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1. INTRODUCTION

Suppose the data (X1, Y1), ..., (Xn, Yn) are observations from a general real

valued bivariate random process. The simplest example is when the data are

generated by a model of the form Yi = r(Xi)+ ǫi where the ǫi are mean zero ran-

dom errors satisfying some conditions; in general, the ǫi will not be independent.

A second example of interest is nonparametric autoregression, where Yt =Xt+1.

The function r, the conditional mean of Y given X, is unknown and will be esti-

mated from the data. There are many nonparametric approaches to estimating r,

including various kernel methods proposed by Nadaraya [15] and Watson [25],

Gasser and Müller [7, 8], and local polynomial estimators, Fan [6]. In each of

these techniques r(x) is in essence estimated through weighted local averaging on

the data near x. The smoothness of the function r and properties of the weights

used in this averaging determine the performance of the estimator. In this paper

we propose a new class of kernels which allow the Nadaraya–Watson estimator to

automatically achieve asymptotically optimal performance no matter how smooth

r happens to be.

The Nadaraya–Watson estimator is defined to be

(1.1) r̂(x) :=

∑n
i=1 Yi K

(

(Xi−x)/h
)

∑n
i=1 K

(

(Xi−x)/h
) .

The function K(x) is the kernel; it is used to weight the observations. The

denominator ensures the weights sum to 1. The parameter h is the bandwidth,

or smoothing parameter. It balances a tradeoff between bias and variance. Small

values of h concentrate the mass of the kernel near x, giving heavy weight to

nearby observations and relatively little or no weight to more distant observations,

resulting in a relatively unbiased but highly variable estimate. By contrast, large

values of h average over many data points, resulting in an estimate with relatively

low variance, but potentially large bias, as observations which are quite distant

from x are included in the average. Since the number of data points included in

the average is proportional to nh, each of these estimators has pointwise variance

proportional to 1/(nh). For these reasons, we require that as n → ∞, h → 0 in

such a way that nh → ∞.

It is well known that the asymptotic bias of such nonparametric regression

estimators is proportional to hp, where p depends on the smoothness of r, the

smoothness of the marginal density of the Xi, and the properties of the kernel,

or in the case of local polynomials, the polynomial degree of the local fit. In this

paper we show that through appropriate choice of kernel, the rate at which the

bias converges to zero will only be limited by properties of the unknown function,

and not the kernel.
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Sections 2 and 3 contain some important definitions and background.

The case where the pairs of data (X1, Y1), ..., (Xn, Yn) are i.i.d. will be stud-

ied in Section 4; the case where the data satisfy strong mixing conditions will

be presented in Section 5; a small simulation study is presented in Section 6.

Technical proofs have been placed in Section 7.

2. INFINITE ORDER KERNELS

If the kernel K has finite moments up to order q and its first q − 1 mo-

ments are 0, then K is said to be of order q. The most frequently used kernels

are second order; common examples include the Epanechnikov kernel, Ke(x) :=

(3/4) (1− x2) 1[−1,1](x), and the scaled normal density.

In general, if r is k times differentiable, with k ≥ 2, the bias of a second

order kernel estimate is O(h2). This rate of convergence can be improved up

to O(hk) by choosing a kernel of order greater than or equal to k. However,

the degree of smoothness in the underlying function is unknown and difficult to

estimate, so it is difficult to know what order kernel to use.

In order to alleviate this difficulty we focus on a class of kernels that effec-

tively have infinite order. These kernels automatically reduce the bias to o(hk)

no matter how large k happens to be. As in Politis and Romano [18, 19, 20] and

Politis [16, 17], we now state the following general definition.

Definition 2.1. A general flat-top kernel K is defined in terms of its

Fourier transform λ, which in turn is defined as follows. Fix a constant c > 0.

Let

(2.1) λ(s) =

{

1 if |s| ≤ c ,

g
(

|s|
)

if |s|> c ,

where the function g is chosen to make λ(s), λ2(s), and s λ(s) integrable. The

flat top kernel is now given by

(2.2) K(x) =
1

2π

∫ ∞

−∞
λ(s) e−isx ds ,

i.e., the inverse Fourier transform of λ(s).

Note that in the preceding definition, the choice of g is not unique. The

function λ, and hence the kernel K, depend on the function g and the parameter c

although this dependence will not be explicitly denoted.

Kernels satisfying this definition do not necessarily satisfy the moment

conditions
∫

zkK(z) dz = 0 for all integers k, as some of these integrals may not
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be defined in either the Riemann or Lebesgue sense. However, the Cauchy prin-

cipal value of each of these integrals is zero, and in many cases this is sufficient

for optimal asymptotic performance.

The simplest kernel satisfying Definition 2.1 is determined by

λD(s) =

{

1 if |s| ≤ 1 ,

0 if |s|> 1 .

This is the example studied in the case of density estimation by Davis [2, 3],

Devroye [4], and Ibragimov and Hasminksii [12], and it generates the Dirichlet

kernel, K(x) := sin(x)/(π x). Both λ(s) and the resulting kernel are shown in

Figure 1. We can see that the tails of this kernel are very wiggly. This is prob-

lematic in two ways. First, the slow decay in the tails and the large negative

oscillations increase
∫

K2(z) dz, which will be shown to increase the variance of

the estimate. Secondly, the large wiggles distant from 0 generate a finite sam-

ple bias because they allow observations which are relatively distant from x to

have a substantial influence on the estimate at x. These difficulties make density

estimators using this kernel relatively uncompetitive for all but extremely large

sample sizes.

Figure 1: λ(s) and the resulting Dirichlet kernel.

These problems can be substantially remedied by making the transition

from 0 to 1 in the Fourier domain less abrupt. For example, Devroye and Gy-

orfi [5], Hall and Marron [11], and in the case of spectral density estimation,

Politis and Romano [19], studied the kernel whose Fourier transform is given by

(2.3) λT,1/2(s) =















1 if |s| ≤ 1/2 ,

2
(

1−|s|
)

if 1/2 < s≤ 1 ,

0 if |s|> 1 .

The corresponding kernel is

K(x) =
2
(

cos(x/2) − cos(x)
)

π x2
.
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These are shown in Figure 2. Note the substantial improvement in the tails of

the kernel.

Figure 2: λ(s) and the resulting improved kernel.

Unfortunately, in the case of regression, it is often only reasonable to assume

that the function being estimated is smooth over some interval rather than over

its entire domain; if the marginal density of the Xi has compact support, then

the endpoints often generate discontinuities. Since infinite order kernels do not

have compact support, the effects caused by these breaks get spread across the

whole region of interest, potentially worsening the rate of convergence. For this

reason, as discussed in the case of discontinuous density estimation in Politis [16],

it is important that the tails of K decay as quickly as possible, to minimize the

effect on the interior of the interval. This can be ensured by requiring the Fourier

transform of the kernel to be very smooth. If λ is infinitely differentiable, then

the tails of K(x) decay faster than x−m for any positive m. In addition, λ(s)

as defined in equation (2.1) clearly has an infinite number of zero derivatives at

s = 0. Together, these two conditions ensure that all moments of K are zero in

the Lebesgue sense. For these reasons, for the remainder of this work, we will

restrict ourselves to kernels satisfying the following stronger definition.

Definition 2.2. An infinitely differentiable flat-top kernel K is a flat-top

kernel (as in Definition 2.1) with the added caveat that the function g is chosen

to make λ(s) infinitely differentiable for all s.

We now provide an example of such a kernel, which was first introduced in

McMurry and Politis [14], where the case of fixed design regression was studied.

Let b and c be constants satisfying b > 0 and 0 < c < 1. Define λ(s) by

(2.4) λIO(s) =























1 if |s| ≤ c ,

exp

[

−b exp
[

−b/
(

|s| − c
)2
]

/
(

|s| − 1
)2
]

if c < |s|< 1 ,

0 if |s| ≥ 1 .
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The parameter c determines the region over which the kernel is identically 1;

the parameter b allows the shape of λ to be altered, making the transition from

0 to 1 less abrupt. Figure 3 show plots of λ (as defined above) and the resulting

kernel K for c = 0.05 and b = 1/4.

Figure 3: Smooth λ(s) and the resulting kernel with b = 1/4 and c = 0.05.

The function exp
[

−b exp[−b/(|s| − c)2]/(|s| − 1)2
]

was chosen because it

connects the regions where λ is 0 and the region where λ is 1 in a manner such

that λ(s) is infinitely differentiable for all s, including where |s| = c, and |s| = 1.

3. BACKGROUND AND NOTATION

We examine the performance of the Nadaraya–Watson estimator when us-

ing infinite order kernels. The observed data is assumed to take the form of

identically distributed pairs (X1, Y1), ..., (Xn, Yn), which satisfy Yi = r(Xi) + ǫi.

Further restrictions will be necessary, but their discussion will be postponed for

the moment. The Nadaraya–Watson estimator introduced in equation (1.1) can

be written as

r̂(x) :=
(1/n)

∑n
i=1Yi Kh(Xi − x)

(1/n)
∑n

i=1 Kh(Xi − x)
,

where

Kh(x) := (1/h)K(x/h) .

This estimator should be viewed in two different ways. As mentioned be-

fore, it is a weighted local average of the Yi’s, where the denominator normalizes

the weights so they sum to 1. It is also an explicit estimator of conditional

expectation. The denominator is the standard kernel estimate of the design den-

sity, the marginal density of the Xi’s. The numerator is an approximation to
∫∞
−∞ yf(x, y) dy, where f(x, y) is the joint density of (Xi, Yi). Put together, this

is an approximation to r(x) = E
[

Y |X = x
]

.
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In order to simplify notation, define

ĝ(x) := (1/n)
n
∑

i=1

Yi Kh(Xi − x)

and

f̂(x) := (1/n)
n
∑

i=1

Kh(Xi − x) ,

which are the finite sample approximations to

g(x) :=

∫ ∞

−∞
y f(x, y) dy

and

f(x) :=

∫ ∞

−∞
f(x, y) dy .

We note that r(x) = g(x)/f(x).

4. THE INFINITE ORDER NADARAYA-WATSON ESTIMATOR

FOR I.I.D. DATA

We first examine the behavior of the Nadaraya–Watson estimator when the

observed pairs of data, (X1, Y1), ..., (Xn, Yn), are i.i.d. In order to understand the

estimator as a whole, we begin with lemmas quantifying the asymptotic perfor-

mance of the numerator and denominator, ĝ(x) and f̂(x), as they approximate

g(x) and f(x). In the process, it will be necessary to impose some assumptions,

which will be introduced and discussed as needed. We first place some reasonable

restrictions on the behavior of the bandwidth h as the sample size grows large

and on the conditional distribution of the errors.

Assumption 1. As the sample size n → ∞, the bandwidth h → 0 in

such a way that nh → ∞.

Assumption 2. E
[

ǫi|Xi = x
]

= 0, and E
[

ǫ2i |Xi = x
]

:= σ2(x) < ∞.

Under this assumption, f̂(x) and ĝ(x) are infinite order estimators of f(x)

and g(x); this is quantified in the following lemma.

Lemma 4.1. If x is contained in an open interval on which f(x) has

p bounded continuous derivatives and r(x) has q bounded continuous derivatives,

then under Assumptions 1 and 2,

(4.1) E
[

f̂(x)
]

− f(x) = o(hp)
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and

(4.2) E
[

ĝ(x)
]

− g(x) = o(hk) ,

where k = min{p, q}. If both f(x) and g(x) are infinitely differentiable, then each

of these biases become o(hm) for all positive real m.

If we impose the additional assumptions that the observed pairs of data are

i.i.d., and that f , g, and σ2(x) are reasonably well behaved, then the variance of

f̂ and ĝ also behaves as expected.

Assumption 3. (X1, Y1), ..., (Xn, Yn) are i.i.d.

The next assumption is necessary to ensure that the asymptotic approxi-

mations we use are valid, and to avoid division by zero.

Assumption 4. The point x is a continuity point of σ2(x), f(x) > C for

some C > 0, and r and f are each differentiable in a neighborhood of x.

Lemma 4.2. Under Assumptions 1–4,

var
[

f̂(x)
]

=
f(x)

nh

∫ ∞

−∞
K2(z) dz + o

(

1

nh

)

+ O

(

1

n

)

,(4.3)

var
[

ĝ(x)
]

=

(

r2(x) + σ2(x)
)

f(x)

nh

∫ ∞

−∞
K2(z) dz + o

(

1

nh

)

+ O

(

1

n

)

(4.4)

and

cov
[

f̂(x), ĝ(x)
]

=
r(x) f(x)

nh

∫ ∞

−∞
K2(z) dz + o

(

1

nh

)

+ O

(

1

n

)

.(4.5)

Now that the behaviors of f̂ and ĝ are understood independently, the anal-

ysis will proceed by establishing their joint asymptotic normality. Once this has

been shown, a Taylor series argument can be employed to show that r̂ also has an

asymptotic normal distribution with optimal bias and the standard variance. The

joint asymptotic normality of f̂ and ĝ will be established via the Liapunov con-

dition, which implies the Lindeberg–Feller central limit theorem. This requires a

uniform bound on the 2+δ ’th moments of the Yi, for some δ > 0.

Assumption 5. There exists a positive constants M and δ such that

E
[

|Yi|2+δ
∣

∣Xi = x
]

< M ,

for all x.
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The final assumption forces the conditional variance of the errors to be

bounded above and below for all x. The bound from below is assumed for tech-

nical simplicity.

Assumption 6. There exist strictly positive constants b and B such that

b < σ2(x) < B for all x.

Lemma 4.3. Under Assumptions 1–6, for all real c1 and c2 (not both zero),

(4.6)
√

nh

[

c1

(

f̂(x) − E
[

f̂(x)
]

)

+ c2

(

ĝ(x) − E
[

ĝ(x)
]

)

]

D−→ N
(

0, θ(x)
)

.

where θ(x) :=
(

c2
1 + 2 c1 c2 r(x) + c2

2

[

r2(x)+σ2(x)
]

)

f(x)
∫∞
−∞K2(z) dz. This im-

plies the joint asymptotic normality of f̂ and ĝ.

The consequence of the preceding Lemma is the asymptotic normality of

our estimator.

Theorem 4.1. If x is contained in an open interval on which f(x) has

p bounded continuous derivatives and r(x) has q bounded continuous derivatives,

then under Assumptions 1–6,

(4.7)
√

nh
(

r̂(x) − r(x) + o(hk)
) D−→ N

(

0 ,
σ2(x)

f(x)

∫ ∞

−∞
K2(z) dz

)

,

where k = min{p, q}.

Remark 4.1. Letting h proportional to n−1/(2k+1), the mean square

optimal rate, we get r̂(x) = r(x) + Op

(

n−k/(2k+1)
)

, and
√

nh
(

r̂(x) − r(x)
) D−→

N
(

0 , σ2(x)
f(x)

∫∞
−∞K2(z) dz

)

, which demonstrates the higher order accuracy pro-

vided by infinite order kernels.

5. DEPENDENT DATA AND NONPARAMETRIC

AUTOREGRESSION

It is desirable to weaken the condition that (X1, Y1), ..., (Xn, Yn) are i.i.d.

In particular we wish to be able to estimate nonparametric autoregression, where

Xt may be an unknown function of Xt−1. Mathematically, autoregressive pro-

cesses are assumed to satisfy a model of the form, Xt = r(Xt−1) + σ(Xt−1) ǫt ,

where r and σ are unknown, and the ǫt are mean zero errors; further restrictions
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similar to those in Section 4 will be imposed as necessary. The problem of in-

terest is the estimation of r(x) := E
[

Xt|Xt−1 = x
]

; this can be done by pairing

consecutive observations, (X1, X2), (X2, X3), ..., (Xn−1, Xn), and then performing

a standard nonparametric regression.

Since nothing is gained by restricting ourselves to the case of autore-

gression, we will study the infinite order kernel estimator in the case where

(X1, Y1), ..., (Xn, Yn) satisfy the same type of asymptotic dependence conditions

that we wish the autoregressive process to satisfy. The results in this more general

situation will then imply the desired result in the specific case of interest.

Any meaningful analysis will require conditions that ensure some sort of

asymptotic independence; that is, random samples at times which are very distant

from each other should behave as if they are independent. We will focus on

the case of α-mixing because it is the weakest of the most commonly studied

conditions.

Definition 5.1. Let Fm
l be the σ-field generated by Ul, Ul+1, ..., Um.

A stationary time series {Un}n∈Z is said to be α-mixing (or strong-mixing), if

sup
k∈Z

sup
A∈Fk

−∞
,B∈F∞

k+i

∣

∣

∣
P (A)P (B) − P (AB)

∣

∣

∣
:= α(i) → 0 ,

as i → ∞. The α(i)’s are called the α-mixing coefficients.

The analysis proceeds as in the i.i.d. case. We begin by proving, under

some conditions, the joint asymptotic normality of f̂(x) and ĝ(x). Once this has

been established, we will be able to use the same argument used in the proof

of Theorem 4.1 to show the asymptotic normality of ĝ/f̂ . Similar results for

local polynomial regression and for Nadaraya–Watson estimators with finite order

kernels have been obtained by Masry and Fan [13] and Robinson [21] respectively.

Although their arguments are similar, the central limit theorem we prove here

will be more closely related to that of Masry and Fan [13]. Let c1 and c2 be real

numbers (not both zero). Define

Zi := c1

[

Kh(Xi−x) − E
[

Kh(Xi−x)
]

]

+ c2

[

Yi Kh(Xi−x) − E
[

Yi Kh(Xi−x)
]

]

and

Qn :=
1

n

n
∑

i=1

Zi .

We will establish asymptotic normality for
√

nhQn. In order to do so, we

impose further assumptions on the marginal distributions of (X1, Y1), and on the

α-mixing coefficients associated with the time series defined by Ui = (Xi, Yi).
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Assumption 7. There exist finite positive bounds M1, M2, and M3, such

that

(i) fi(u, v) ≤ M1, where fi(u, v) is the joint density of (X1, Xi);

(ii) E
[

Y 2
1 + Y 2

i |X1, Xi

]

≤ M2 ;

(iii) There exists δ > 2 and β > 1− 2/δ such that E
[

|Y1|δ |X
]

≤ M3 and
∑∞

i=1 iβ[α(i)]1−2/δ < ∞ .

Lemma 5.1. Let x be a continuity point of conditional mean and variance

functions, r(·) and σ2(·). In addition, suppose that the marginal density of the Xi,

f(·), and the product of r(·) and f(·), g(·), have k bounded continuous derivatives

in a neighborhood of x, where k ≥ 1. Under Assumptions 2, 4, 6, and 7, we have

the following convergences as n → ∞, h → 0, and nh → ∞ :

(a) h var[Z1] → θ(x) ,

(b) h
∑n−1

i=1

∣

∣cov[Z1, Zi+1]
∣

∣→ 0 ,

(c) nh var[Qn] → θ(x) ,

where, as before, θ(x) :=
(

c2
1+2 c1 c2 r(x)+c2

2

[

r2(x)+σ2(x)
]

)

f(x)
∫∞
−∞K2(z) dz.

In order to establish the central limit theorem, we need one final condition

on the α-mixing coefficients.

Assumption 8. There exists a sequence of positive integers satisfying

sn → ∞ and sn = o(
√

nh) such that
√

n/h α(sn) → 0.

Remark 5.1. Assumption 8 is a technical assumption that may dictate

some particular rates at which h→ 0; nevertheless, Assumption 8 is weak enough

to allow for a wide range of useful rates. To elaborate, Assumption 7 (iii) requires

that the mixing coefficients decay at a polynomial rate depending on δ. In partic-

ular, it requires that there exist C > 0, ǫ > 0, and n0 > 0 such that for all n > n0,

α(n) < Cn−(δ/(δ−2)+1+ǫ). For example, if δ = 3, then the mixing coefficients need

to decay slightly faster than n−4. Assuming that the function being estimated is

at least twice differentiable, h will optimally decrease at a rate equal to or slower

than n−1/5. This means that
√

n/h ≤ Cn3/5 for some constant C. Similarly,√
nh ≥ Cn2/5. Under the strongest moment assumptions, α(n) is required to

decay faster than n−2. If we put these together,
√

n/h α(sn) ≤ Cn3/5s−2
n . From

this expression it is easily seen that as long as sn grows faster than n3/10, the

second requirement of Assumption 8 will be satisfied. By the preceding argument

the first requirement is satisfied if sn = o(n2/5). Since these conditions can be

met simultaneously, Assumption 8 generally imposes no additional restrictions.
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Lemma 5.2. Under Assumptions 2, 4, and 6–8, we have as n→∞, h→ 0,

and nh → ∞, √
nh Qn

D−→ N
(

0, θ(x)
)

.

The immediate consequence of this result is the following asymptotic nor-

mality for r̂.

Theorem 5.1. If x is contained in an open interval on which f(x) has

p bounded continuous derivatives and r(x) has q bounded continuous derivatives,

then under Assumptions 1, 2, 4, and 6–8,

(5.1)
√

nh
(

r̂(x) − r(x) + o(hk)
) D−→ N

(

0 ,
σ2(x)

f(x)

∫ ∞

−∞
K2(z) dz

)

,

where k = min{p, q}.

6. SIMULATIONS

An extensive simulation study was undertaken to investigate the perfor-

mance of the proposed estimator. For each combination of regression function,

design density, error variance, and sample size, 100 data sets were created and

smoothed using the infinite order and local linear estimators. Finally the in-

tegrated square error was estimated using Simpson’s rule. Bandwidths for the

infinite order estimator were selected by the rule of thumb suggested in [14] and

developed further in [17]. Bandwidths for the local linear estimator were selected

using the direct plug-in method suggested by Ruppert, Sheather, and Wand [22]

and implemented in the R package KernSmooth [24].

The first regression function was taken to be r(x) = x+4 exp(−2x2)/
√

2π,

which includes sections of almost linear behavior and an exponential bump with

more curvature. Design densities were uniform on [−2, 2] and N(0, 1), and the

integrated square error is over the interval [−2, 2]. The resulting integrated square

errors for one simulation are shown in Figure 4. A scatterplot along with the two

smoothings is shown in Figure 5.

The second regression function was taken to be r(x) = sin(4πx) with uni-

form design density on [0, 1]. The integrated square error was calculated on both

the entire interval [0, 1] and over the interval [0.15, 0.85] to exclude edge effects.

It is clear from the simulations that the two estimators have different

strengths. The infinite order estimator is clearly superior in the interior of the

data set, when the error variance is large, and when the sample size is moderate

to large. Since the local linear estimator automatically adapts to the edges of the

design and the infinite order estimator does not, it is unsurprising that the local

linear estimator is superior in these regions.
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Table 1: Comparison of infinite order and local linear estimators.

Function Design n σ
Median Integrated Square Error

Infinite Order Local Linear

Exponential Normal 100 0.3 0.0870 0.0631

0.5 0.1312 0.1627

0.7 0.2101 0.2521

Exponential Normal 200 0.3 0.0337 0.0324

0.5 0.0633 0.0686

0.7 0.1091 0.1375

Exponential Normal 1000 0.3 0.0065 0.0077

0.5 0.0132 0.0166

0.7 0.0204 0.0274

Exponential Uniform 100 0.3 0.0520 0.0384

0.5 0.0954 0.1613

0.7 0.0813 0.1481

Exponential Uniform 200 0.3 0.0251 0.0190

0.5 0.0481 0.0474

0.7 0.0731 0.0823

Exponential Uniform 1000 0.3 0.0066 0.0051

0.5 0.0110 0.0112

0.7 0.0175 0.0189

Sin Uniform 100 0.3 0.0065 0.0052

(edges excluded) 0.5 0.0135 0.0139

0.7 0.0232 0.0228

Sin Uniform 100 0.3 0.0120 0.0077

(edges included) 0.5 0.0221 0.0191

0.7 0.0412 0.0333

Sin Uniform 200 0.3 0.0032 0.0031

(edges excluded) 0.5 0.0069 0.0068

0.7 0.0108 0.0126

Sin Uniform 200 0.3 0.0066 0.0042

(edges included) 0.5 0.0115 0.0091

0.7 0.0191 0.0183

Sin Uniform 1000 0.3 0.0007 0.0008

(edges excluded) 0.5 0.0013 0.0019

0.7 0.0021 0.0030

Sin Uniform 1000 0.3 0.0029 0.0011

(edges included) 0.5 0.0037 0.0026

0.7 0.0050 0.0040
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Figure 4: Comparison of integrated square errors for 100 simulations
of the exponential function with n = 200 and σ = 0.5.

Figure 5: A sample regression. The solid line is the true function,
the dashed line is the infinite order estimate, and the
dotted line is the local linear estimate.

7. TECHNICAL PROOFS

Proof of Lemma 4.1: The proof of (4.2) is almost identical to, but slight-

ly more complicated than the proof of (4.1). For this reason, only (4.2) will be

shown. The proof is similar in spirit to the proof of Theorem 2 in McMurry and

Politis [14], except this time it requires both r and f to be smooth. It will be

proved using a different, although more standard, technique. This method of
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proof is somewhat less elegant than the Fourier transform method used previ-

ously, but it has the advantage of showing that the same convergence rates hold

even if f and g are only smooth on an open interval containing x. This proof

technique does have a slight disadvantage. If f and g are smooth over all R,

then the Fourier transform technique can be employed to show the same con-

vergence rates hold even if λ(s), the Fourier transform of K, is not smooth.

By conditioning on Xi,

E
[

ĝ(x)
]

− g(x) = E
[

E
[

Yi Kh(Xi−x)
∣

∣Xi

]

]

− g(x)

= E
[

r(Xi)Kh(Xi−x)
]

− g(x)

=

∫ ∞

−∞
r(u) f(u)Kh(u−x) du − g(x) .

Suppose (rf) has k bounded continuous derivatives on an interval (a,b) containing x.

Should (rf) be smooth over all R, then the proof can be simplified by taking

(a, b) = (−∞,∞):

E
[

ĝ(x)
]

− g(x) =

∫ b

a
r(u) f(u)Kh(u−x) du +

∫ a

−∞
r(u) f(u)Kh(u−x) du

+

∫ ∞

b
r(u) f(u)Kh(u−x) du − g(x) .

Since the tails of K(x) decay faster than x−m for all positive m, the two error

terms are o(hm) for all positive m. At this point we perform a Taylor series

expansion of the product (rf)(z) around x :

E
[

ĝ(x)
]

− g(x) =

=

∫ b

a
r(u) f(u)Kh(u−x) du − g(x) + o(hm)

=

∫ (b−x)/h

(a−x)/h
r(x+hv) f(x+hv)K(v) dv − g(x) + o(hm)

=

∫ (b−x)/h

(a−x)/h

[

(rf)(x) + hv (rf)′(x) + · · · + (hv)k

k!
(rf)(k) (x+ξ)

]

K(v) dv

− g(x) + o(hm) ,

where ξ is between x and x + hv. Since K integrates to one, its moments are

zero, and since g(x) = r(x) f(x),

E
[

ĝ(x)
]

− g(x) =

=

∫ ∞

−∞

[

(rf)(x) + hv (rf)′(x) + · · · + (hv)k−1

(k−1)!
(rf)(k−1)(x)

]

K(v) dv

+

∫ (b−x)/h

(a−x)/h

(hv)k

k!
(rf)(k)(x+ξ)K(v) dv − g(x) + o(hm)

=

∫ (b−x)/h

(a−x)/h

(hv)k

k!
(rf)(k)(x+ξ)K(v) dv + o(hm) .
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Since (rf) has bounded continuous derivatives on (a, b), we can apply the domi-

nated convergence theorem, yielding

lim
h→0

∫ (b−x)/h

(a−x)/h
(rf)(k)(x+ξ) vk K(v) dv =

∫ ∞

−∞
(rf)(k)(x) vk K(v) dv = 0 .

Therefore,

E
[

ĝ(x)
]

− g(x) = o(hk) .

Proof of Lemma 4.2: As f(x) can be viewed as a special case of g(x)

with Yi = 1 for all i, (4.3) will follow immediately from the proof of (4.4).

The proof of (4.5) is almost identical to the proof of (4.4), so it is omitted.

By conditioning on X1, and by Lemma 4.1,

var
[

ĝ(x)
]

=
1

n
var
[

Y1Kh(X1−x)
]

=
1

n

[
∫ ∞

−∞

(

r2(u)+σ2(u)
)

f(u)K2
h(u−x) du − r2(x) + o(hk)

]

=
1

nh

∫ ∞

−∞

(

r2(x+hz) + σ2(x+hz)
)

f(x+hz)K2(z) dz + O

(

1

n

)

,

since x is a continuity point of r, f , and σ2, the dominated convergence theorem

yields

var
[

ĝ(x)
]

=

(

r2(x)+σ2(x)
)

f(x)

nh

∫ ∞

−∞
K2(z) dz + o

(

1

nh

)

+ O

(

1

n

)

.

Proof of Lemma 4.3: The proof proceeds by verifying that the Lia-

punov condition holds, which is sufficient for the Lindeberg–Feller central limit

theorem. The result is trivial if c1 = c2 = 0, so assume that at least one of these

constants is nonzero. Let C denote a positive constant.

∑n
i=1 E

[

∣

∣(c1 + c2Yi)Kh(Xi− x)
∣

∣

2+δ
]

var
[

c1
∑n

i=1Kh(Xi−x) + c2
∑n

i=1YiKh(Xi−x)
](2+δ)/2

≤

≤ Cnh1+δ

n1+δ/2
[

θ(x) + o(1/h) + O(1)
](2+δ)/2

,

where the inequality follows from the proof of Lemma 4.2. After multiplying

the numerator and denominator by h(2+δ)/2, it is clear that this quantity goes to

zero as n goes to infinity. Therefore, the Liapunov condition is satisfied, and the

Lemma follows immediately.
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Proof of Theorem 4.1: We begin with a lemma which ensures that for

large enough n, f̂(x) ≥ c > 0 for some constant c, as long as f(x) > 0.

Lemma 7.1. Suppose f(x) > c for some c > 0. Also suppose h decreases

slowly enough that n−2/7 + δ = o(h) for some δ > 0. Then for all ǫ > 0,

P
[

|f(x)− f̂(x)| > ǫ i.o.
]

= 0.

It should also be noted that much stronger results hold. Under additional

conditions, rates of uniform almost sure convergence over compact sets can be

established. See Bosq [1] or Györfi et al. [9].

Proof of Lemma 7.1: We make use of the following Bernstein inequality,

which is Theorem 1.3 part (2) in Bosq [1].

Lemma 7.2. Let {Wt}t∈Z be a mean zero real valued random process

such that sup1≤t≤n ‖Wt‖∞ ≤ b, and let Sn =
∑n

t=1Wt. Then for each integer

q ∈ ⌊1, n/2⌋ and each ǫ > 0,

P
[

|Sn|> nǫ
]

≤ 4 exp

(

− ǫ2

8 v2(q)
q

)

+ 22

(

1+
4 b

ǫ

)1/2

q α

(⌊

n

2 q

⌋)

,

where v2(q) = 2
p2 σ2(q) + bǫ

2 , p = n
2q , and

σ2(q) = max
0≤j≤2q−1

E

[

(

⌊jp⌋ + 1 − j p
)

X⌊jp⌋+1 + X⌊jp⌋+2 + · · ·

+ X⌊(j+1)p⌋ +
[

(j +1)p −
⌊

(j +1)p
⌋

]

X⌊(j+1)p+1⌋

]

.

The Borel–Cantelli lemma will be used to show

P
[

∣

∣f̂n(x)−E f̂n(x)
∣

∣ > ǫ i.o.
]

= 0 .

Since E f̂n(x) → f(x), this will establish the desired result.

Let Wi = Kh(Xi− x) − E
[

Kh(Xi− x)
]

. Then ‖Wi‖∞ ≤ K̂/h for all i,

where K̂ = 2 sup
x∈R

K(x). In addition, it can easily be seen that σ2(q)≤ (p+1)2

n2h2 K̂2.

Therefore,

pn := P

[

1

n

∣

∣

∣

∣

∣

n
∑

i=1

Wi

∣

∣

∣

∣

∣

> ǫ

]

≤ 4 exp

(

− C1 ǫ2

(p+1)2

n2 h2 p2 + 1
h

q

)

+ C2

(

1+
C3

hǫ

)1/2

q α

(⌊

n

2 q

⌋)

.
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We need
∑

n pn < ∞. In order for the first term in the sum to be fininte, it

is necessary that n2h2 q/(n2h)→∞ at a rate equal to or faster than nδ1 for some

δ1 > 0; this requires q grow at least as fast as nδ1h−1. On the other hand, the

second term requires
∑

n(q/
√

h)α(⌊n/2q⌋) < ∞. As noted in the Remark 5.1,

it is sufficient to choose q such that
∑

n(q/
√

h)(q/n)2 < ∞. The latter condition

can be satisfied if q3h−1/2 grows at a rate n1−δ2 , for some δ2 > 0. Equiva-

lently, it suffices for q to grow at a rate equal to or slower than n(1/3)−δ2 h1/6.

It can easily be seen that these requirements can be met simultaneously as long

as h satisfies n−2/7+δ = o(h), for some δ > 0; this includes all optimal rates.

This result could be further strengthened by imposing additional assumptions.

For example, in the case where X1, ..., Xn are i.i.d., the mixing coefficients are 0,

and hence summable. In this situation, the only restriction on h is that it de-

crease slightly slower than 1/n. In the case of a mixing process, the possible range

of rates for h could be expanded if one were to assume that the joint density of

(X1, Xi) is differentiable with partial derivatives uniformly bounded in i.

We now return to the proof of the main result. By the preceding lemma,

for large enough n, we can assume that f̂n(x) > c/2. So, we can apply the

intermediate value theorem to see,

r̂(x) − r(x) =
ĝ(x)

f̂(x)
− g(x)

f(x)

= ĝ(x)

(

1

f(x)
− 1

ξ2
n

(

f̂(x)−f(x)
)

)

− g(x)

f(x)
,

where |ξn− f(x)| ≤ |f̂(x) − f(x)|. This can be further simplified to

r̂(x) − r(x) =
1

f(x)

(

ĝ(x)−g(x)
)

− ĝ(x)

ξ2
n

(

f̂(x)−f(x)
)

=
1

f(x)

(

ĝ(x)−E
[

ĝ(x)
]

)

− ĝ(x)

ξ2
n

(

f̂(x)−E
[

f̂(x)
]

)

+ o(hk) .

By Lemmas 4.1 and 4.2, ĝ(x) and f̂(x) converge in probability to g(x) and f(x)

respectively. Therefore, ξn also converges to f(x) in probability. By Slutsky’s

theorem, and Lemma 4.3,

√
nh
(

r̂(x) − r(x) + o(hk)
) D−→ N

(

0 ,
σ2(x)

f(x)

∫ ∞

−∞
K2(z) dz

)

,

the desired result.

Proof of Lemma 5.1: The proof of part (a) follows from similar results

for the i.i.d. case:

var
[

Z1

]

= E
[

(c1+ c2Y1)
2 K2

h(X1−x)
]

−
(

c1f(x) + c2 r(x)f(x) + O(hk)
)2

= E

[

(

c2
1 + 2 c1 c2 r(X1) + c2

2

[

r2(X1)+ σ2(X1)
]

)

K2
h(X1−x)

]

+ O(1)

= θ(x)/h + o(1/h) + O(1) .
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The proof of part (b) is more challenging. Let dn be a sequence of integers

such that dn→ ∞ and dnh → 0. Define

J1 :=

dn−1
∑

i=1

∣

∣cov[Z1, Zi+1]
∣

∣ ,

and

J2 :=
n−1
∑

i=dn

∣

∣cov[Z1, Zi+1]
∣

∣ .

We wish to show J1 = o(1/h) and J2 = o(1/h). We begin with J1. By con-

ditioning on (X1, Xi),

∣

∣cov[Z1, Zi]
∣

∣ ≤

≤
∣

∣

∣

∣

E
[

(c1 + c2Y1)Kh(X1− x) (c1 + c2Yi)Kh(Xi− x)
]

∣

∣

∣

∣

+ O(1)

≤ E

[

∣

∣Kh(X1−x)Kh(Xi−x)
∣

∣E
[

∣

∣(c1 + c2Y1) (c1 + c2Yi)
∣

∣

∣

∣

∣
X1, Xi

]

]

+ O(1)

≤ E

[

∣

∣Kh(X1−x)Kh(Xi−x)
∣

∣

×
(

E
[

(c1 + c2Y1)
2
∣

∣X1, Xi

]

E
[

(c1 + c2Yi)
2
∣

∣X1, Xi

])1/2
]

+ O(1)

≤ CE
[

∣

∣Kh(X1−x)Kh(Xi−x)
∣

∣

]

+ O(1)

≤ C

(
∫ ∞

−∞

∣

∣Kh(u − x)
∣

∣ du

)2

+ O(1) .

Since the O(1) term is the same for all i,
∣

∣cov[Z1, Zi]
∣

∣< C for some positive C.

Therefore J1 = o(1/h). For the second term, J2, we employ Davydov’s Lemma

(see Hall and Heyde [10]), which tells us

∣

∣cov[Z1, Zi+1]
∣

∣ ≤ 8
[

α(i)
]1−2/δ [

E |Z1|δ
]2/δ

.

We now need to put a bound on E |Zi|δ.

E |Zi|δ = E

[

∣

∣

∣

∣

c1

[

Kh(Xi−x) − E
[

Kh(Xi−x)
]

]

+ c2

[

Yi Kh(Xi−x) − E
[

Yi Kh(Xi−x)
]

]

∣

∣

∣

∣

δ
]

(7.1)

≤ 2 E

[

∣

∣

∣

∣

c1

[

Kh(Xi−x) − E
[

Kh(Xi−x)
]

]

∣

∣

∣

∣

δ
]

+ 2 E

[

∣

∣

∣

∣

c2

[

Yi Kh(Xi−x) − E
[

Yi Kh(Xi−x)
]

]

∣

∣

∣

∣

δ
]

.
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These two terms behave similarly, so it is sufficient to examine only the second.

Let C denote a generic positive constant which may take on different values:

2 E

[

∣

∣

∣

∣

c2

[

Yi Kh(Xi−x) − E
[

Yi Kh(Xi−x)
]

]

∣

∣

∣

∣

δ
]

≤

≤ 4 E
[

∣

∣c2Yi Kh(Xi−x)
∣

∣

δ
]

+ 4
∣

∣

∣
E
[

Yi Kh(Xi−x)
]

∣

∣

∣

δ

≤ CE
[

∣

∣Kh(Xi−x)|δ E
[

|Yi|δ
∣

∣Xi

]

]

+ C

≤ Ch1−δ + C .

An identical result holds for the first term in equation (7.1). Putting these two

terms together yields
[

E |Z1|δ
]2/δ ≤

[

Ch1−δ + C
]2/δ

≤ Ch2/δ−2 + C .

Returning to J2,

J2 ≤
∞
∑

i=dn

8
[

α(i)
]1−2/δ [

E |Z1|δ
]2/δ

≤
∞
∑

i=dn

[

α(i)
]1−2/δ(

Ch2/δ−2 + C
)

.

By Assumption 7,
∑∞

i=dn
[α(i)]1−2/δ→ 0 as dn→ ∞. So,

J2 ≤ Ch2/δ−2
∞
∑

i=dn

[

α(i)
]1−2/δ

+ o(1)

≤ Ch2/δ−2 d−β
n

∞
∑

i=dn

iβ
[

α(i)
]1−2/δ

+ o(1) .

By choosing dn such that h2/δ−1d−β
n → 1, we see J2 = o(1/h) and hdn → 0,

which ensures the convergence of J1. This completes the proof of (b). The proof

of (c) is an immediate consequence of (a) and (b).

Proof of Lemma 5.2: The proof employs a small-block large-block ar-

gument. The set {1, ..., n} is partitioned into 2k + 1 alternating large and small

subsets. Let rn be the size of the large blocks and sn be the size of the small

blocks. Then kn = ⌊n/(rn + sn)⌋. For 0 ≤ j ≤ k−1, define

Uj :=
√

h

j(r+s)+r
∑

i=j(r+s)+1

Zi ,

Vj :=
√

h

(j+1)(r+s)
∑

i=j(r+s)+r+1

Zi

and
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Wj :=
√

h
n
∑

i=k(r+s)+1

Zi .

We see immediately that Uj sums the Zi over the blocks of size r, Vj sums the Zi

over the blocks of size s, and Wj accounts for the remaining terms that do not

fit evenly into the first 2k blocks.

The idea of the proof is to show that the small blocks separate the large

blocks by enough to make them asymptotically independent while being small

enough that they don’t make a substantial contribution to the limiting distri-

bution. The Lindeberg condition can then be checked for the separated large

blocks.

To formalize this, we write

√
nh Qn =

1√
n





k−1
∑

j=0

Uj +
k−1
∑

j=0

Vj + Wj





:=
1√
n

[

Q′
n + Q′′

n + Q′′′
n

]

.

We will establish the following identities:

1

n
E
[

(Q′′
n)2
]

→ 0 ,(7.2)

1

n
E
[

(Q′′′
n )2
]

→ 0 ,(7.3)
∣

∣

∣

∣

∣

E exp(it Q′
n) −

k
∏

j=1

E
[

exp(it Uj)
]

∣

∣

∣

∣

∣

→ 0 ,(7.4)

1

n

k
∑

i=1

E
[

U2
i

]

→ θ2(x) ,(7.5)

and

1

n

k−1
∑

j=0

E
[

U2
j 1[|Uj | ≥ ǫ θ(x)

√
n]

]

→ 0 ,(7.6)

for all ǫ > 0.

Once these have been established, by a Taylor Series expansion, we will have
∣

∣

∣

∣

E
[

exp
(

it
√

nh Qn

)

]

− exp
(

−t2θ2(x)/2
)

∣

∣

∣

∣

=

=

∣

∣

∣

∣

E

[

exp

(

it
1√
n

[

Q′
n +Q′′

n +Q′′′
n

]

)]

− exp
(

−t2θ2(x)/2
)

∣

∣

∣

∣

(7.7)

≤
∣

∣

∣

∣

E

[

exp

(

it
1√
n

Q′
n

)]

− exp
(

−t2θ2(x)/2
)

∣

∣

∣

∣

+ E

[
∣

∣

∣

∣

2t√
n

Q′′
n

∣

∣

∣

∣

]

+ E

[
∣

∣

∣

∣

2t√
n

Q′′′
n

∣

∣

∣

∣

]

.
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The final two terms will converge to 0 by the Cauchy–Schwarz inequality and

equations (7.2) and (7.3). Equations (7.4), (7.5), and (7.6) are enough to verify

the conditions of the Lindeberg–Feller central limit theorem, which will establish

the desired result. The proof will be complicated somewhat because (7.6) will

be established first for bounded random variables, and then the bound will be

allowed to tend to infinity.

We begin by choosing block sizes. By Assumption 8, there exists a sequence

qn such that qn → ∞ and qnsn = o
(
√

nh
)

, and qn

√

n/h α(sn) → 0. Define the

large block size rn by

rn :=
⌊
√

nh/qn

⌋

.

From this definition, we see

sn

rn
≤ sn√

nh/qn − 1
=

qnsn/
√

nh

1 − qn/
√

nh
→ 0 ,(7.8)

n

rn
α(sn) =

n

⌊
√

nh/qn⌋
α(sn) ≤ n√

nh/qn − 1
α(sn)

(7.9)
=
(

√

n/h qn + o(1)
)

α(sn) → 0
and

rn√
nh

=

⌊
√

nh/qn

⌋

√
nh

≤
√

nh/qn + 1√
nh

=
1

qn
+

1√
nh

→ 0 .(7.10)

We begin by verifying equations (7.2) and (7.3):

(7.11) E
[

(Q′′
n)2
]

=
k−1
∑

i=0

var[Vj ] +
∑

i6=j

cov[Vi, Vj ] ,

where, by Lemma 5.1,

var[Vi] = sh var[Z1] + 2 sh
s−1
∑

i=1

(1− j/s) cov[Z1, Z1+i]

= s
[

θ(x) + o(1)
]

.

By equation (7.8),

k−1
∑

i=0

var[Vj ] ≤ knsn

[

θ(x) + o(1)
]

≤ n sn

sn+ rn

[

θ(x) + o(1)
]

= o(n) .

The second term of (7.11) can be treated as follows:

∑

i6=j

cov[Vi, Vj ] = h
k−1
∑

i6=j

s
∑

l=1

s
∑

m=1

cov
[

Zi(r+s)+r+m , Zj(r+s)+r+l

]

.
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Since i 6= j, the difference between the indices,
∣

∣i(r+s)+r+m−(j(r+s)+r+l)
∣

∣≥ r,

so ∣

∣

∣

∣

∣

∑

i6=j

cov[Vi, Vj ]

∣

∣

∣

∣

∣

≤ 2 h

n−r
∑

l=1

n
∑

m=l+r

∣

∣cov[Zl, Zm]
∣

∣

= 2h
n−r
∑

l=1

n−l
∑

j=r

∣

∣cov[Zl, Zl+j ]
∣

∣

≤ 2 nh
n−1
∑

j=r

∣

∣cov[Z1, Zj+1]
∣

∣ = o(n) .

This establishes (7.2). We now turn our attention to (7.3):

1

n
E
[

(Q′′′
n )2
]

=
h

n

(

n − k(r+s)
)

var[Z1] + 2h

n−k(r+s)
∑

i=2

cov[Z1, Zi]

≤ rn + sn

n
θ2(x) + o(1) → 0 .

To prove (7.4), we use a lemma of Volkonskii and Rozanov [23], which is

stated in Lemma 7.3, following this proof:
∣

∣

∣

∣

∣

E exp(it Q′
n) −

k
∏

j=1

E
[

exp(it Uj)
]

∣

∣

∣

∣

∣

≤ 16(k−1) α(sn+1)

= 16
n

rn
α(sn+1) + o(1) → 0 ,

by equation (7.9).

We now turn our attention to equation (7.5):

1

n

k
∑

i=1

E[U2
i ] =

kn

n
var[U1]

=
kn rn

n

(

θ2(x) + o(1)
)

=
rn

rn + sn
θ2(x) + o(1) → θ2(x) .

Finally, we verify equation (7.6). We begin establishing the result for trun-

cated random variables, and then subsequently letting the truncation point go to

infinity. Define

ZL
i := (c1 + c2Yi) 1[|Yi|≤L] Kh(Xi−x) − E

[

(c1 + c2Yi) 1[|Yi|≤L] Kh(Xi−x)
]

,

QL
n :=

1

n

n
∑

i=1

ZL
i ,

Q̃L
n :=

1

n

n
∑

i=1

(

Zi− ZL
i

)

,
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and

UL
j :=

√
h

j(r+s)+r
∑

i=j(r+s)+1

ZL
i .

We first need to estimate the asymptotic variance of ZL
1 . Assume conditions

strong enough that for all c1 and c2, and for all L > L0,

E
[

(c1 + c2Yi)
2 1[|Yi|≤L]

∣

∣X1 = x
]

is continuous as a function of x :
∣

∣

∣

∣

E
[

(c1 + c2Yi) 1[|Yi|≤L] Kh(Xi− x)
]

∣

∣

∣

∣

≤
(

|c1| + |c2L|
)

E
[

∣

∣Kh(X1− x)
∣

∣

]

≤ C ,

and

h E
[

(c1 + c2Yi)
2 1[|Yi|≤L] K

2
h(Xi− x)

]

=

= h E

[

K2
h(X1− x) E

[

(c1 + c2Yi)
2 1[|Yi|≤L]

∣

∣X1

]

]

= h

∫ ∞

−∞
K2

h(u−x) E
[

(c1 + c2Yi)
2 1[|Yi|≤L]

∣

∣X1 = u
]

f(u) du

=

∫ ∞

−∞
K2(v) E

[

(c1+ c2Yi)
2 1[|Yi|≤L]

∣

∣X1 = x + hv
]

f(x+hv) dv

= E
[

(c1 + c2Yi)
2 1[|Yi|≤L]

∣

∣X1 = x
]

f(x)

∫ ∞

−∞
K2(v) dv + o(1) .

Putting these two together,

h var[ZL
1 ] = E

[

(c1 + c2Yi)
2 1[|Yi|≤L]

∣

∣X1 = x
]

f(x)

∫ ∞

−∞
K2(v) dv + o(1) .

For the sake of notational simplicity, we now define

(θL)2 (x) := E
[

(c1 + c2Yi)
2 1[|Yi|≤L]

∣

∣X1 = x
]

f(x)

∫ ∞

−∞
K2(v) dv .

Returning now to the proof of (7.6), since K and Y L
i are bounded, hZL

i

is also bounded. Equivalently, for some D,

√
h ZL

i ≤ D/
√

h .

Therefore, by equation (7.10), max0≤j≤k−1 UL
j /

√
n ≤ (Drn)/

√
nh → 0. For large

enough n, the set
{

|UL
j | ≥ θL(x) ǫ

√
n
}

becomes empty. Therefore, by the same

argument as used to establish (7.7),

(7.12)
√

nh QL
n

D−→ N
(

0, (θL)2(x)
)

.



148 T. McMurry and D. Politis

We are now prepared to put these pieces together to finish the proof of the

theorem:
∣

∣

∣

∣

E
[

exp
(

it
√

nhQn

)

]

− exp
(

−t2θ2(x)/2
)

∣

∣

∣

∣

=

=

∣

∣

∣

∣

E
[

exp
(

it
√

nh
[

QL
n + Q̃L

n

]

)]

− exp
(

−t2(θL)2(x)/2
)

+ exp
(

−t2(θL)2(x)/2
)

− exp
(

−t2θ2(x)/2
)

∣

∣

∣

∣

=

∣

∣

∣

∣

E
[

exp
(

it
√

nh QL
n

)

+ exp
(

it
√

nh QL
n

)

(

exp
[

it
√

nh Q̃L
n

]

− 1
)]

− exp
(

− t2(θL)2(x)/2
)

+ exp
(

−t2(θL)2(x)/2
)

− exp
(

−t2θ2(x)/2
)

∣

∣

∣

∣

≤
∣

∣

∣

∣

E
[

exp
(

it
√

nh QL
n

)

]

− exp
(

−t2(θL)2(x)/2
)

∣

∣

∣

∣

+

∣

∣

∣

∣

E
[

exp
(

it
√

nh QL
n

)

(

exp
[

it
√

nh Q̃L
n

]

− 1
)]

∣

∣

∣

∣

+
∣

∣

∣
exp
(

−t2(θL)2(x)/2
)

− exp
(

−t2θ2(x)/2
)

∣

∣

∣

≤
∣

∣

∣

∣

E
[

exp
(

it
√

nh QL
n

)

]

− exp
(

−t2(θL)2(x)/2
)

∣

∣

∣

∣

+ E
[
∣

∣

∣
exp
[

it
√

nh Q̃L
n

]

−1
∣

∣

∣

]

+
∣

∣

∣
exp
(

−t2(θL)2(x)/2
)

− exp
(

−t2θ2(x)/2
)

∣

∣

∣
.

We analyze each term separately, first letting n → ∞, and then letting L → ∞.

For fixed t, the first term goes to zero by equation (7.12). The third term goes to 0

by dominated convergence, since (θL)2(x) → θ2(x) as L → ∞. Only the second

term remains to be analyzed. By a Taylor series expansion,

∣

∣

∣
exp
[

it
√

nh Q̃L
n

]

− 1
∣

∣

∣
≤ 2

∣

∣

∣
t
√

nh Q̃L
n

∣

∣

∣
.

By the Cauchy–Schwarz inequality, the bound will converge to 0 if it can be

shown that nh var
[

(Q̃L
N )
]

→ 0. As Q̃L
n satisfies the same dependence assumptions

as Qn, the calculations of Lemma 5.1(c) apply. So, it is sufficient to show that

(θL)2(x)→ 0 as L→∞. This follows immediately by dominated convergence.

Lemma 7.3 (Volkonskii andRozanov [23]). Let V1, ...,VN be strong mixing

random variables, which are measurable with respect to the σ-algebras F j1
i1

, ...,F jN

iN
respectively, with 1≤ i1 < j1 < i2 < ... < jN ≤ n, il+1−jl ≥ w ≥ 1, and |Vl| ≤ 1,

for l = 1, ..., N . Then

∣

∣

∣

∣

∣

∣

E

[

N
∏

j=1

Vj

]

−
N
∏

j=1

E[Vj ]

∣

∣

∣

∣

∣

∣

≤ 16 (L−1) α(w) ,

where α(w) is the strong mixing coefficient.
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