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1. INTRODUCTION

Recent research in statistical science has focused on developing effective
and useful techniques for analyzing gene expression data. In such ultrahigh-
dimensional data, the number of genes is usually in the order of thousands or
millions and exponentially larger than the available cases or subjects. For in-
stance, thousands of gene expression profiles can be used in disease classification;
millions of single-nucleotide polymorphisms are available for genome-wide as-
sociation studies between genotypes and phenotypes. If we are to relate these
ultrahigh dimensional genes to a response variable in a regression set-up, we need
to perform variable selection.

A relevant family of methods for prediction of the response based on the
high dimensional gene expression data are penalized linear regression models.
Consider the linear regression model with response variable Y and p explanatory
variables (e.g. gene expressions) as predictors. Given the responses y1, . . . , yn
from n independent samples and the corresponding predictor values, say xij , i =
1, . . . , n for the j-th covariate for j = 1, . . . , p, this model can be written in matrix
form as

(1.1) yi = x′iβ + εi,

where xi = (xi1, . . . , xip)
′ and εis are independent following N(0, σ2) for i =

1, . . . , n. The model parameters β = (β0, β1, . . . , βp) and σ2 need to be estimated
from the data. In the ultrahigh dimensional case with p� n, we need to assume
sparsity of the regression coefficient β to achieve identifiability of the estimators,
i.e., we assume that only a few of the components of β are non-zero. Under
the sparsity assumption, estimation of the model parameters θ = (β, σ2) is per-
formed through penalized estimation procedures with appropriate penalties which
can successfully recover all and only the truly important variables asymptotically
with probability tending to one. There are plenty of such penalized regression
procedures available in recent literature, starting from the LASSO ([16]) and
its refinements([18], [21]) to more advanced procedures based on penalties like
SCAD ([1]) or MCP ([19]) and many more, which work well in moderately high
dimensions. However, a common problem with these methods in ultrahigh di-
mensional set-ups is their computational cost and numerical issues, which has
led to development of simpler variable screening methods at the initial stage to
reduce the number of genetic predictors from the order of potentially millions to
an order of a few hundred (often lesser than the sample size as well) and then
apply an appropriate penalization method to obtain final model estimates from
the reduced set of covariates. The most popular method for such screening pur-
poses is the Sure Independence Screening (SIS) proposed by Fan and Lv [2] which
has a simple interpretation and theoretical guarantees along with fast computa-
tion. Even with its simple structure, the method yet enjoys the model selection
oracle property under ultrahigh-dimensional set-ups where log(p) = O(nζ) for
some 0 < ζ < 1. An iterative extension, ISIS, is also proposed in [2] to tackle
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the issue of collinearity among covariates. The SIS and ISIS are routinely being
applied in ultrahigh dimensional applications and have also been extended to
more complex models ([3], [4], [5], [6], [11], [12], [13], [10], [15], [22], for instance).
Each of those proposals focuses on a specific model, and its performance is based
upon the belief that the imposed working model is close to the true model. Zhu
et al. [20] proposed a sure independent ranking and screening procedure which
avoids the specification of a particular model structure. Motivated by this work,
He et al. [7] proposed a framework called quantile-adaptive model-free screen-
ing. However, one major drawback of the SIS or ISIS is their non-robust nature
against data contamination as indicated already in the discussion of the original
paper itself. This issue can be crucial when applying the method for screening of
important genes from large-scale genomic data, which are often prone to at least
a few outliers.

In this paper, we develop a new robust screening procedure, in the context
of ultrahigh dimensional linear regression, where the number of covariates p may
grow exponentialy with the sample size n, using robust loss functions such as the
L1 loss and the Huber loss ([8]). A robust version of ISIS along the same lines
will also be discussed to tackle the correlations among covariates. The suggested
methods will be applied to the riboflavin data example.

The plan of the paper is as follows. In Section 2, a brief description of the
new screening method is presented. We also introduce an iterative approach to
enhance the finite sample performance of the proposed screening procedure. In
Section 3, simulation studies are carried out to assess the performance of the
suggested approaches, and the riboflavin data set is analyzed.

2. METHODOLOGY

In this section, we develop a marginal utility for robust variable screening
based on the L1 loss and the Huber loss [8] to reduce the dimensionality.

Suppose that we are interested in exploring the relationship between X =
(X1, ..., Xp)

T and Y . A general robust framework is to minimize an objective
function

(2.1) Q(β0,β) =
1

n

n∑
i=1

L(Yi, β0 + XT
i β),

where β = (β0, β1, ..., βp)
T is a parameter vector, and L(., .) is a robust loss

function such as the L1 loss, L(Yi, β0 + XT
i β) = |Yi − β0 −XT

i β| or the Huber
loss, defined as

(2.2) Lδ(Yi, β0+XT
i β) =

{
1
2(Yi − β0 −XT

i β)2 if |Yi − β0 −XT
i β| ≤ δ

δ
(
|Yi − β0 −XT

i β| − 1
2δ
)

if |Yi − β0 −XT
i β)| > δ

,
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where δ is a parameter that controls the robustness level, and a smaller value
of δ usually leads to more robust estimation. In implementation, we consider
δ = 1.345, the value commonly used in robust regression that produces 95%
efficiency for normal errors (see Huber [9]). Here, L(., .) can be regarded as the
loss of using β0 + XT

i β to predict Yi.

We consider the problem of robust variable screening in ultrahigh dimen-
sional data. The goal is to rapidly reduce the number of the predictors from p
to a moderate scale via a computationally convenient procedure. Consider the
marginal utility of the jth predictor as

(2.3) Lj = min
β0,βj

1

n

n∑
i=1

L(Yi, β0 +Xijβj), j = 1, . . . , p,

which minimizes the loss function. The idea of SIS in this framework is to com-
pute the vector of marginal utilities L = (L1, . . . , Lp)

T and rank the predictors
according to the marginal utilities: the smaller the more important. Note that
in order to compute Lj , we need only fit a model with two parameters, β0 and
βj , so computing the vector L can be done very quickly and stably, even for an
ultrahigh dimensional problem.

The predictor Xj is selected by SIS if Lj is one of the d smallest components
of L. Fan and Lv [2] suggested setting d = [n/ log(n)], where [a] refers to the
integer part of a. Further, Zhu et al. [20] proposed a combination of hard and
soft thresholding strategies to obtain the cutoff point that separates the active
and inactive predictors. We refer to the screening procedures described above as
LAD-SIS and Huber-SIS, corresponding to the L1 and the Huber loss functions,
which means that the LAD loss and the Huber loss are applied to screen the truly
important predictors.

Suppose that d predictors are selected in the screening step. Now we further
knock out unimportant predictors among them using a more refined penalized
method, as we now describe. By reordering the predictors if necessary, we may
assume without loss of generality that X1, . . . , Xd are the variables recruited by
screening. We let Xi,d = (Xi1, . . . , Xid)

T and redefine β = (β0, β1, . . . , βd)
T . In

the penalized robust approach, we seek to minimize

(2.4) min
β0,βj

1

n

n∑
i=1

L(Yi, β0 + XT
i,dβ) + λ

d∑
j=1

| βj |,

where λ > 0 is a regularization parameter, which may be chosen by five-fold cross-
validation, for example. This two-stage method is summarized in Algorithm 1.
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Algorithm 1 Robust SIS

Input: Data matrix X, vector of responses Y, model size d
Steps:

• Step 1(screening): For each j = 1, . . . , p, compute the marginal utility of
the jth predictor as

Lj = min
β0,βj

1

n

n∑
i=1

L(Yi, β0 +Xijβj),

where L(., .) is either the L1 loss or the Huber loss. The screened sub-
model M̂d is the indices of the d smallest entries of the marginal utilities
L = (L1, . . . , Lp).

• Step 2(post-screening variable selection): Apply a robust penalized re-
gression model, either LAD-LASSO or Huber-LASSO, to the screened
variables XM̂d

= {Xj : j ∈ M̂d} to obtain an estimated coefficient vec-

tor, say β̂d = (β̂d0, β̂dr1 , . . . , β̂drd)T .

Output: The final estimated model M̂ = {1 ≤ k ≤ d, β̂drk 6= 0} along with the

parameter estimates β̂d.

The key idea of Algorthim 1 is to use different marginal utilities to screen
predictor variables. As such, it can suffer from the same potential issues as the
usual SIS. First, some unimportant predictors that are highly correlated with the
important ones can have higher marginal utilities and thus priority to be selected
than other important ones that are relatively weakly related to the response.
Second, some important predictors that are jointly correlated but marginally un-
correlated with the response can be missed after screening. Such cases occur
mostly due to strong correlation between the important and unimportant pre-
dictors. To address these issues, we next briefly discuss an iterative extension of
Algorithm 1 that enables us to exploit more fully the joint information among
the predictors.

Our the iterative extension, is motivated by the idea of two-scale learning
with the iterative SIS (ISIS) in [2] and [5]. It works as follows by applying
large-scale screening and moderate-scale selection in an iterative fashion. First,
apply LAD-SIS (or, Huber-SIS) to the original sample (Xi, Yi)

n
i=1 to select k1

variables with index set A(0) = {i1, . . . , ik1}, and then employ the LAD-LASSO
(or, Huber-LASSO) to obtain a subset M̂(0) of these indices. In the second step,
we compute the residuals from the fitted regression model of the response Y on
the selected predictors in M̂(0). The LAD-SIS (or, Huber-SIS) screening is again
applied taking these residuals as our new response to select another k2 predictors

from the pool of predictors with index set M̂(0)
c = {1, . . . , p}\M̂(0); let us denote

the index set of these k2 selected predictors as A(1). Then apply the LAD-LASSO
(or, Huber LASSO) to predictors with indices in I = M̂(0) ∪A(1) to obtain a set
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Algorithm 2 Robust ISIS

Input: Data matrix X, vectore of responses Y, model size d.
Steps:

1. Apply LAD-SIS (or, Huber-SIS) to pick a set A(0) of indices of size k1 =
[2d/3], and then employ the LAD-LASSO regression (or, Huber-LASSO)
to select a subset M̂(0) of these indices.

2. Set t = 1.

3. For each j ∈ M̂(t−1)
c = {1, . . . , p} \ M̂(t−1), compute

L
(2)
j = min

β0,βj

1

n

n∑
i=1

L(r
(t−1)
i , β0 + βjXij),

where r
(t−1)
i = Yi − xT

i,M̂(t−1)β̂M̂(t−1) is the residual from the previous step

of fitting and xi,M̂(t−1) is the sub-vector of xi consisting of those elements in

M̂(t−1). After ordering {L(2)
j : j ∈ M̂(t−1)

c }, we form the set A(t) consisting

of the indices corresponding to the smallest k
(t)
2 = d− |M̂(t−1)| elements.

4. Apply the LAD-LASSO (or, Huber-LASSO) regression to variables with
indices in I = M̂(t−1) ∪ A(t) to obtain the indices of the coefficients β̂d =
(β̂d0, β̂dr1 , . . . , β̂drd)T that are non-zero yield a new estimated set, M̂(t), of
active indices.

5. If obtained a set of indices M̂(t), which either has reached the size d, or
satisfies M̂(t) = M̂(t−1), break and go to output stage. Otherwise go to
Step 6.

6. Change t to t+ 1 and go to Step 3.

Output: The final estimated model M̂ = {1 ≤ k ≤ d, β̂drk 6= 0} along with the

parameter estimates β̂d.

M̂(1) of active indices. We further proceed repeating these steps to generate the
index sets M̂(1), . . . ,M̂(l) of selected predictors in the subsequent stages till we
reach our target model size, say d, i.e., till the smallest l for which |M̂(l)| = d.
Considering its similarity with the ISIS, we refer to this robust iterative variable
screening procedure as LAD-ISIS or Huber-ISIS, corresponding to the L1 and the
Huber loss functions, which is presented schematically in Algorithm 2.

Note that in Step 3 of Algorithm 2, L
(2)
j can be interpreted as the additional

contribution of predictor Xj given the existence of predictors in M̂(t−1). In our
implementation, we chose k1 = [2d/3], and thereafter at the t-th iteration, we

took k
(t)
2 = d − |M̂(t−1)|. This ensures that the iterated versions of the Robust

SIS method takes at least two iterations to terminate.
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3. NUMERICAL STUDIES

In this section, we consider some numerical experiments to illustrate the
usefulness of the suggested methods in the linear regression model. We first
analyze three simulated data sets for more illustrative purposes. Then, we analyze
the performance of the proposed screening procedures in a real-world example
related to the riboflavin production.

3.1. Monte-Carlo simulation

In this subsection, three simulation examples including different models
with various scenarios have been conducted to assess the finite sample perfor-
mance of the proposed methods. The first example is allocated to our proposed
non iterative independence screening procedures, while in the second example,
the aim is to examine the influence of the percentage of outliers as well as the
impact of sample size on the performance of the proposed methods. In the third
example, the iterative ISIS procedure is applied to improve the proposed SIS
methods in the situation where SIS fails. The performance of the robust alter-
natives are compared with the existing competitors, such as DC-SIS ([15]), SIRS
([20]), (I)SIS ([2]) and NIS ([4]).

To evaluate the performance of the proposed methods, three criteria are
considered. The first criterion is the minimum model size (denoted by M ), that
is the smallest number of predictors needed to ensure that all the important
predictors are selected. To get better inference, the 5%, 25%, 50%, 75% and 95%
quantiles of M out of 500 replications were also presented. The second criterion
(denoted by Pj) is the empirical probability that the important predictor Xj is
selected, when the threshold d = 2

[
n/ log(n)

]
is adopted. The last criterion is the

proportion (denoted by S) that all important predictors are selected for a given
model size in 500 replications, when the threshold d = 2

[
n/ log(n)

]
is adopted.

Note that the first criterion does not need to specify a threshold. The more
reliable screening procedure, the closer M value to the number of important pre-
dictors and also the closer S and Pj value to 1. In an ideal situation, both S and
Pj are equal to one.
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Example 3.1. Consider the following linear model:

Y = cβTX + σε,

where β = (0, 1, 0.8, 0.6, 0.4, 0.2, 0, . . . , 0)T takes grid values and σ2 = 6.83. This
model is adapted from [20]. We varied the constant c to control the signal-to-
noise ratio. In this example, X1, X2, X3, X4, X5 are important predictors and
remaining ones (X6, . . . , Xp) are not relevant.

We choose c = 1 and 2, with the corresponding R2 = 50% and 80%.
The vector of covariates X = (X1, . . . , Xp) was generated from the multivariate
normal distribution with mean 0 and the covariance matrix Σ = (σij)p×p with
σii = 1 and σij = 0.8|i−j| for i 6= j. We set the sample size n = 200 and the total
number of predictors p = 2000 considering two error ε distributions, N(0, 1) and
t(1) (t-student), and then repeat each scenario 500 times. The results are given
in Table 1.

M Pj S
ε c method 5% 25% 50% 75% 95% 1 2 3 4 5
N 1 DC-SIS 5 5 5 5 5 1.000 1.000 1.000 1.000 1.000 1.000

SIS 5 5 5 5 5 1.000 1.000 1.000 1.000 1.000 1.000
NIS 5 5 5 5 5 1.000 1.000 1.000 1.000 1.000 1.000
SIRS 5 5 5 5 5 1.000 1.000 1.000 1.000 1.000 1.000
LAD-SIS 5 5 5 5 5 1.000 1.000 1.000 1.000 1.000 1.000
Huber-SIS 5 5 5 5 5 1.000 1.000 1.000 1.000 1.000 1.000

2 DC-SIS 5 5 5 5 5 1.000 1.000 1.000 1.000 1.000 1.000
SIS 5 5 5 5 5 1.000 1.000 1.000 1.000 1.000 1.000
SIRS 5 5 5 5 5 1.000 1.000 1.000 1.000 1.000 1.000
LAD-SIS 5 5 5 5 5 1.000 1.000 1.000 1.000 1.000 1.000
Huber-SIS 5 5 5 5 5 1.000 1.000 1.000 1.000 1.000 1.000

t(1) 1 DC-SIS 5 5 5 5 54.50 0.975 0.995 0.990 0.970 0.940 0.940
SIS 5.00 105.50 722.50 1584.75 1944.05 0.450 0.435 0.405 0.310 0.260 0.195
NIS 11.95 218.50 846.50 1602.00 1933.85 0.245 0.275 0.265 0.205 0.125 0.095
SIRS 5 5 5 5 5 1.000 1.000 1.000 1.000 1.000 1.000
LAD-SIS 5 5 5 5 5 1.000 1.000 1.000 1.000 1.000 1.000
Huber-SIS 5 5 5 5 6 1.000 1.000 1.000 1.000 1.000 1.000

2 DC-SIS 5 5 5 5 5 0.995 0.995 0.995 0.995 0.990 0.990
SIS 5 5 41.50 726.25 1872.90 0.650 0.685 0.640 0.620 0.555 0.485
NIS 5 14.75 157 1017.50 1901.20 0.510 0.550 0.510 0.480 0.385 0.335
SIRS 5 5 5 5 5 1.000 1.000 1.000 1.000 1.000 1.000
LAD-SIS 5 5 5 5 5 1.000 1.000 1.000 1.000 1.000 1.000
Huber-SIS 5 5 5 5 6 1.000 1.000 1.000 1.000 1.000 1.000

Table 1: Five quantiles of minimum model size M , the empirical proba-
bility Pj and the proportion of S in Example 3.1.

From Table 1, it can be seen that when the random error has a normal
distribution, all six screening methods perform quit well, with the proportion S
equal to 1. However SIS and NIS break down for the heavy-tailed error distribu-
tion t(1), while other methods continue to perform well. As expected, when the
error distribution is t(1), the proportions S for the LAD-SIS and Huber-SIS are
equal to 1, which support the assertion that the LAD-SIS and Huber-SIS process
the sure screening property. In addition, the SIRS also performs very well. This
is because the SIRS is robust to the outliers since it only uses the ranks of the
observed response values.
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Example 3.2. In this example, we consider the impact of both the per-
centage of outliers and the sample size on the performance of the proposed meth-
ods. To this end, we introduce various outlier percentages to assess how the
proposed robust methods perform under these different conditions. We also vary
the sample size from 50 to 200 for the fixed dimension p, and generate the predic-
tors in the same way as Example 1. The observations for the response variable
are determined by

Y = βTX + ε,

where β = (0, 1, 1, 1, 1, 1, 0, . . . , 0)T and the noise ε is independent of the predic-
tors, and is generated from standard normal distribution. We have investigated
various types of contamination schemes, all of which have produced similar re-
sults. Hence, for the sake of brevity, we present the results for one particular
contamination scheme where the responses are contaminated by replacing its
value y by y − 30; This choice is arbitrary but simulates a situation of response
contamination that arises quite frequently in practice. The contamination pro-
portion is taken as such as 5%, 10%, and 20%, resulting in mild, moderate and
heavy contaminations, respectively. For each simulation set-up, we have applied
the proposed screening procedures to select the important predictors. The pro-
cess is replicated 500 times to report some performance measures including the
proportion S, when the model size d = 2

[
n/ log(n)

]
is chosen; median of the

number of true positives selected (TP); median of the minimum model size re-
quired to select all four important covariates (M). The simulation results are
summarized in Table 2.

From Table 2, we can draw the following conclusions:

a) For each values of (n, p), as the fraction of contamination increases, the
performance of all six methods in accurately detecting the true model di-
minishes.

b) When the sample size is very small (n = 50) and the data are contaminated
with 20% outliers, values of zero for both S and T indicate that SIS, NIS and
DC-SIS can only select important variables by chance. In contrast, SIRS,
LAD-SIS and Huber-SIS exhibit better performance in such scenarios.

c) For larger samples, as the percentage of outlier data increases up to 20%,
it becomes evident that SIS, NIS, and DC-SIS are less effective. Con-
versely, SIRS, LAD-SIS and Huber-SIS demonstrate highly satisfactory per-
formance in identifying important predictors.

d) In all scenarios, SIRS, LAD-SIS and Huber-SIS consistently outperform the
other methods. Specifically, SIRS and LAD-SIS, followed by Huber-SIS,
exhibit the best performance.

e) For each fixed value of p and fixed percentage of contamination, as expected,
an increase in sample size leads to an improvement in the performance of
all six methods.
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5% 10% 20%
p n method M TP S M TP S M TP S
1000 50 DC-SIS 10 5 0.730 70 4 0.210 197 1 0.005

SIS 231.5 2 0.050 552 1 0.005 734 0 0.000
NIS 337 1 0.000 688 0 0.000 758.5 0 0.000
SIRS 7 5 0.830 12 5 0.655 40.5 4 0.355
LAD-SIS 6 5 0.885 10.5 5 0.700 30.5 4 0.400
Huber-SIS 15 5 0.670 26.5 4 0.470 66 3.5 0.120

100 DC-SIS 5 5 1.000 9 5 0.915 52.5 4 0.390
SIS 61 4 0.410 193 3 0.170 396.5 2 0.040
NIS 145 4 0.190 348.5 2 0.050 544.5 1 0.010
SIRS 5 5 1.000 5 5 1.000 6 5 0.960
LAD-SIS 5 5 1.000 5 5 0.995 6 5 0.940
Huber-SIS 5 5 0.985 6 5 0.975 11.5 5 0.915

200 DC-SIS 5 5 1.000 5 5 1.000 9 5 0.995
SIS 7 5 0.945 40 5 0.645 145 4 0.310
NIS 20 5 0.840 108 4 0.390 302 3 0.120
SIRS 5 5 1.000 5 5 1.000 5 5 1.000
LAD-SIS 5 5 1.000 5 5 1.000 5 5 1.000
Huber-SIS 5 5 1.000 5 5 1.000 5 5 1.000

2000 50 DC-SIS 16 5 0.615 118 3 0.110 361.5 0 0.000
SIS 343.5 2 0.040 1040.5 0.5 0.000 1361.5 0 0.000
NIS 577.5 0 0.000 1225.5 0 0.000 1520.5 0 0.000
SIRS 8 5 0.760 21 5 0.525 71 4 0.315
LAD-SIS 7 5 0.795 16 5 0.620 58.25 4 0.325
Huber-SIS 24 5 0.520 41.5 4 0.265 133.5 3 0.055

100 DC-SIS 5 5 0.980 12 5 0.830 88.5 4 0.160
SIS 90.5 4 0.320 465 3 0.060 885 1 0.020
NIS 277.5 3 0.090 700 1 0.005 1195.5 1 0.000
SIRS 5 5 1.000 5 5 0.995 6 5 0.910
LAD-SIS 5 5 1.000 5 5 0.995 7 5 0.920
Huber-SIS 5 5 1.000 5 5 0.975 15 5 0.805

200 DC-SIS 5 5 1.000 5 5 1.000 11.5 5 0.975
SIS 8 5 0.920 48 5 0.600 258 4 0.235
NIS 30 5 0.715 160 4 0.285 499.5 3 0.090
SIRS 5 5 1.000 5 5 1.000 5 5 1.000
LAD-SIS 5 5 1.000 5 5 1.000 5 5 1.000
Huber-SIS 5 5 1.000 5 5 1.000 5 5 0.995

Table 2: Median of the minimum model size (M ), median of the true pos-
itive (TP) and the proportion of S in Example 3.2, considering
the percentage of contamination 5%, 10% and 20%.

Example 3.3. In this example, we compare the empirical performance
of the LAD-ISIS and Huber-ISIS with SIS, ISIS, DC-SIS and SIRS in a linear
model with weak signal-to-noise ratio, which has the form of

(3.1) Y = 2.5X1 + 2.5X2 + 2.5X3 − 7.5
√
ρX4 + ε.

This model was first considered by Zhong et al. [22]. We adopted exactly the same
settings as in [22]. In this model, X = (X1, . . . , X1000)

T , each Xk is generated
from a normal distribution with zero mean and unit variance. All Xks except
X4 are equally correlated with the Pearson correlation coefficient ρ, while X4

has the Pearson correlation
√
ρ with all other p − 1 predictors. We draw ε

independently from N(0, 1) and t(1) (t-student). We set the sample size n = 200
and d = 2[n/ log n] = 74 for the LAD-SIS and Huber-SIS procedures with LASSO
penalty function. Then, we repeat the simulations 500 times and summarize the
results in Table 3.
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t(1) N(0,1)
Pj Pj

ρ Error 1 2 3 4 S 1 2 3 4 S
0.2 SIS 1.000 1.000 1.000 0.000 0.000 1.000 1.000 1.000 0.000 0.000

ISIS 1.000 1.000 1.000 0.890 0.890 1.000 1.000 1.000 1.000 1.000
SIRS 1.000 1.000 1.000 0.025 0.025 1.000 1.000 1.000 0.030 0.030
DC-SIS 1.000 1.000 1.000 0.040 0.040 1.000 1.000 1.000 0.020 0.020
LAD-SIS 1.000 1.000 1.000 0.000 0.000 1.000 1.000 1.000 0.000 0.000
LAD-ISIS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Huber-SIS 1.000 0.990 0.995 0.000 0.000 0.985 0.990 0.995 0.000 0.000
Huber-ISIS 1.000 1.000 1.000 0.995 0.995 1.000 1.000 1.000 0.995 0.995

0.5 SIS 1.000 0.995 1.000 0.000 0.000 1.000 1.000 1.000 0.000 0.000
ISIS 1.000 1.000 1.000 0.550 0.550 1.000 1.000 1.000 0.995 0.995
SIRS 1.000 0.995 1.000 0.000 0.000 1.000 0.990 1.000 0.010 0.010
DC-SIS 1.000 1.000 0.995 0.000 0.000 1.000 0.980 0.990 0.010 0.010
LAD-SIS 0.985 0.965 0.980 0.000 0.000 0.995 0.990 0.995 0.000 0.000
LAD-ISIS 1.000 1.000 1.000 0.990 0.990 1.000 1.000 1.000 1.000 1.000
Huber-SIS 0.925 0.945 0.950 0.000 0.000 0.945 0.955 0.960 0.000 0.000
Huber-ISIS 0.995 1.000 1.000 0.970 0.965 0.995 1.000 0.995 0.985 0.975

0.8 SIS 0.855 0.845 0.845 0.000 0.000 0.940 0.915 0.935 0.000 0.000
ISIS 1.000 1.000 1.000 0.625 0.625 0.995 0.995 0.995 0.245 0.245
SIRS 0.910 0.910 0.920 0.000 0.000 1.000 0.990 1.000 0.010 0.010
DC-SIS 0.890 0.900 0.925 0.000 0.000 1.000 0.980 0.990 0.010 0.010
LAD-SIS 0.790 0.770 0.805 0.000 0.000 0.845 0.845 0.860 0.000 0.000
LAD-ISIS 0.995 0.990 0.995 0.930 0.910 0.995 1.000 1.000 0.935 0.930
Huber-SIS 0.730 0.715 0.730 0.000 0.000 0.790 0.785 0.780 0.000 0.000
Huber-ISIS 1.000 0.990 1.000 0.930 0.920 0.995 1.000 0.990 0.910 0.895

Table 3: The proportions of Pj and S given the model size d = 2[n/ log n]
in Example 3.3.

In this example, X4 is jointly important but marginally independent to
the response Y , so the marginal screening methods (SIS, DC-SIS, SIRS, LAD-
SIS and Huber-SIS) can work badly and hardly detect important predictor X4.
According to Table 3, when the error distribution is normal and correlations
among predictors are not strong, i.e. ρ = 0.2, 0.5, ISIS selects X4 with high
empirical probability; in other scenarios, ISIS dose not perform well to detect
the marginal signal of X4. In contrast, the proposed LAD-ISIS and Huber-ISIS
are able to select X4 effectively for all different cases in both error distributions.
For example, when ρ = 0.5 and error distribution is t(1), LAD-ISIS and Huber-
ISIS can select all truly important predictors in the model with the empirical
probability 99% and 96.5%, respectively, while the ISIS only has 55%. Similarly,
when ρ = 0.8, the LAD-ISIS and Huber-ISIS can detect all truly important
predictors with the empirical probability 91% and 92%, respectively, while the
ISIS only has 62.5%. Thus, due to model misspecification, ISIS can not perform
as well as in the Example 3.1. However, our LAD-ISIS and Huber-ISIS are still
able to identify all important predictors with an overwhelming probability. These
once again confirm the capabilities of LAD-ISIS and Huber-ISIS.
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3.2. Application to riboflavin production data set

To support our assertions, we consider the data set about riboflavin (vita-
min B2) production in Bacillus subtilis ([14], [17]), which can be found in R pack-
age "hdi". There is a single real valued response variable which is the logarithm
of the riboflavin production rate and p = 4088 explanatory variables measuring
the logarithm of the expression level of 4088 genes. There is one rather homoge-
neous data set from n = 71 samples that were hybridized repeatedly during a fed
batch fermentation process where different engineered strains and strains grown
under different fermentation conditions were analyzed.

Figure 1 shows the normal Q-Q plot based on the LASSO regression for
the riboflavin production data set. Also, the bivariate boxplot for some of the
selected genes of this data is depicted in Figure 2. The bivariate boxplot is a two-
dimensional analogue of the boxplot for univariate data. This diagram is based
on calculating robust measures of location, scale, and correlation; it consists
essentially a pair of concentric ellipses, one of which (the hinge) includes 50%
of the data and the other (called the fence) delineates potentially troublesome
outliers. In addition, robust regression lines of both response on predictor and vice
versa are shown, with their intersection showing the bivariate location estimator.
The acute (large) angle between the regression lines will be small (large) for a
large (small) absolute value of correlations. Figures 1 and 2 clearly reveal that
the data contains some outliers. Now, if we are screening the genes via correlation
with response in SIS or ISIS, these outliers will have an erroneous effects.

To analyze this data set, we first apply LAD-(I)SIS and Huber-(I)SIS robust
procedures to shrink the dimension from p = 4088 down to d = 2[n/ log(n)] = 32
genes. After the variable screening, we fit the data by the penalized robust
methods such as LAD-LASSO and Huber-LASSO models with the selected genes.
On the other hand, LASSO is applied directly to p = 4088 genes without screening
procudure. For the purpose of comparison, we also implement the (I)SIS with
LASSO penalty to select most relevant genes. We compared their performance in
terms of the adjusted R2 which is defined as R2

adj = 1−[(n−1)/(n−k−1)](1−R2),

where k is the number of predictors in the model, excluding the intercept, and R2

is coefficient of determination defined as R2 = 1−
∑n

i=1(Yi− Ŷi)2/
∑n

i=1(Yi− Ȳ )2.
The results are displayed in Table 4, in which the column labelled “Genes” stands
for the number of the genes selected and the column of “R2

adj” for the adjusted

R2.

Next, to measure the prediction accuracy of proposed estimators, the leave-
one-out cross-validation (CV) criterion was used, which is defined by

(3.2) CV =
1

n

n∑
i=1

(Yi − Ŷi)2,
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Figure 1: Q-Q plot based on the LASSO regression for the riboflavin production
data set.

where Ŷi is the predicted value of response variable where i-th observation left
out of the estimation of the parameters β. We also compute the correlation
between the true and predicted response values Ŷi obtained from leave-one-out
cross-validation.

From the values of R2
adj , we can infer that although LASSO model can

explain 90.45% of the total variation of the logarithm of the riboflavin production
rate, it does not perform as well as the screening competitors, beacuse the two-
step screening procedures use much fewer genes while giving smaller CV error and
higher correlation between the true and predicted values of response variable.

In addition, it can be seen that the iterative screening procedures (ISIS,
LAD-ISIS and Huber-ISIS) outperform the corresponding noniterative screening
methods (SIS, LAD-SIS and Huber-SIS) with the larger R2

adj and Corr(Y, Ŷ ), and
smaller CV error, indicating that the iterative procedures identify some genes
missed by the noniterative screening methods. Those important genes missed
by the SIS (or,LAD-SIS and Huber-SIS) either may be closely marginally inde-
pendent of the response or have relatively weaker marginal signals than some
unimportant genes which are highly correlated with some strong active genes.

Moreover, the number of genes selected by SIS and ISIS are fewer than
those of the robust alternatives, while because of the existence of outliers in the
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Figure 2: Bivariate boxplot of the riboflavin production data set for some of
the effective genes.

data set, it can be seen that CV error and R2
adj of the robust type methods are

more acceptable than those of the non-robust type screening procedures.

In sum, we can clearly conclude from Table 4 that the LAD-ISIS performs
the best with the smallest CV error 0.2309, the largest Corr(Y, Ŷ ) value 0.852,
the largest adjusted R2 value 80.06% (compared to the other robust approaches),
indicating that the LAD-ISIS is the best method for riboflavin production data
set analysis.

Model Genes R2
adj CV Corr

LASSO 42 90.45% 0.3973 0.730
SIS 11 76.90% 0.4461 0.687
ISIS 13 78.83% 0.3566 0.760
LAD-SIS 22 73.12% 0.3004 0.800
LAD-ISIS 21 80.06% 0.2309 0.852
Huber-SIS 20 73.99% 0.3362 0.779
Huber-ISIS 22 78.63% 0.3175 0.799

Table 4: Riboflavin production data analysis results.
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CONCLUSIONS

In this paper, we have studied a robust variable screening methodology for
ultrahigh dimensional data using robust loss functions. This technique uses the
L1 loss and the Huber loss which we refer to the LAD-SIS and Huber-SIS. We
examined the finite sample performance of the proposed procedures via Monte
Carlo studies, and illustrated the proposed methodology through the riboflavin
production data set. In our numerical studies, both proposed robust methods
(LAD-SIS and Huber-SIS) and SIRS perform equally well and behave better
than SIS and DC-SIS in presence of outliers.

Similar to the SIS, the proposed technique may fail to identify some im-
portant predictors that are marginally independent of the response. Motivated
by this, we introduced an iterative robust sure independence screening proce-
dure. We examined its finite-sample performance via intensive simulations. The
simulation results indicate that the iterative robust approach can significantly
improve the LAD-SIS and Huber-SIS in the presence of truly important predic-
tors that are marginally independent of the response and unimportant predictors
that have relatively stronger marginal signals than some important predictors.
Our empirical results indicate that the LAD-ISIS is the best approach among the
selected competitors. We used only the LASSO penalty but other penalties such
as adaptive LASSO ([21]), SCAD ([1]) and MCP ([19]) could also be applied.
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