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1. Proof of Lemma 1.1:

Fisher information is this context is the amount of information a data

i(λ) = E[
∂

∂λ
(lnf(x1, x2))]

2,

where f(x1, x2) is as given in (1.5).

∂

∂λ
lnf = (1/f)

∂

∂λ
f

= (2F1(x1)− 1)(2F2(x2)− 1)(1 + λ(2F1(x1)− 1)(2F2(x2)− 1))−1

Hence the FIPO is

i(λ) = E[((2F1(x1)− 1)(2F2(x2)− 1)/{1 + λ(2F1(x1)− 1)(2F2(x2)− 1)})2]

=

∫
R1

∫
R2

(2F1(x1)− 1)2(2F2(x2)− 1)2f1(x1)f2(x2)

{1 + λ(2F1(x1)− 1)(2F2(x2)− 1)}
dx1 dx2

Let (2(Fi(xi)− 1) = ui then
dui
dxi

= 2fi(xi) ⇐⇒ f(xi)dxi = dui/2.

i(λ) = (1/4)

∫ +1

−1

∫ +1

−1
u21u

2
2/(1 + λu1u2)du1du2.
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The above double integration can be done symbolically. Another option is to see that both

u1 and u2 are between −1 and +1, i.e., |ui| < 1. Since |λ| < 1, |λu1u2| < 1. So, we can use

the series expression:

(1 + λu1u2)
−1 =

∞∑
j=0

(−1)j(λu1u2)
j .

Hence,

i(λ) = (1/4)

∫ +1

−1

∫ +1

−1
u21u

2
2/(1 + λu1u2)du1du2

= (1/4)
∞∑
j=0

(−1)j(λ)j(

∫ +1

−1
uj+2
1 du1)(

∫ +1

−1
uj+2
2 du2)

= (1/4)
∞∑
j=0

(−1)j(λ)j{uj+3/(j + 3)|+1
−1}

2

= (1/4)
∞∑
j=0

(−1)j(λ)j/(j + 3){(1)j+3 − (−1)j+3}2.

In the above expression all the odd terms would vanish, and the even terms would remain.

Let j = 2m, m = 0, 1, 2, .... So,

i(λ) = λ2m/(2m+ 3).

It is worthy to note here that the infinite sum in the above expression is convergent and has

a finite expression. The final form of the FIPO is given by

(1.1) i(λ) = {−λ+ tanh−1(λ)}/λ3,

where tanh−1(λ) = 1
2 log((1 + λ)/(1− λ)).

2. Proof of Theorem 2.1

A direct differentiation of (2.3) and then maximizing it by equating the derivative to

zero is not the right approach to find λ̂ML numerically.

First define ai, 1 ≤ i ≤ n as ai = G(xi1)G(xi2). It is easy to see that each ai ∈ [−1,+1],

since each G(xik), k = 1, 2, is so. Further note that each ai > 0 if and only if G(xik) ≷ 0

for both k = 1, 2. Similarly, each ai < 0 if G(xi1) > 0 and G(xi2) < 0, or G(xi1) < 0 and

G(xi2) > 0. let Mk be the median of the marginal fk, k = 1, 2. Hence, ai > 0 provided either

both xik > Mk (k = 1, 2) or both xik > Mk (k = 1, 2). Thus, each ai > 0 with probability

0.5, and < 0 with probability 0.5.

The derivative of l(λ) w.r.t λ is h(λ), where h(λ) =
∑n

i=1 ai/(1+λai). From a numerical

point of view it is not advisable to find λ̂ML by setting h(λ) = 0, since there may not be such

a solution. Hence, one needs to proceeds carefully.
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Note that h′(λ) = −
∑n

i=1{ai/(1 + λai)}2 < 0 ∀ λ, i.e., h(λ) is monotonically decreas-

ing. Two expressions are very important here: h(−1) =
∑n

i=1 ai/(1 − ai), and h(+1) =∑n
i=1 ai/(1 + ai). Now we are going to consider three cases as given below.

(a) h(−1) > 0 and h(+1) < 0.

In this case, h(λ) is decreasing monotonically, starting with some positive value at

λ = −1 and then ending with some negative value at λ = +1. So there exists a unique

λ0 ∈ (−1,+1) ∋ h(λ0) = 0. this λ0 is the value of λ̂ML, and it is unique by the

monotonicity of h(λ).

(b) h(−1) < 0 ( which also implies that h(+1) < 0).

Since h(λ) is monotonically decreasing, h(λ) is negative over the entire space of λ ∈
[−1,+1]. Since h(λ) = l′(λ), it implies that when our observations are such that

h(−1) =
∑n

i=1 ai/(1 − ai) < 0, the log-likelihood function is monotonically decreasing

for λ ∈ [−1,+1], i.e., l(λ) is attaining its supremum at λ̂ML = −1, and this is unique.

(c) h(+1) > 0 ( which also implies that h(−1) > 0).

Since h(λ) is monotonically decreasing, h(λ) is positive over the entire space of λ ∈
[−1,+1]. Since h(λ) = l′(λ), this implies that when our observations are such that

h(+1) =
∑n

i=1 ai/(1 + ai) > 0, the log-likelihood function is monotonically decreasing

for λ ∈ [−1,+1], i.e., l(λ) is attaining its supremum at λ̂ML = +1, and this is unique.

3. Bayes’ estimator under the approximate Jeffrey’s prior (λ̂BAJP )

Equation (2.14) gives the general form of a Bayes’ estimate of λ with a prior distribution

π(λ). The algebraic restructuring in (2.15) gives us a more tractable form the general Bayes’

estimator which is given by (2.16). In (2.16) call the numerator as A and the denominator

as B. We are going to use w(λ) = 1 and π(λ) = πAJP (λ), where πAJP (λ) is given by (2.21).

Below we derive both A and B separately to arrive at the final form of λ̂BAJP given in (2.22).

A =

∫ 1

−1
λw(λ)

n∑
k=0

Dkλ
k

∞∑
m=0

|λ|m(2m+ 3)−1/2dλ

=
n∑

k=0

∞∑
m=0

Dk(2m+ 3)−1/2

∫ 1

−1
λk+1w(λ)|λ|mdλ

=

n∑
k=0

∞∑
m=0

Dk(2m+ 3)−1/2[

∫ 1

0
λk+1(λ)mdλ+

∫ 0

−1
λk+1(−λ)mdλ].

(3.1)

Let us focus on the integration term within the square bracket in (D.1). Call
∫ 1
0 λk+1(λ)mdλ+∫ 0

−1 λ
k+1(−λ)mdλ = c1. In c1, consider the second part of the integration i.e.,

∫ 0
−1 λ

k+1(−λ)mdλ.

In this integration let −λ = u =⇒ −dλ = du and with this substitution the integration
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becomes
∫ 0
+1(−u)k+1um(−du) = (−1)k+1

∫ 1
0 um+k+1du. So,

c1 =

∫ 1

0
λm+k+1dλ+ (−1)k+1

∫ 1

0
λm+k+1dλ

={1 + (−1)k+1}
∫ 1

0
λm+k+1dλ

={1 + (−1)k+1}(m+ k + 2)−1.

So, A =
∑n

k=0

∑∞
m=0Dk(2m+ 3)(−1/2)(1 + (−1)k+1)(m+ k + 2)−1.

Similarly, B =
∑n

k=0

∑∞
m=0Dk(2m+ 3)−1/2[

∫ 1
0 λk(λ)mdλ+

∫ 0
−1 λ

k(−λ)mdλ] i.e.,

B =
∑n

k=0

∑∞
m=0Dk(2m+ 3)(−1/2)(1 + (−1)k)(m+ k + 1)−1. So, λ̂BAJP = A/B, which is

given in (2.22).

4. Application Data

Table 1: MDR groundwater Data
Well ID As (ppb) Cl (ppm) Eh (mv) pH Well ID As (ppb) Cl (ppm) Eh (mv) pH
DT7 563.9 107 -126 6.78 TB19 300.3 160.3 -120 6.68
DT6 0.5 56.1 142 6.71 TBE10 700.4 81.4 -108 7.07
DT5 0.7 46.8 199 7.04 TBE9 196.2 986.6 -110 6.72
DT3 0.4 345.2 169 6.44 TBE7 166.3 20 -84 7.16
DT4 0.1 500.1 165 6.51 TBE4 4.4 1499.6 82 6.09
DT2 1.8 632.8 101 6.66 TBE5 981.4 60.4 -110 6.87
DT1 13.1 19.7 97 7.75 TBE3 6.8 2.7 158 7.17
TB11 462.3 9.2 -114 6.92 TBE1 6.6 61.7 126 7.1
TB18 155.7 25.9 -72 6.52 TBE11 5.3 12.2 60 7.16
TB9 187.6 12.8 -128 6.94 TBE6 3.2 1527 149 6.73
TB2 850.4 10.5 -133 7.14 TH16 0.4 173.6 157 6.14
TB24 370.4 13.9 -90 7.15 TH9 0.2 275.3 253 5.84
TB26 139.9 13.8 -83 7.43 TH13 0 22.7 194 6.19
TB27 77.7 5.4 -33 7.24 TH14 0.3 113.6 184 6.02
TB21 842.1 21.1 -105 6.88 TH22 0.1 228.1 226 6.5
TB1 276.8 19.6 -92 6.85 TH21 0.3 89.9 169 6.1
TB10 377.3 8.2 -129 6.79 TH5 0.8 742.1 251 5.83
TB25 272.9 11.9 -104 7.2 TH12 2.3 182.7 127 6.31
TB13 746 72.7 -125 7.16 TH15 8.4 27.5 60 6.18
TB22 311 13.5 -130 6.63 TH1 6 544.4 210 6.08
TB15 937.7 19.3 -110 7.04 TH10 3.2 277.3 231 6
TB16 314.5 25.8 -115 6.74 TH2 2 487.6 130 5.87
TB20 746.3 6.9 -139 6.61 TH23 0.2 158.5 175 6.04
TB23 270 12.7 -110 7.01 TH3 1.5 560.2 261 6
TB17 224.2 21.5 -126 6.46 TH4 2.6 21.4 80 5.99
TB3 727 10.8 -136 7.14 TH11 8.9 479.8 158 6.56
TB12 931.5 2.9 -125 7.03 TH18 3.6 335.6 181 6.29
TB14 747.7 63.4 -115 7.15 TH8 6 253.2 235 5.85
TB5 416.3 0 -60 7.69 TH7 0.7 122.3 162 6.29
TB4 360.3 42.9 -130 7.34 TH6 0 242.8 200 6.19
TB6 315.5 61.2 -111 7.36 TH17 22.2 40.5 -13 7.03
TB7 101.1 42.7 -28 7.3 TH19 17.5 57.3 145 7.39
TB8 237.6 124.4 -98 7.17 TH20 2.4 0 24 6.51

NOTE: Under the column “Well ID”, the wells located in the southern subregion starts

with“DT” and “TB”. The wells that are located in the northern subregion starts with “TH”.
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5. Relative Frequency Histogram Plots of the Six Estimators
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Figure 1: Simulated relative frequency histograms of the six estimators of
λ, n = 10.
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Figure 2: Simulated relative frequency histograms of six estimators of λ,
n = 20
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Figure 3: Simulated relative frequency histograms of the six estimators of
λ, n = 30.
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Figure 4: Simulated relative frequency histograms of the six estimators of
λ, n = 40.
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Figure 5: Simulated relative frequency histograms of the six estimators of
λ, n = 50.
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6. Bias and MSE Plots of the Six Estimators
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Figure 6: Bias plots of the six estimators for n = 30
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Figure 7: MSE plots of the six estimators for n = 30
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7. Relative Frequency Histograms of elements in MDR groundwater
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Figure 8: Relative frequency histogram of the four elements in two subre-
gions
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8. Scatter plots of Arsenic and the other elements in MDR groundwater
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Figure 9: Scatter plots of As against each of other three elements
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