mean function µ̂ = g−1
(
xT β̂

)
. We know that µ is a nonlinear function of β.

We make use of the delta method to approximate V ar [µ̂ (x0)] for the con�dence
interval on µ (x0). The delta method allows for approximation of the variance of
a quantity that is a nonlinear function. Since µ̂ (x0) is a nonlinear function of
parameter in estimates β̂ and by means of the delta method

V ar (µ̂ (x0)) = cT0

{
Cov

(
β̂
)}

c0,

where c0 = ∂µ̂(x0)

∂β̂ML
is a vector of derivatives and Cov

(
β̂
)

is the asymptotic

variance-covariance matrix of the ML estimator for the GLMs, such as I
(
β̂
)−1

=(
CTW−1C

)−1
and therefore, V ar (µ̂ (x0)) = cT0 is approximated by cT0

(
CTW−1C

)−1
c0.

We de�ne the pivotal quantity

z =
µ̂ (x0)− µ (x0)[

cT0 (CTW−1C)−1 c0

] 1
2

has a normal distribution with mean 0 and variance 1. Hence the useful general
form of the approximate 100(1−α)% con�dence interval on µ (x0) for the GLMs is

µ̂ (x0)±zα
2

√
cT0

(
CT Ŵ−1C

)−1
c0. Then, we consider the special case of the GLMs

is PIG regression. By using the canonical link function C =
(
WX
a(ϕ)

) (
CTW−1C

)−1
=(

XTW−1X
)−1 {a (ϕ)}2, c0 = {V ar(y0)}x0

a(ϕ) , and �nally the required con�dence in-
terval is de�ned as

µ̂ (x0)± zα
2
V̂ ar (y0)

√
xT0

(
XT Ŵ−1X

)−1
x0.

Now we de�ne the Wald con�dence interval for µi = exp
(
xTi β

)
by using the mean

and variance functions of the PIG regression

(3.10) exp
(
xTi β̂ML

)
± zα

2

[
exp

(
xTi β̂ML

){
1 + τ̂ exp

(
xTi β̂ML

)}]√
xTi D−1xi,
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where D = XT Ŵ−1X. By using the asymptotic variance-covariance matrix of the
PIGRR, we de�ne the Wald con�dence interval for µi = exp

(
xTi β

)
(3.11)

exp
(
xTi β̂PIGRR

)
±zα

2

[
exp

(
xTi β̂PIGRR

){
1 + τ̂ exp

(
xTi β̂PIGRR

)}]√
xTi D (k)−1DD (k)−1 xi,

where D (k) = XT Ŵ−1X + kI.

4. Monte Carlo simulation

In this section, we conduct a Monte Carlo simulation to demonstrate the
performance of the proposed estimator compared to the ML estimator. In the
following subsection, we present the simulation design.

4.1. Design of the simulation

The factors considered in the simulation to evaluate the performance of the
proposed estimator include sample size (n), degree of correlation (ρ), and the num-
ber of explanatory variables (p). To investigate the impact of these factors, we set
up a simulation design that comprises four di�erent sample sizes: 50, 100, 150, and 200,
with three distinct correlation coe�cient values (ρ) of 0.90, 0.95, and 0.95. Moreo-
ver, we use three di�erent values for the number of explanatory variables, namely
3, 5, and 7.

We generate the dependent variable of the PIG regression model as follows

(4.1) yi ∼ PIG (µ, τ)

where µ = exp
(
XTβ

)
, β = (β1, β2, . . . , βp) with

∑p
i=1 β

2
j = 1. We use the

following method, which was given by McDonald and Galarneau [32], to gene-
rate explanatory variables:

(4.2) xij =
(
1− ρ2

) 1
2 zij + ρzip

where zij are independent pseudo-random numbers following the standard normal
distribution, ρ represents the correlation between the explanatory variables and
i = 1, 2, . . . , n, j = 1, 2, . . . , p. To compare the performance of the estimators, we
estimate the MSE, which is calculated based on 1000 simulation replications for
various combinations of n, ρ, and p.

(4.3) MSE
(
β̂
)
=

∑1000
r=1

(
β̂r − β

)T (
β̂r − β

)
1000

where β̂r is the estimated value of coe�cients in the rth replication. Also, we
obtain the average con�dence lengths on the means response functions of ML
estimator and PIGRR methods.
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4.2. Results of the simulation study

Tables 1-2 present the results of simulation study, which aimed to investigate
the impact of several factors on the accuracy of estimation. Speci�cally, we provide
MSE values for di�erent combinations of p, n, and ρ values. These factors include
the number of explanatory variables (p), sample sizes (n), and correlation degrees
(ρ), all of which can signi�cantly a�ect the reliability of statistical analysis. In
addition to the MSE values, we also report the average con�dence lengths for the
means response functions of ML and PIGRR methods. These measures provide
insight into the precision and stability of the estimated response functions under
varying conditions.

Table 1 presents several important �ndings from our simulation study. First-
ly, the results show that PIGRR methods with all ridge parameters outperform
the ML method in terms of MSE values, which con�rms our initial expectation.
Additionally, the MSE values of the PIGRR estimator with the ridge parameter
Q0.95 are consistently smaller than the MSE values of other PIGRR estimators
and ML across all conditions. Furthermore, our simulation results reveal that cor-
relation degrees have a negative impact on the MSE values for �xed values of p and
n. Speci�cally, as the degree of correlation increases, the MSE values of all estima-
tors increase, indicating reduced accuracy and reliability of statistical inference.
Conversely, increasing the sample size has a positive e�ect on the MSE values, as
larger samples provide more reliable estimates and reduce sampling variability. It
is also important to note that the MSE values of ML are approximately twice as
large as those of the PIGRR method with Q0.95 across all simulation scenarios.
This suggests that the PIGRR method is a more accurate and reliable estimator
than the ML method, particularly in high-dimensional settings. Finally, we obser-
ve that increasing the number of explanatory variables also leads to an increase in
MSE values when other factors are held constant. This highlights the importance
of careful variable selection and regularization techniques in statistical modeling.

Table 2 presents the average con�dence lengths for the ML and PIGRR met-
hods with Q0.95. Similar to the MSE results, we observe several important �ndings
related to the average con�dence lengths. Firstly, the results show that the ave-
rage con�dence lengths of the PIGRR method with Q0.95 are generally shorter
than those of the ML method, indicating a higher precision and more accurate
inference. Moreover, as the degree of correlation increases, the average con�dence
lengths of both methods also increase, highlighting the impact of correlation on
statistical inference. We also �nd that the number of explanatory variables has
an adverse e�ect on the average con�dence lengths. Speci�cally, as the number
of explanatory variables increases from 3 to 7, the average con�dence length of
both methods also increases, suggesting that careful variable selection and regu-
larization are important in minimizing the impact of over�tting. Additionally, the
simulation results show that increasing the sample size generally leads to a decre-
ase in the average con�dence lengths for both methods, as larger samples provide
more reliable estimates and reduce sampling variability. However, we note that
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there are some exceptions to this trend, as the average con�dence lengths do not
always decrease when the sample size changes from 150 to 200.

Overall, these �ndings provide important insights into the impact of various
factors on the precision and accuracy of statistical inference and have important
implications for researchers and practitioners in selecting appropriate methods
and interpreting their results.

5. Application: Tra�c fatalities

In this application, we model the tra�c fatalities for 48 US states (excluding
Alaska and Hawaii) during 1988. The data is taken from the AER package in R
and it is denoted Fatalities. We �t PIG regression for the number of night-time
vehicle fatalities of the age group 21-24 years old (yi). We consider the following
regressors: per capita personal income in 1987 dollars (X1), spirits that measures
the spirits consumption (X2), population which is the population in the respective
age group such as, population age group 21-24 years old (X3), total population
(X4) and miles-total measured as the total vehicle miles in millions (X5). We
see the impact of per capita personal income, spirits consumption, population
age group 21-24 years old, miles-total, and total population on the number of
night-time vehicle fatalities. The square root transformation is used to �nd the
positive predictive con�dence interval values of the number of night-time vehicle
fatalities. Our analysis aimed to understand how these variables are related to the
number of night-time vehicle fatalities. The impact of per capita personal income,
spirits consumption, population age group 21-24 years old, miles-total, and total
population on the number of night-time vehicle fatalities was explored using PIG
regression. Our computations are carried out by using R programing language.
The problem of multicollinearity is tested by the condition index,which is calcula-
ted by taking the square root of the maximum eigenvalue divided by the minimum

eigenvalue. CI =
√

λmax
λmin

= 95.12, which indicate a strong multicollinearity in the

dataset (for more details, please see [1], [10] and [12]). The eigenvalues are 2605.7,
92.5, 40.3, 11.6, 0.57 and 0.29.

The MSE of the conventional ML estimator is in�ated in the presence of
multicollinearity. Therefore, we used biased estimation methods to overcome the
problem of multicollinearity. The bene�t of our proposed estimator is shown by
using this dataset in the PIG regression model. Table 3 presents the estimates of
the parameters and scalar MSE of the ML and PIGRR estimators. Application
results reveal that a substantial decrease of the MSE when applying PIGRR.
This is in line with the simulated results where PIGRR always have a better
performance than the ML in almost all considered conditions. Previous empirical
results according to OECD (2015) is mixed but in general robustness as shown by
our new estimator is desirable. The estimated coe�cient using ML and PIGRR
of per capita personal income is positive which shows the higher number of night-
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time vehicle fatalities. Furthermore, spirits are negative which is counterintuitive
sine a higher consumption of alcohol should lead to more accidents on average.
However, when using proposed PIGRR with quantile based ridge estimation the
value of the coe�cients is shrunken towards zero. Finally, total population is
positive in age group 21-24 which according to OECD (2015) is in line with
previous research. The values using PIGRR is shrunken towards zero but not as
much as for income and spirits variables. Miles-total is actually positive, and it
increases the number of night-time vehicle fatalities.

The results presented in Table 4 (appendix) demonstrate the Wald-type
95% con�dence interval on the mean response function for each observation of
the number of night-time vehicle fatalities using the ML and PIGRR with a
shrinkage parameter k2. It can be seen that in the presence of multicollinearity,
the con�dence intervals for the ML estimator are wider compared to those of
PIGRR. This indicates that the PIGRR method is better at shrinking the coef-
�cients towards zero and producing narrower con�dence intervals. Moreover, the
average 95% con�dence length on the mean response function using the ML and
PIGRR are 6.56 and 5.44, respectively, which further con�rms the superiority of
the PIGRR method in terms of producing narrower con�dence intervals and co-
e�cient shrinkage. These �ndings provide additional evidence that the proposed
PIGRR method is more e�ective in reducing the impact of multicollinearity on
the estimation of the mean response function. Furthermore, it is worth noting
that the estimated MSE of the proposed PIGRR estimator is smaller than that of
the traditional ML estimator, which highlights the advantage of using the PIGRR
method in this context.

6. Conclusion

The Poisson inverse Gaussian ridge (PIGRR) regression and Wald-type con-
�dence interval for the predictive response function are proposed and is compared
to alternative ML estimator. Also, quantile-based ridge estimation (Q0.25, Q0.50,
Q0.75, Q0.95) and shrinkage estimators(k1, k2, k3, k4) are suggested to obtain the
optimal value of the PIGRR for the GLM. Results show that the PIGRR method
outperforms the traditional ML estimator, providing narrower con�dence intervals
for the predictive response function. Monte Carlo simulations and an application
to a tra�c fatalities dataset further demonstrated the e�ectiveness of the propo-
sed PIGRR estimator. In conclusion, the results of this study indicate that the
PIGRR method can be used as an alternative estimator for the PIG regression
and GLMs, especially in the presence of multicollinearity.
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Table 1: MSE values of ML and PIGRR estimators with di�erent ridge
parameters

PIGRR

n ρ ML k1 k2 k3 k4 Q0.25 Q0.50 Q0.75 Q0.95

p=3

50
0.90 3.9629 3.6578 3.7991 3.5100 3.4228 3.3892 3.1003 2.5715 2.3345
0.95 5.3212 4.8090 4.6749 3.9837 4.3833 4.2103 3.7195 3.0916 2.8166
0.99 16.4580 14.2634 8.6817 7.3257 12.0915 10.3336 7.9850 6.8134 6.2833

100
0.90 3.2531 3.0851 3.2157 3.1278 3.0607 3.0814 2.9287 2.4258 2.2284
0.95 4.0130 3.7358 3.8521 3.6021 3.5256 3.5081 3.2874 2.8365 2.6232
0.99 9.8350 8.6379 6.4043 5.3192 7.5223 6.8228 5.6322 4.9925 4.7043

150
0.90 3.1694 3.0541 3.1495 3.0964 2.9636 2.9847 2.8415 2.4136 2.2074
0.95 3.6547 3.4477 3.5705 3.4123 3.2946 3.2951 3.1528 2.6992 2.4918
0.99 7.3670 6.5738 5.5960 4.6865 5.8786 5.4267 4.7384 4.2610 4.0352

200
0.90 3.1255 3.0402 3.1128 3.0654 2.9555 2.9785 2.8237 2.3700 2.1659
0.95 3.5378 3.3804 3.4881 3.3811 3.2627 3.2783 3.1339 2.6926 2.4826
0.99 6.3801 5.7209 5.1625 4.3956 5.1791 4.8949 4.4018 3.9482 3.7147

p=5

50
0.90 5.9567 5.4809 5.6316 4.5465 4.8643 4.7143 4.0507 3.2758 2.3346
0.95 9.7346 8.7749 8.0036 5.4935 7.4877 7.0213 5.7144 4.5515 3.0213
0.99 42.3171 37.2487 14.5175 10.6302 29.5380 23.9425 15.8654 11.3122 8.6180

100
0.90 4.2455 4.0043 4.2025 3.9079 3.7171 3.7109 3.4010 2.8741 2.1255
0.95 5.9535 5.4818 5.6709 4.6344 4.8770 4.7407 4.1433 3.5055 2.5924
0.99 20.7169 18.2691 10.4827 7.1336 14.6964 12.5546 9.1581 7.2057 5.8155

150
0.90 3.7633 3.6038 3.7489 3.5885 3.4036 3.4129 3.1439 2.7543 2.0351
0.95 5.0467 4.7354 4.9369 4.3738 4.3428 4.2698 3.8872 3.3723 2.5377
0.99 15.1806 13.5483 9.4951 6.5243 11.1794 9.8631 7.6467 6.3033 5.1333

200
0.90 3.6360 3.5172 3.6278 3.5229 3.3640 3.3716 3.1369 2.6800 1.9944
0.95 4.5471 4.3075 4.4927 4.1243 4.0071 3.9783 3.6564 3.1451 2.3418
0.99 11.8073 10.5958 8.6331 5.8646 8.8742 7.9941 6.4428 5.3743 4.2514

p=7

50
0.90 9.1405 8.4541 8.5601 6.0465 7.2886 7.0655 5.8112 4.1206 2.3914
0.95 15.6450 14.2603 12.2415 6.9601 11.6641 10.6449 7.9813 5.6598 3.4269
0.99 77.3166 69.2965 20.3857 14.8155 53.4698 44.5839 28.7129 17.5815 11.8956

100
0.90 5.5511 5.2208 5.5038 4.7570 4.6679 4.6057 4.0392 3.0931 1.9922
0.95 8.6180 7.9574 8.1922 5.8951 6.8185 6.5105 5.4209 4.1414 2.7296
0.99 35.9445 32.2017 15.3524 8.6824 24.9931 22.1400 14.8486 9.5913 6.4953

150
0.90 4.6103 4.3901 4.5963 4.2505 4.0346 4.0119 3.6539 2.8875 1.8452
0.95 6.5878 6.1419 6.4549 5.2634 5.4149 5.2693 4.5961 3.6723 2.3812
0.99 22.3684 20.0214 13.8088 7.5938 15.7448 14.5071 10.2449 7.2399 5.2942

200
0.90 4.4384 4.2867 4.4326 4.1912 4.0171 4.0027 3.6143 2.8580 1.8242
0.95 6.1816 5.8494 6.1113 5.1619 5.2816 5.1938 4.5491 3.6021 2.3417
0.99 18.6922 16.8889 12.5442 7.5197 13.6177 12.4779 9.3996 7.0053 5.0791



PIG Ridge Regression 21

Table 2: Comparison of 95% average con�dence lengths on the means
response functions of ML and PIGRR estimators

ML PIGRR[Q0.95]

n n

Degree of collinearity 50 100 150 200 50 100 150 200

p=3
0.90 139.84 48.42 40.63 58.54 26.68 14.84 13.01 11.00
0.95 239.95 65.23 46.57 63.21 40.92 21.44 14.54 12.19
0.99 273.31 66.00 59.94 68.10 194.36 44.19 21.76 18.22

p=5
0.90 1613.70 227.33 309.02 269.58 423.15 27.24 30.05 26.33
0.95 2677.17 468.77 317.27 330.86 955.23 67.50 31.49 29.73
0.99 14011.06 529.45 605.12 482.90 963.27 151.18 105.99 37.39

p=7
0.90 19381.12 1554.10 626.95 965.84 453.31 41.55 42.09 18.07
0.95 25894.30 1563.55 716.83 1143.08 718.47 122.27 37.51 50.53
0.99 29457.73 3702.62 10852.13 2389.50 4633.72 600.87 175.96 258.32

Table 3: Estimated coe�cient and MSE of estimators

Intercept X1 X2 X3 X4 X5

Estimators β0 β1 β2 β3 β4 β5 MSE

ML 1.644 0.117 −0.126 −0.628 0.777 0.130 5.349
PIGRR

k1 1.641 0.097 −0.094 −0.220 0.350 0.154 2.111
k2 1.639 0.094 −0.092 −0.194 0.326 0.154 2.063
k3 1.617 0.066 −0.075 −0.058 0.201 0.155 2.151
k4 1.615 0.063 −0.074 −0.051 0.195 0.155 2.174

Q0.25 1.615 0.063 −0.074 −0.051 0.195 0.155 2.174
Q0.50 1.564 0.017 −0.058 0.015 0.148 0.160 2.437
Q0.75 1.504 −0.025 −0.049 0.044 0.136 0.166 2.577
Q0.95 1.145 −0.128 −0.048 0.109 0.148 0.193 2.864

Note: The explanatory variables are de�ned as: the per capita personal income in
1987 dollars (X1), spirits that measures the spirits consumption (X2), population
which is the population in the respective age group such as, population age group
21-24 years old (X3), total population (X4) and miles-total measured as the total
vehicle miles in millions (X5)
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Table 4: Comparison of 95%Con�dence Interval (CI) on the means re-
sponse function using ML and PIGRR estimators

Observation
MLE PIGRR Length of 95% CI

µi 95% CI µi 95% CI MLE PIGRR

1 4.84 (2.86, 6.82) 4.84 (3.08, 66.60) 3.96 3.52
2 4.66 (3.20, 6.12) 4.67 (3.42, 5.92) 2.91 2.50
3 4.47 (2.57, 6.37) 4.36 (2.58, 6.15) 3.81 3.56
4 20.30 (14.10, 26.51) 20.45 (14.25, 26.64) 12.41 12.39
5 4.76 (2.81, 6.71) 4.73 (2.88, 6.57) 3.90 3.69
6 5.78 (0.00, 14.00) 5.54 (0.00, 13.13) 14.00 13.13
7 3.85 (1.12, 6.59) 3.91 (1.35, 6.47) 5.47 5.12
8 8.34 (4.12, 12.57) 7.77 (4.98, 10.55) 8.45 5.57
9 5.22 (2.82, 7.63) 5.47 (3.94, 7.00) 4.81 3.06
10 4.18 (2.63, 5.73) 4.07 (2.64, 5.51) 3.10 2.87
11 7.47 (0.32, 15.27) 7.34 (2.80, 11.89) 14.95 9.09
12 5.53 (3.68, 7.38) 5.51 (3.97, 7.04) 3.70 3.07
13 5.09 (2.68, 7.50) 4.87 (2.74, 7.00) 4.82 4.26
14 5.15 (2.24, 8.06) 4.91 (2.38, 7.44) 5.82 5.06
15 4.63 (3.00, 6.26) 4.65 (3.04, 6.25) 3.27 3.21
16 4.37 (1.94, 6.81) 4.51 (2.42, 6.60) 4.87 4.18
17 4.01 (2.63, 5.38) 4.02 (2.73, 5.31) 2.75 2.59
18 5.31 (0.83, 9.79) 5.35 (1.19, 9.52) 8.96 8.34
19 5.63 (0.50, 11.76) 5.72 (0.22, 11.23) 11.26 11.01
20 6.50 (4.28, 8.71) 6.62 (4.83, 8.40) 4.43 3.57
21 5.11 (3.05, 7.17) 5.05 (3.09, 7.01) 4.12 3.92
22 4.02 (1.68, 6.35) 4.08 (1.82, 6.34) 4.67 4.52
23 5.65 (3.59, 7.70) 5.47 (3.75, 7.19) 4.11 3.44
24 3.87 (2.60, 5.14) 3.85 (2.61, 5.09) 2.54 2.48
25 4.52 (2.91, 6.14) 4.40 (2.90, 5.90) 3.24 3.00
26 2.83 (0.00, 7.41) 3.12 (0.00, 7.47) 7.41 7.47
27 3.12 (0.00, 7.88) 3.39 (0.00, 7.90) 7.88 7.90
28 7.44 (0.00, 16.28) 7.05 (0.94, 15.04) 16.28 14.10
29 4.10 (2.60, 5.60) 4.08 (2.63, 5.52) 3.01 2.89
30 9.91 (0.00, 33.90) 9.75 (0.00, 22.63) 33.90 22.63
31 5.45 (3.85, 7.05) 5.56 (4.21, 6.91) 3.20 2.71
32 3.63 (2.10, 5.16) 3.67 (2.24, 5.10) 3.06 2.86
33 7.82 (3.51, 12.13) 7.48 (4.44, 10.51) 8.62 6.07
34 4.93 (2.67, 7.19) 4.80 (3.04, 6.57) 4.52 3.53
35 4.84 (3.20, 6.48) 4.67 (3.31, 6.04) 3.28 2.74
36 8.31 (0.26, 16.37) 7.81 (3.33, 12.29) 16.10 8.96
37 4.09 (1.77, 6.40) 4.07 (1.95, 6.19) 4.63 4.23
38 4.06 (1.94, 6.18) 4.25 (2.38, 6.11) 4.24 3.73
39 3.80 (2.49, 5.11) 3.80 (2.52, 5.07) 2.62 2.55
40 5.24 (3.58, 6.90) 5.19 (3.68, 6.70) 3.32 3.02
41 10.63 (2.53, 18.72) 10.77 (5.06, 16.47) 16.18 11.41
42 4.38 (2.37, 6.39) 4.28 (2.37, 6.20) 4.03 3.84
43 3.85 (2.38, 5.33) 3.87 (2.50, 5.25) 2.94 2.75
44 6.01 (1.60, 10.42) 6.11 (2.40, 9.82) 8.82 7.42
45 5.58 (3.05, 8.12) 5.39 (3.22, 7.56) 5.07 4.34
46 4.42 (2.15, 6.68) 4.28 (2.20, 6.37) 4.53 4.17
47 5.05 (3.65, 6.45) 5.07 (3.78, 6.36) 2.81 2.58
48 3.81 (2.70, 4.92) 3.81 (2.73, 4.89) 2.23 2.17
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