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1. INTRODUCTION

1.1. Preliminaries

The normal distribution, though widely popular and heavily used in modeling datasets,

has its own limitations. In the univariate case, when the variable of interest is positively

skewed, one can use a host of other distributions such as Gamma, Weibull, Lognormal etc.,

just to name a few. However, in a multivariate set-up, the multivariate normal distribution

appears to be the default choice, either by omission or by commission. The multivariate

normal model has a host of advantages as its inferential problems are well studied, and

the sampling distributions of its key statistics are relatively convenient to deal with. To be

precise, let X = (X1, X2, ..., Xp)
′ be a p-variate random vector whose distribution is assumed

to be Np(µ,Σ) where µ ∈ Rp and Σ = ((σij)) > 0 (p.d.). Based on a random sample

Xi, 1 ≤ i ≤ n, (i.e., n copies of X), assuming n > p, the maximum likelihood estimators

(MLEs) of µ and Σ are respectively µ̂ = X =
∑n

i=1Xi/n, and Σ̂ = S/n, where S =∑n
i=1(Xi −X)(Xi −X)′. Further, under the above normality of X = (X1, ...., Xp)

′, it is well

known that E(X1|X2, ..., Xp) = β1 +
∑p

k=2 βkXk, for a suitable value of β = (β1, β2, ..., βp)
′

which depends on µ and Σ, and this is the motivation behind the usual multiple linear

regression where X1 is intended to be explained as a linear function of (X2, ..., Xp) subject

to some variation. But what happens if X does not follow Np(µ,Σ)?

(a): Can we have the aforementioned X and S/n as the MLE of µ and Σ? - Possibly not.

(b): Can we have the independence of X and S (which is the foundation of most of the

normality based inferential results)? - Definitely not. (Kagan et al. (1973))

(c): Does regressing X1 on (X2, ..., Xp) through a linear function make sense? - Certainly not,

since E(X1|X2, ..., Xp) would not be linear at all if the distribution of X is non-elliptically

symmetric (assuming that the conditional expectation exists) Ley et al. (2021).

Yet, in multivariate modelling, ranging from psychology to anthropology, from agricul-

ture to environmental science, especially in a ‘Big Data’ setting, multivariate normal distri-

bution is being used hastily without paying closer attention to whether such model fitting is

appropriate or not.

If the multivariate normal is found to be inappropriate for the data Xi, 1 ≤ i ≤ n,

then one may transform the variable(s) suitably hoping that the transformed data would

follow normal. But there are two major issues with such transformation. There is no magic

formula to tell us what transformation would be suitable for normality. Secondly, often such

transformed variables are hard to interpret, and they lose significance to the original problem

which gave rise to the data set to begin with.

This study has been motivated by several data sets where component-wise histograms

indicate that marginals are heavily skewed, and therefore the joint distribution of the marginals

ought to be something other than a multivariate normal distribution (not even elliptically

symmetric one). In such a situation, it makes sense to follow a ‘ground-up’ approach to build

a multivariate model starting with marginals, rather than the ‘top-down’ approach of starting

with a (questionable) multivariate model and then live with its consequences at the marginal

level.
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Copula theory is a convenient ‘ground-up’ approach where one theorizes a multivariate

distribution for the random vector X = (X1, X2, ..., Xp)
′ based on the marginal of each

Xk, 1 ≤ k ≤ p. This is based on the understanding that the desired joint distribution ought

to obey a particular structure involving the marginals which we have much control over. The

following subsection gives a brief introduction of the copula theory. Though the focus of this

work is the bivariate set-up, occasionally we present some general multivariate results.

1.2. A Brief Introduction of the Copula Theory and motivation

The theorem by Sklar (1959) plays the most important role in the copula theory. In

the simplest case of a bivariate distribution, it tells us that given a random vector (X1, X2)

with absolutely continuous marginal cumulative distribution functions (cdfs), F1 and F2,

with corresponding probability density functions (pdfs) f1 and f2 respectively, and its joint

cdf denoted by F , with joint pdf f , there exists a unique copula C (a functional), such that

F (x1, x2) = C(F1(x1), F2(x2)),

i.e., f(x1, x2) = ∂2F (x1, x2)/∂x1∂x2

= c(F1(x1), F2(x2))f1(x1)f2(x2),

(1.1)

where c(u, v) := ∂2C(u, v)/∂u∂v.

In general, given a continuous random vector in p-dimension, i.e., X = (X1, X2, ..., Xp)
′,

with marginal cdfs Fk, k = 1, 2, ..., p, if we use the transformations such that Uk := Fk(Xk),

k = 1, 2, .., p, then we have Uk ∼ Uniform(0, 1), k = 1, 2, ..., p. The copula function C :

[0, 1]p → [0, 1] is a joint multivariate cdf of U := (U1, U2, ..., Up)
′, i.e.,

(1.2) C(u1, u2, ......, up) = P (U1 ≤ u1, ...., Up ≤ up).

The joint cdf of X, denoted by F (x1, ..., xp), can be given in terms of C(u1, ..., up). By Sklar’s

theorem there exists a unique copula C such that

(1.3) F (x1, x2, ..., xp) = C(F1(x1), F2(x2), ...., Fp(xp).

Simply put, the copula C is viewed as a dependence structure among the marginal cdfs.

Since the inception of the copula idea, one can find several copulas in the literature

such as Gaussian copula, Exponential copula, Clayton copula, Frank Copula etc., just to

name a few. Out of the many available copula structures we focus on the Farlie-Gumbel-

Morgenstern copula (FGMC) (see Morgenstern (1956)). The following subsection gives a

brief introduction about the joint distribution based on FGMC, henceforth referred to as

Farlie - Gumbel - Morgernstern Distribution (FGMD). The main reason behind our choice

of FGMC (and subsequently that of FGMD) is its simplicity. Moreover, the nature of our

investigation is completely new, and to the best of our knowledge the type of our investigation

has not been carried out not only for FGMC, but also for any other copula. Therefore, this

work of ours can be used as a template of future research for all other copulas.
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1.3. A Brief History of FGMD

As mentioned in the earlier section, a host of Copula structures have been discussed

in the existing literature and one can find an overview of the available copula structures in

Nelsen (2007). Several bivariate and multivariate non-normal probability distributions based

on copula structures can be found in Kotz et al. (2004).

Morgenstern (1956) first introduced the following bivariate probability distribution on

the square [−1, 1]× [−1, 1] of the form:

(1.4) f(x1, x2) = 0.25 ∗ (1 + λx1x2),

where |λ| ≤ 1 and −1 ≤ x1, x2 ≤ 1. Note that the above joint pdf in (1.4) is the result of

c(u, v) = 1+λ(u−1)(v−1), which is equivalently due to the copula C(u, v) = uv(1+λ((u/2)−
1)((v/2)−1)). Farlie (1960) further studied various standard correlation coefficients between

X1 and X2 for the bivariate distribution in (1.4). The limitations that a bivariate normal

distribution brings to a dataset were first pointed out by Gumbel (1960) while he constructed

a bivariate distribution with exponential marginals using Morgenstern’s underlying copula.

The pdf of the bivariate Farlie-Gumbel-Morgenstern distribution (FGMD) with gen-

eral marginals based on the FGMC is given by:

(1.5) f(x1, x2) = f1(x1)f2(x2)[1 + λ(2F1(x1)− 1)(2F2(x2)− 1)],

where |λ| ≤ 1 is the association parameter, f1, f2 are the marginal pdfs of the components

X1 and X2, with corresponding marginal cdfs F1, F2 respectively.

As a special case of (1.5), D’este (1981) considered a special biavriate Gamma dis-

tribution with gamma marginals and studied the structures of the covariance, conditional

expectations as well as other distributional properties. The following Fig ?? shows the two

- dimensional contour plots of the bivariate FGMD for various λ values, using uniform

marginals. This is to give an idea about how different the bivariate FGMD is from a bivari-

ate normal distribution.

Since the inception of the FGMC, it has undergone several modifications over the years

leading to some wider family of FGMC by different researchers. All these modifications were

done with the goal of capturing a wider range of dependence among the components through

common dependence measures such as Pearson’s Correlation Coefficient (ρ), Spearman’s

Correlation coefficient (ρs), Kendall’s Tau (τ), etc. In their modified FGMD Huang and

Kotz (1999) showed that with a polynomial type single parameter extension of the FGMC

with uniform marginals the maximal attainable range of ρ is [−0.39, 0.333...]. Bairamov

and Kotz (2002) proposed a new generalization of FGMD by introducing new association

parameters and were able to attain a maximal positive (Pearson’s) correlation of ρ = 0.5021

for some specific values of the model parameters. All these generalizations were made to

accommodate a larger spectrum of the Pearson’s correlation coefficient values. However the

Pearson’s correlation coefficient measures the strength of linear relationship between the

components; therefore, paying attention only to this aspect of dependency, at the cost of

adding more parameters to the model, is a rather narrow approach. Amblard and Girard

(2009) gave a new family of copulas by generalizing the FGMC and highlighted the main
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feature of the proposed family as to permit modelling of data with high positive dependency,

in particular over the range of ρs ∈ [−0.75, 1]. Another new generalization of the FGMC

was put forward by Bekrizadeh et al. (2012) and they were able to show the usefulness of

the proposed generalized model in data with high negative dependence value by showing the

(Spearman’s rank correlation) values of ρs ∈ [−0.5, 0.43]. All these generalizations were made

by introducing new parameters which only adds to the complexity of the statistical inferences

of the FGMD model.

1.4. Scope of this work with FGMD

The flexibility of the copula structure lies in allowing the freedom of choice of the

desired marginal distributions. Hence, the association parameter λ of the copula structure

(1.5) becomes a pivotal parameter in conserving the dependency between the components.

As a result, inferences on the association parameter λ in (1.5) is of paramount interest. The

basis of this current work has been the FGMD given in (1.5) with the goal of studying the

inferential aspects of the association parameter λ comprehensively, with known marginals.

If one looks at the existing applications of the copula theory with real-life data sets then

it becomes abundantly clear that the preferred estimator of the association parameter has

always been the maximum likelihood estimator (MLE). But how good is the MLE? From an

asymptotic point of view the MLE has nice tractable limiting distributional properties. But,

for small to moderate sample sizes the performance of the MLE of the FGMD association

parameter λ is totally unknown. Worse, the existing literature is completely silent on other

possible estimators, especially the Bayes ones under noninformative priors. In a parametric

set-up, one should study various estimators of all the model parameters simultaneously which

include the association parameter λ as well as other parameters of the marginal distributions.

(For example, if one assumes a two parameter gamma model for each of the two marginals,

then one ends up with a total five parameters.) It has been noted that estimating just the

association parameter with known marginals itself is a research problem as it entails several

point estimators with corresponding sampling distributions, followed by hypothesis testing

which allows us to verify, under the FGMD assumption, whether the components are in-

dependent or not. The computational challenges that one faces with Bayes estimators in

this simplistic scenario (i.e., just for the association parameter) can be quite overwhelming.

However, the simplistic model that we are using in this work can be applied in a totally non-

parametric marginal set-up where one can use the empirical marginal cdf of each component

to replace the aforementioned known marginal, and then can proceed with the subsequent

inferences. The results developed here will be useful in dealing with the unknown parametric

marginals where the total number of parameters would be at least three (one for each marginal

plus the association parameter). This will be reported in our forthcoming work where para-

metric marginals with unknown parameters are to be considered under the FGMD. With

that above objective in mind, the following subsection presents a brief review of parametric

estimation of the association parameter λ as available in the existing literature.
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(a) λ = −0.3 (b) λ = −0.6 (c) λ = −0.9

(d) λ = 0.3 (e) λ = 0.6 (f) λ = 0.9

Figure 1: FGMD Contour Plots with Uniform marginals and selected λ.

1.5. A Brief survey of the Parameter Estimation under FGMD

Most of the available literature focus only on point estimation of the association pa-

rameter λ in a parametric set-up. Suppose we have iid observations Xi, 1 ≤ i ≤ n, from the

above pdf (1.5) where the marginal fk(xik) = f(xik|θk) for the kth component involves the

parameter θk with dimension dk ≥ 1, k = 1, 2. Note that xik is the realized value of the kth

component of Xi, i.e., Xik, 1 ≤ i ≤ n, k = 1, 2. The entire parameter vector ω = (θ1,θ2, λ)

has the combined dimension of d = d1+d2+1. The combined likelihood function of the data

is

L = L(ω|Xi, 1 ≤ i ≤ n)

=

n∏
i=1

[(

2∏
k=1

fk(xik|θk))(1 + λ

2∏
k=1

(2Fk(xik|θk)− 1))],
(1.6)

where Fk(.|θk) is the cdf associated with the pdf fk(.|θk). It would make sense to find the

MLE of ω by maximizing L w.r.t. ω. But finding the global maxima of L w.r.t to ω is a

computational challenge. Even for the above bivariate case (1.6) with d1 = d2 = 2 (which

happens for typical gamma or Weibull marginals), d = 5, and hence the standard maximiza-

tion techniques often get bogged down to local maxima. However, the MLE of ω, say ω̂ML

remains as the preferred estimator as it is consistent, and asymptotically ω̂ML ∼ Np(ω, I−1),

where I−1 is the inverse of the Fisher information matrix I given as I = ((Iij)), where

Iij = −E(∂2L/∂ωi∂ωj) with ω = (ω1, ..., ωd1 , ωd1+1, ..., ωd1+d2 , ωd) = (θ1,θ2, λ). Also, be-

cause of the iid observations, I = nI0, where I0 = Fisher Information Matrix per observation

(FIPO).

To overcome the computational challenge of maximizing L w.r.t ω in the (d+1) dimen-

sion, Joe (2005) proposed a two-stage estimation process which has a relative computational

simplicity, but it may come at a cost of efficiency. This simplistic approach is known as

‘Inference Function for Margins’(IFM) method where the parameter θk for the kth marginal

is estimated based on the observations X1k, ......, Xnk following fk(.|θk). To be precise, in the
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first stage, the IFM calls for estimating θk using the marginal likelihood function

(1.7) Lk = Lk(θk|Xik, 1 ≤ i ≤ n) =

n∏
i=1

fk(xik|θk),

for each k, 1 ≤ k ≤ 2. The MLE of θk thus obtained is called the ‘marginal MLE’, and

denoted by θ̂k = θ̂k(MML). Then, in the second stage, replace θk by θ̂k(MML) in (1.6) to

obtain the profile likelihood given as

L̃ = L(θ̂1, θ̂2, λ|Xi, 1 ≤ i ≤ n)

=

n∏
i=1

[(

2∏
k=1

fk(xik|θ̂k(MML)))(1 + λ

2∏
k=1

(2Fk(xik|θ̂k(MML))− 1))].
(1.8)

Then obtain the ‘profile MLE’ of λ, say λ̂PML, by maximizing L̃ w.r.t. λ, i.e.,

λ̂PML = argmax
λ∈[−1,1]

L̃(θ̂1, θ̂2, λ|Xi, 1 ≤ i ≤ n).

Note that the estimator θ̂1 = θ̂1(MML) and θ̂2 = θ̂2(MML) are mutually independent, but

λ̂PML is dependent on (θ̂1, θ̂2). As a result, given (θ̂1, θ̂2) fixed, the approximate distribu-

tion of λ̂(PML) is N(λ, σ̂2
∗), where σ̂2

∗ = σ2
∗(θ̂1, θ̂2) is the conditional approximate variance

of λ̂(PML) obtained from (σ2
∗)

−1 = −E∗(∂
2L̃/∂λ2), where E∗ represents conditional expec-

tation based on θ. Under regularity conditions θ̂i
p→ θi when n → ∞, i = 1, 2, therefore,

asymptotically λ̂PML
d→ N(λ, σ2

∗), where σ2
∗ = σ2

∗(θ1,θ2).

Taheri et al. (2018) considered a related, but different model where it was assumed that

a fixed number of the original observations could be potential outliers, and hence these outliers

follow the FGMD in (1.5) with the association parameter λ∗ = λβ, while the rest of the

dataset followed (1.5) with the association parameter λ. But the set-up of the aforementioned

outliers will not be considered here as it assumes that certain observations are known to be

outliers which is not feasible to implement in practice. It is not easy to decide what constitutes

an outlier under the proposed FGMD, and once detected, based on whatever subjectivity it

might involve, how much information does it carry for the underlying model parameters is

not clear.

Application of FGMC to construct a joint survival function based on Weibull marginals

was taken up by Suzuki et al. (2013). These authors considered a generalized beta-type prior

for the association parameter λ, and then implemented Metropolis - Hastings algorithm for

the Bayesian estimation of λ. However, to keep the theory simple, straightforward, and imple-

mentable, we use only noninformative priors without any extra super (or hyper) parameters.

1.6. A Brief Outline of this work

As mentioned earlier, the primary focus of this work is inferences on the association

parameter λ, especially point estimation and hypothesis testing with known marginals. In

Section 2 we address point estimation of λ assuming that the marginals fk’s (k = 1, 2) are

completely known. We have proposed several estimators including Bayes’ estimators under
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suitable non informative priors such as the flat prior (FP ), Jeffrey’s prior (JP ) and approx-

imate Jeffrey’s prior (AJP ). We have investigated the performance of these estimators in

terms of bias and mean squared error (MSE) in section 3. Detailed results from our simu-

lation study to assess the performances of the competing estimators have been provided for

different sample sizes. This includes the simulated sampling distribution of the estimators in

subsection 3.1 and the corresponding bias and MSE of the estimators in subsection 3.2. In

Section 4 we have taken up the problem of testing the null hypothesis H0 : λ = λ0 against a

two sided alternative. In particular, our interest lies in λ0 = 0, since, if this null is retained,

then under the FGMD, it implies that the marginals are independent of each other. In this

section, we have proposed a new family of hypothesis tests developed on the basis of the

likelihood ratio test principle that incorporates the parametric bootstrap (PB) approach in

determining the critical regions rather than the asymptotic Chi-square cut-off points. The

size and power of these tests have been studied extensively through simulation for λ0 = 0. A

real-life dataset has been used in Section 5 to demonstrate how the FGMD can be used to

investigate the pairwise association among different variables under study. This dataset, from

the Mekong Delta Region of Vietnam, pertains to Arsenic contamination in groundwater in

the presence of other apparently benign elements. Finally, the paper ends with some useful

observations and a concluding remark.

1.7. A useful result for known marginals

The following Fisher information for FGMD will be useful in section 2 when the

marginals are (assumed to be) fully known. To the best of our knowledge this has not been

reported before in the literature.

Lemma 1.1. Based on the iid observationsX1,X2, ...,Xn from (1.5) with marginals

f1 and f2 completely known, the Fisher information I(λ) is given as I(λ) = nI0(λ), where

I0(λ) is the Fisher information per observation (FIPO), and

(1.9) I0(λ) = (1/4)

∫ +1

−1

∫ +1

−1
u21u

2
2(1 + λu1u2)

−1du1du2.

Note that the FIPO expression is free from f1 and f2. A further simplification yields

(1.10) I0(λ) =

∞∑
m=0

λ2m/(2m+ 3).

It is worth noting here that the infinite sum in the above expression is convergent and

has a finite expression. Using that expression of the infinite sum, the final form of the FIPO,

is given by

(1.11) I0(λ) = {−λ+ tanh−1(λ)}/λ3,

where tanh−1(λ) = (0.5)log((1 + λ)/(1− λ)). The proof is available in Section 1 of the sup-

plementary information (SI).
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Remark 1.1. It is not at all surprising to see that the expression of I0 in (1.10) or

(1.11) is free from fk’s (k = 1, 2). Since the marginals are assumed to be completely known,

without any loss of information one can look at Yik = Fk(Xik), k = 1, 2, 1 ≤ i ≤ n. Note that

Yik’s are iid Uniform(0, 1). Each Y i = (Yi1, Yi2)
′ then follows the FGMD(λ) with joint

pdf , say g(y) = [1+λ(2y1− 1)(2y2− 2)] on the unit square [0, 1]× [0, 1]. The transformation

Xi → Y i does not change the problem as far as inference on λ is concerned, and yields the

FIPO expression as stated above.

2. Point Estimation of λ

In this section, we propose a wide variety of estimators of the association parameter

λ based on n iid observations from (1.5) with known marginals f1 and f2. As stated in

Remark 1.1, we refer to (1.5) as FGMD(λ). Let R1 and R2 denote the support of X1 and

X2 respectively.

2.1. Method of Moment Estimator (λ̂MM )

Method of moment estimator is attained essentially by equating the sample raw moment

with the population moment. For the joint population moment, using the form of (1.5) and

some further simplification lead us to the following form

E(X1X2) = E(X1)E(X2) + λI1I2,(2.1)

where Ik =
∫ 1
−1(u/2)F

−1
k ((1 + u)/2)∂u, k = 1, 2. For convenience define µk = E(Xk),

k = 1, 2, i.e., the means of the known marginals. Therefore from (2.1) it can be easily

established that Cov(X1, X2) = λI1I2. For the method of moment estimator λ̂MM we equate

λI1I2 with the sample equivalent of Cov(X1, X2) which is (1/n)
∑n

i=1(X1i −X1)(X2i −X2)

where Xk = (1/n)
∑n

i=1Xki, k = 1, 2. Therefore,

(2.2) λ̂MM = (nI1I2)
−1

n∑
i=1

(X1i −X1)(X2i −X2).

The above estimator may take values outside the parameter space with a positive probability

and hence it ought to be truncated at the boundary -1 or +1.

2.2. Maximum Likelihood Estimator (MLE or λ̂ML)

For the brevity of derivation let us denote 2Fk(xik) − 1 = Gk(xik), k = 1, 2. The

log-likelihood function of the data denoted by l(λ) is as follows

l(λ) = C +

n∑
i=1

ln(1 + λG1(xi1)G2(xi2)),(2.3)
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where C is a constant, free of λ. It is tempting to take derivative of l(λ) and equating it with

zero, i.e.,

(2.4)

n∑
i=1

G1(xi1)G2(xi2)/(1 + λG1(xi1)G2(xi2)) = 0,

to find the MLE of λ. But this can lead to a computational error as the solution may lie

outside the parameter space which may go unnoticed in simulation studies. (We suspect that

this issue may arise for other copula - based joint distributions as well, and may have gone

unnoticed in applications.)

Theorem 2.1. The MLE of λ i.e., λ̂ML as it is called here, which maximizes l(λ)

in (2.3), exists, and it is unique. (See SI: Section 2 for proof)

Remark 2.1. Define ai = G1(xi1)G2(xi2), 1 ≤ i ≤ n, and Gk(xik) = 2Fk(xik) − 1,

k = 1, 2. Let h(λ) =
∑n

i=1 ai/(1 + λai), λ ∈ [−1,+1]. As seen from the details of the proof

of the above theorem, λ̂ML takes the following form:

(2.5) λ̂ML =


−1 if h(−1) < 0

solution of (2.4) if h(−1) > 0 and h(+1) < 0

+1 if h(+1) > 0,

Remark 2.2. It is further seen that if all the ai’s are > 0, which happens with

probability (0.5)n, then l(λ) is monotonically increasing in λ. Hence λ̂ML is +1. Thus,

{(a1, ..., an)| ai > 0 ∀ i} ⊆ {(a1, ..., an)| h(+1) =
∑n

i=1 ai/(1 + ai) > 0}. Similarly, if all

the ai’s are < 0, which again happens with probability (0.5)n, then l(λ) is monotonically

decreasing in λ. Hence λ̂ML is −1. Thus, {(a1, ..., an)| ai < 0 ∀ i} ⊆ {(a1, ..., an)| h(−1) =∑n
i=1 ai/(1− ai) < 0}. We will see later in our simulation study that λ̂ML can take ±1 with

substantially high probabilities depending on the sample size as well as λ.

2.3. Regression Estimators based on the distributions of X2|X1 and X1|X2

To estimate any parameter in a bivariate distribution, especially the association pa-

rameter, a natural direction is to consider a suitable regression model and then estimating

the parameter of interest based on the regression model. So, two structurally similar yet

different estimators of the association parameter emerge from the FGMD(λ) as follows.

First, we consider the conditional expectation E(X2|X1 = x1). The conditional density

function of X2|X1 = x1 is denoted by f(x2|x1) and can be easily derived from the FGMD(λ).

The form is as follows:

(2.6) f2|1(x2|x1) = f2(x2)(1 + λ(2F1(x1)− 1)(2F2(x2)− 1)).

The regression model is as follows:

E(X2|X1 = x1) =

∫
R2

x2f2|1(x2|x1)∂x2

= E(X2) + λG1(x1)I2,

(2.7)
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where G1(x1) = (2F1(x1)−1) and I2 is given after (2.1) respectively. Let us denote E(X2) =

µ2, which assumed to be a known constant value. Also, for a given X1 = x1, we can treat

G1(x1) and I2 as known constants. Let us denote G1(x1)I2 = B1(x1). The conditional

expectation in equation (2.7) would then look like E(X2|X1 = x1) = µ2 + B1(x1)λ, which

is a simple linear regression equation. Given a bivariate data set, a least squares estimator

of λ from the above regression equation (2.7) can be attained by minimizing the expression∑n
i=1(x2i − µ2 − λB1(x1i))

2 with respect to λ. Hence, by solving the normal equation, the

regression estimator of type-1 , i.e., λ̂RE1 is given by

(2.8) λ̂RE1 = [
n∑

i=1

X2iB1(Xi1)− µ2

n∑
i=1

B1(Xi1)]/
n∑

i=1

[B1(Xi1]
2.

Since the density function of FGMD(λ) is structurally symmetric, by reversing the

roles of X1 and X2 in equation (2.7) we get another (type-2) regression based estimator i.e.,

λ̂RE2 of the association parameter and is given by -

(2.9) λ̂RE2 = [

n∑
i=1

X1iB2(Xi2)− µ1

n∑
i=1

B2(Xi2)]/

n∑
i=1

[B2(Xi2]
2,

where µ1 = E(X1), G2(x2)I1 = B2(x2) and G2(.), I2 are defined in Subsections 2.2 and 2.1

respectively. The above two regression estimators ought to be truncated at the boundary of

-1 or +1 because they can take values outside the parameter space with positive probabilities.

If the marginals are completely known or they are unknown but identically distributed

then both the above regression estimators will have the same sampling distribution. Therefore

as far as the sampling distribution is concerned it is enough to look at either one of them.

2.4. Bayes’ Estimation of λ

For any suitable prior π(λ) over the parameter space [−1,+1], the posterior distribution

of (λ|data), denoted by g(λ|data), is

g(λ|data) =
∏n

i=1[1 + λG1(Xi1)G2(Xi2)]π(λ)∫ 1
−1

∏n
i=1[1 + λG1(Xi1)G2(Xi2)]π(λ)∂λ

.(2.10)

A natural choice of the prior for the association parameter is a modification of the beta

distribution which is originally defined over the space (0, 1). The beta-type prior density

function defined over the parameter space [−1,+1] is

(2.11) π(λ) = 1/(2B(a, b))((1 + λ)/2)a−1((1− λ)/2)b−1,

where a, b are the hyper-parameters.

The most common loss function for estimating a parameter is the usual squared error

loss. However, when a parameter is restricted to a finite range, as we have here for the
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association parameter λ, a weighted quadratic loss is more meaningful which can assign a

heavy penalty near the boundary. Hence, we consider a general structure of the loss function

of the form

(2.12) L(λ̂, λ) = w(λ)(λ̂− λ)2,

where w(λ) is a suitable weight function. In this work we are going to consider weight function

w(λ) of the form

(2.13) wδ(λ) = (1− λ2)−δ, δ ≥ 0.

Note that δ = 0 leads to the usual squared error loss. For any δ > 0, the loss (2.12) goes to

∞ as λ approaches ±1 and |λ̂ − λ| > 0. In other words, a small deviation of λ̂ from λ near

the boundary can be very costly.

Under the general weighted quadratic loss (2.12), the general structure of the Bayes’

rule is given as

λ̂B =
E(λw(λ)|λ ∼ g(λ|data))
E(w(λ)|λ ∼ g(λ|data))

=

∫ 1
−1 λw(λ)

∏n
i=1[1 + λG1(Xi1)G2(Xi2)]π(λ)dλ∫ 1

−1w(λ)
∏n

i=1[1 + λG1(Xi1)G2(Xi2)]π(λ)dλ
.

(2.14)

With the special structure of w(λ) = wδ(λ) = (1 − λ2)−δ, we are now ready to derive the

Bayes’ rule, denoted by λ̂Bδ as follows.

In order to attain a tractable structure of the Bayes’ rule, we resort to a simple algebraic

manipulation within the equation (2.14). Let us focus on the term
∏n

i=1(1+λG1(Xi1)G2(Xi2))

in the equation (2.14). Recalling from Remark 2.2 that ai = G1(Xi1)G2(Xi2), the following

product term can be rewritten as

n∏
i=1

(1 + λG1(Xi1)G2(Xi2)) = (1 + λa1)(1 + λa2)....(1 + λan)

= 1 + λ
n∑

i1=1

ai1 + λ2
∑

(1≤i1<i2≤n)

ai1ai2 + ...

...+ λk
∑

(1≤i1<i2<...<ik≤n)

ai1ai2 ...aik + ....+ λnai1ai2 ...ain .

(2.15)

Call
∑

(1≤i1<i2<...<ik≤n) ai1ai2 ...aik = Dk, 1 ≤ k ≤ n, and define D0 = 1. Therefore
∏n

i=1(1+

λG1(Xi1)G2(Xi2)) =
∑n

k=0 λ
kDk. Hence, the Bayes’ rule in (2.14) can be simplified as -

λ̂B =

∑n
k=0Dk

∫ 1
−1 λ

k+1(1− λ2)−δπ(λ)dλ∑n
k=0Dk

∫ 1
−1 λ

k(1− λ2)−δπ(λ)dλ
.(2.16)

Further, we will consider the special case of a = b = d, which implies a symmetric prior about

0. We are going to introduce the notation β as β = d− δ and the estimator (2.16) with the

prior in (2.11) will be denoted as λ̂Bβ , i.e.,

λ̂Bβ =

∑n
k=0Dk

∫ 1
−1 λ

k+1(1− λ2)β−1dλ∑n
k=0Dk

∫ 1
−1 λ

k(1− λ2)β−1dλ
.(2.17)
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2.4.1. Special Case of β = 1 (Bayes estimator under flat prior or BFP )

A particular case of interest is β = 1 which can happen if δ = 0 and d = 1 or δ = 1

and d = 2 etc. Sine β = 1 (due to δ = 0 and d = 1) also implies the Bayes’ estimator under

the flat prior (FP ) using the ordinary squared error loss function, we denote λ̂B1 as λ̂BFP

and is given by

λ̂BFP =

∑n
k=0Dk

∫ 1
−1 λ

k+1dλ∑n
k=0Dk

∫ 1
−1 λ

kdλ

=

∑n
k=0(Dk/(k + 2)){1− (−1)k}∑n

k=0(Dk/(k + 1)){1− (−1)k+1}
.

(2.18)

2.4.2. Bayes’ Estimator under Jeffrey’s Prior (BJP )

Let us step back to the initial form of the Bayes’ estimator as mentioned in equation

(2.14). A natural non-informative prior is the Jeffrey’s prior, denoted by πJP (λ), which is

πJP (λ) ∝ (I(λ))1/2,

where I(λ) = Fisher Information of λ from a sample of size n. Hence, from (1.10), we have

πJP (λ) ∝
∞∑

m=0

λ2m/(2m+ 3)

Hence, the Bayes’ estimator under Jeffrey’s prior, denoted by λ̂BJP , is given by

λ̂BJP =

∑n
k=0Dk

∫ 1
−1 λ

k+1(1− λ2)−δ(
∑∞

m=0 λ
2m/(2m+ 3))1/2dλ∑n

k=0Dk

∫ 1
−1 λ

k(1− λ2)−δ(
∑∞

m=0 λ
2m/(2m+ 3))1/2dλ

.(2.19)

Using δ = 0 we have a special case, which will be of interest, that is

λ̂BJP =

∑n
k=0Dk

∫ 1
−1 λ

k+1(
∑∞

m=0 λ
2m/(2m+ 3))1/2dλ∑n

k=0Dk

∫ 1
−1 λ

k(
∑∞

m=0 λ
2m/(2m+ 3))1/2dλ

.(2.20)

2.4.3. Bayes’ Estimator under an approximate Jeffrey’s Prior (BAJP )

Note that in either of (2.19) or (2.20) the Bayes’ estimator involves an infinite series.

For the ease of simplification and being able to study the performance of a suitable Bayes’
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estimator analytically, we propose a simplistic approximation of the Jeffrey’s prior which is

given by
∑∞

m=0 |λ|m/(2m + 3)1/2. Also, note that this infinite series is convergent and has

a finite value. In fact, the above series converges to
√
2Φ(|λ|, 1/2, 3/2)/2, where Φ(x, y, z)

is called the confluent hypergeometric function of the first kind (Abramowitz and Stegun

(1964)), which is a function of x when y, z are held constants. Due to this fact, we can use

this approximation as a new prior distribution. We call this as the approximate Jeffrey’s

prior and is given by

(2.21) πAJP (λ) ∝
∞∑

m=0

|λ|m/(2m+ 3)1/2.

Hence the Bayes’ estimator with respect to (2.21), denoted by λ̂BAJP , is

λ̂BAJP =

∑n
k=0

∑∞
m=0Dk(2m+ 3)−1/2(1 + (−1)k+1)(m+ k + 2)−1∑n

k=0

∑∞
m=0Dk(2m+ 3)−1/2(1 + (−1)k)(m+ k + 1)−1

.(2.22)

The derivation of (2.22) is given in SI: Section 3. Figure 2 shows the plots of πJP (λ) and

πAJP (λ).
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Figure 2: Plots of the Jeffrey’s prior and the approximate Jeffrey’s prior

Remark 2.3. Obtaining theDk terms in the Bayesian estimators as defined in equa-

tion (2.15), is a time consuming computation, not for a single use, but for the simulations,

because each Dk term takes into account
(
n
k

)
terms, and this can be very large for n > 25 and

k ≈ (n/2). For example, when the sample size is n = 30 and k = 15, Dk involves a sum of the

products of
(
30
15

)
= 155, 117, 520 terms. One can easily imagine how computation of the Dk

terms becomes quite heavy very quickly as the sample size grows. For the exact computation

for a single dataset the Dk terms are still manageable. However for the purpose of simula-

tion with replicated samples, dealing with Dk - terms become prohibitively time consuming,

and hence we use numerical integration, specifically the adaptive gaussian quadrature in the

numerator and the denominator (of each Bayes estimator) to circumvent the computational

complexity associated with the Dk - terms. This has been discussed elaborately in Remark

3.2.
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3. Performance of the Six Estimators

We study the sampling distribution of the six estimators in a comprehensive way

through simulation. For the simulation purpose we have generated 105 iid samples for each n.

Since λ ∈ [−1, 1], a symmetric parameter space, we presented the results for the positive part

of the parameter space only. From the generated data set in each replication we calculate

all the six estimators and then obtain the relative frequency histogram of the estimators for

the different λ, such as 0, 0.3, 0.6, 0.9, and various n, such as 10, 20, 30, 40 and 50. For

the simulation purpose we have used f1 and f2 as Uniform(0, 1), and hence the conditional

distributions of X1|X2 and X2|X1 are the same. As a result, the estimators λ̂RE1 and λ̂RE2

are the same, and denoted by λ̂RE for convenience. Further note that with known marginals,

the performance of all the estimators is independent of fk, k = 1, 2 (refer to Remark 1.1).

3.1. Relative Frequency Histograms of the Six Estimators

The Figures 1 - 5 in SI: Section 5 provide the simulated sampling distributions of the

six estimators as discussed earlier, i.e., λ̂MM , λ̂RE , λ̂ML, λ̂BFP , λ̂BJP and λ̂BAJP .

Remark 3.1. From the relative frequency distributions of the six estimators achieved

through simulation, we can clearly see that the estimators, more specifically the non-Bayesian

ones such as λ̂MM , λ̂RE and λ̂ML demonstrate somewhat similar distributional properties.

One obvious criticism for the above-mentioned non-Bayesian estimators is that as the value of

λ approaches towards the boundary, these estimators tend to take values outside the param-

eter space resulting in huge probability concentration at the boundary since the analytical

expressions of the estimators are truncated at the boundary values of +1 and -1. There is

a natural correction of this behavior observed in the Bayesian estimators because the prior

distributions are defined strictly on the parameter space [-1,+1]. One can expect, with the in-

crease of sample size λ̂ML would avoid the heavy probability concentrations at the boundaries,

but even for moderately large sample sizes such as 40 and 50 we don’t see this happening;

however, this probability concentration near the boundary values tend to diminish as the

sample size increases, as it is evident in our SI: Figures 1 - 5. Even for λ = 0, the non-

Bayesian estimators tend to exhibit somewhat probability concentrations near the boundary

values which is gradually diminishing as the sample size increases. This is happening perhaps

due to the fact that these estimators are converging to a limiting normal distribution asymp-

totically at a very slow rate of convergence. In other words, the non-Bayesian estimators are

exhibiting large dispersions even when λ is near the center of the parameter space. On the

other hand, the relative frequency distributions of the Bayesian estimators exhibit “within

boundary” behavior for all sample sizes. This observation leads us to suspect that MLE

might not be the best choice even for moderately large sample sizes. This fact is re-iterated

in the following subsection where we study the bias and the MSE of these six competing

estimators to evaluate their performance over the entire parameter space.

Remark 3.2. The computation of the Bayesian estimators defined in (2.18), (2.19)

and (2.22) poses a major challenge in terms of CPU time. The challenge in the computation
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is due to the Dk - terms present in all the three Bayesian estimator expressions. Remark

2.4 discusses the computational challenge elaborately. To navigate around this challenge, we

have implemented numerical integration, specifically Simpson’s adaptive quadrature, on the

expression (2.14) with the specific forms of the prior distributions to get the three different

Bayesian estimators. This implementation makes the computations heavily time efficient.

We were able to achieve the same results as that of the exact expressions at least up to 7

decimal places as verified in sample sizes up to 25.

3.2. Bias and MSE Study

Derivation of multiple estimators comes with an immediate follow up query about

the comparison among the different estimators. We study the bias and the MSE of the

six estimators simultaneously to get a better idea about the overall performance. We have

looked at the performances of the estimators for several sample sizes such as n = 10, 20, 30,

40 and 50. Two representative plots, one each for bias and MSE of the 6 estimators had been

presented in Figures 6 and 7 respectively for n = 30 in SI: Section 5. All other sample sizes

exhibit identical trends. The performance of the six estimators as seen have been summarized

in Remark 3.3.

Remark 3.3. (a) For the sake of a better understanding the performances of the

proposed estimators over the parameter space, we have identified the following two distinct

regions in the parameter space of λ. The following distinction has been made based on the

contrast in performances over these two regions as portrayed by each of the estimators: (i)

‘mid - region’ or approximately λ ≤ 0.75; and (ii) ‘boundary - region’ or approximately

|λ| > 0.75. The estimators show contrasting performance patterns both in terms of bias and

MSE over the two regions (symmetric about 0) in the parameter space as mentioned above.

(b) The bias of each estimator shows a monotonically decreasing behavior as we move from

left to right along the parameter space. All the estimators tend to overestimate in the

negative part of the parameter space and underestimate in the positive part. At λ = 0 all

the estimators appear to be perfectly unbiased. This is not surprising because at λ = 0 all

the 6 estimators are exhibiting perfectly symmetric distributions (see SI, Figures 1 - 5). It is

worth noticing that the Bayesian estimators tend to have higher magnitude of bias than the

non-Bayesian estimators. For n ≥ 30, λ̂BAJP and λ̂ML seem to have very close bias curves.

Also, λ̂BFP and λ̂BJP seem to have much higher bias, in terms of magnitude, compared to

the other estimators.

(c) Note that the MSE plots of the Bayesian and the non-Bayesian estimators show a very

contrasting patterns among themselves. The non-Bayesian estimators λ̂ML, λ̂MM and λ̂RE

perform in a similar fashion over the entire parameter space and have concave down MSE

curves. The estimator λ̂ML has the highest MSE with λ̂RE closely following and with a

slightly higher MSE than λ̂RE . The overall trend of these estimator stays the same over

the entire parameter space. The curves gradually flatten out as the sample size increases,

but even when the sample size is as large as 50 the MSE of non-Bayesian estimators are

still concave down with λ̂ML having the highest MSE in the mid - region of the parameter

space. On the other hand, the Bayesian estimators have concave up MSE curves. Over the

mid - region λ̂BFP has the lowest MSE, closely followed by λ̂BJP and λ̂BAJP . For n < 30,

λ̂BFP seems to have an overall robust performance over the entire parameter space. However,
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for n ≥ 30, λ̂BJP and λ̂BAJP appear to have a much more appealing performance over the

mid-range which is the majority (about three-fourth) of the entire parameter space.

4. Testing a hypothesis on the association parameter

In this section we study the performance of different types of hypothesis testing pro-

cedures to test the hypothesis H0 : λ = λ0 vs HA : λ ̸= λ0. One particular value of λ0 is of

interest, that is λ0 = 0, as in most of the applied cases one would be interested in knowing

whether the components are associated or not. The following tests have been proposed and

studied through size and power for the aforementioned hypotheses.

1. Asymptotic Tests:

(a) Asymptotic Normal Test. (ANT )

(b) Asymptotic Likelihood Ratio Test (ALRT )

2. Parametric Bootstrap Tests based on the LRT statistic (PBLRT )

The following subsections provide the details of each of the above test procedures.

4.1. Asymptotic Tests

4.1.1. Asymptotic Normal Test (ANT)

While testing the values of λ, this is probably the simplest approach of developing a

hypothesis test utilizing the asymptotic property of the MLE of λ. In Theorem 2.1, we

have already seen that for an iid sample of size n from FGMD(λ) the MLE exists and it

is unique. It is a well known result that as n → ∞, λ̂ML
d→ N(λ, AV (λ)), where AV (λ) is

the asymptotic variance of the MLE and is given by the inverse of the fisher information of

λ, i.e. I−1(λ), assuming that marginals are fully known. Therefore, if we assume that the

null hypothesis is true, then λ̂ML
d→ N(λ0, 1/I(λ0)) as n → ∞. Therefore we reject the null

hypothesis if

|
√
nI0(λ0)(λ̂ML − λ0)| > z(1−α/2),

where z(1−α/2) is the right tail (α/2) - probability cutoff point of the standard normal distri-

bution and I0(λ0) is the FIPO (see (1.10)).
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4.1.2. Asymptotic Likelihood Ratio test (ALRT )

Based on the iid observations derive the likelihood ratio statistic Λ as

Λ =

Sup
H0

L(λ|data)

Sup
H0UHA

L(λ|data)
=

L(λ0|data)
L(λ̂ML|data)

.

Define Λ∗ = −2ln(Λ). Asymptotically, as n → ∞, Λ∗
d→ χ2

1 under H0. So we reject the null

hypothesis at level α if

Λ∗ > χ2
1;(1−α),

where χ2
1;(1−α) is the right tail (α) - probability cut off point of Chi squared distribution

with 1 degree of freedom. The following Table 1 shows the simulated size values of the two

asymptotic tests based on the MLE λ̂ML.

Table 1: Simulated size of the two asymptotic tests for λ0 = 0, α = 0.05

Test n = 10 n = 20 n = 30 n = 40 n = 50 n = 75 n = 100

ANT 0.000 0.297 0.284 0.274 0.270 0.265 0.262
ALRT 0.002 0.017 0.026 0.028 0.028 0.027 0.026

Remark 4.1. Both the asymptotic tests are far from satisfactory as far as size is

concerned. For n = 10, both of them are hopelessly conservative. For n ≥ 20, ANT is overall

a very liberal test and ALRT on the other hand is a very conservative test. It is seen that

ANT has a monotonically decreasing (albeit very slowly) size property with the increase in

n, whereas ALRT ’s size values indicate a conservative behavior. Even for n = 100, which is

generally considered to be large, these tests are still unable to achieve α satisfactorily. The

poor performance of these two asymptotic tests are expected at the boundary values because

the typical regularity conditions (the ones needed for the Cramer-Rao Inequality) do not

hold at these boundary parameter values. However, in Table 1 our H0 value of λ was taken

as 0 which is well within the parameter space where the regularity conditions hold without

any difficulty. Yet the poor performance of these two asymptotic tests which are based on

the MLE indicate only one thing, that is - the MLE converges to its asymptotic normal

distribution very slowly.

4.2. Parametric Bootstrap (PB) tests based on the LRT Concept

As seen in the earlier sections, the asymptotic tests do not perform well for small to

moderately large sample sizes. Therefore, in this section we propose a class of four tests

based on the idea of LRT with the added parametric bootstrap (PB) concept.

The traditional LRT calls for using Λ∗ = −2 ln(Λ) which, under H0, follows χ
2
1 asymp-

totically. However, in this present FGMD case, the null distribution of Λ∗ has been found
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to be way off from the asymptotic distribution χ2
1. Therefore, the cut-off point χ2

1;(1−α) is not

applicable for the statistic Λ∗ in order to test H0. A situation like this calls for coming up

with different cut-off points for Λ∗ depending on sample size n as well as the data X through

a PB method. Note that the expression Λ has λ̂ML in the denominator as an estimator of λ

while the numerator uses the null value λ0 of λ. As a result, the value of Λ is always between

0 and 1, and a value of Λ closer to 1 implies a probable validity of H0.

We extend the above traditional LRT concept a bit further by incorporating the other

three estimates of λ which have shown considerable improvement over λ̂ML, especially in the

mid region of the parameter space. In this regard we are going to consider λ̂BFP , λ̂BJP and

λ̂BAJP (along with λ̂ML) in the LRT structure. In its generic form, the structure of Λ∗ is

going to be redefined as Λ∗(λ̂) = −2 ln(Λ(λ̂)), where Λ(λ̂) = [ L(λ0|data)/L(λ̂|data) ], where
λ̂ can be any one of the four aforementioned estimators of λ.

One difficulty with the above Λ(λ̂) is that the denominator is not guaranteed to be

greater or equal to the numerator unless λ̂ = λ̂ML. In other words, Λ∗(λ̂) = −2 lnΛ(λ̂) is not

guaranteed to be non-negative unless λ̂ = λ̂ML. However, a value of Λ∗(λ̂) closer to 0 still

conforms the validity of H0. Therefore, to find suitable cut-off points for the statistic Λ∗, we

consider

Λ∗∗(λ̂) = |Λ∗(λ̂)|,(4.1)

which is always nonnegative. The four versions of Λ∗∗ using four aforementioned estimators

will be referred to as

Λ∗∗1 (orPBLRT 1) = Λ∗∗(λ̂ML)

Λ∗∗2 (orPBLRT 2) = Λ∗∗(λ̂BFP )

Λ∗∗3 (orPBLRT 3) = Λ∗∗(λ̂BJP )

Λ∗∗4 (orPBLRT 4) = Λ∗∗(λ̂BAJP )

(4.2)

Algorithmic Steps to Implement Λ∗∗(λ̂) as a Test:

Step - 1: For the given data X = (X1,X2, ...,Xn) from FGMD, compute λ̂ (which is one

of the above 4 estimators as mentioned above). Obtain the corresponding Λ∗∗(λ̂).

Step - 2: Assume that H0 : λ = λ0 is true. Generate a bootstrap sample of size n (say,

X∗
1,X

∗
2, ...,X

∗
n) from FGMD(λ0). Once this bootstrap data is generated, pretend that λ is

unknown, estimate λ using the bootstrap data by λ̂, and call it λ̂∗, which in turn produces

the value of Λ∗∗(λ̂
∗).

Step - 3: Repeat the above Step - 2 a large number of times (say, B times). This produces

B copies of Λ∗∗(λ̂
∗), and call them as Λ

(b)
∗∗ (λ̂) = Λ∗∗(λ̂

∗(b)), 1 ≤ b ≤ B, where λ̂∗(b) is the bth

copy of λ̂∗ as mentioned in Step - 2. These Λ
(b)
∗∗ (λ̂) values are supposed to approximate the

null distribution of Λ∗∗(λ̂).

Step - 4: Order Λ
(b)
∗∗ (λ̂), 1 ≤ b ≤ B, and let Λ∗∗(λ̂|α) be the 100(1−α)th percentile value of

Λ
(b)
∗∗ (λ̂), 1 ≤ b ≤ B. This Λ∗(λ̂|α) is the critical value for Λ∗(λ̂) in Step - 1.

Step - 5: Reject H0 if Λ∗∗(λ̂) (from Step -1) > Λ∗∗(λ̂|α), and retain H0 if otherwise.



20 R. Chatterjee and N. Pal

4.3. Computational Results Comparing PBLRTi, 1 ≤ i ≤ 4

4.3.1. Comparison of Four PBLRT s in Terms of Size

In this subsection we provide the results of our comprehensive simulation study to

compare the above four tests in terms of size and power to test H0 : λ = λ0 vs HA : λ ̸=
λ0. Since in applications one is mostly interested in knowing whether the components are

associated or not under the assumed FGMD, we are going to use λ0 = 0. The simulated

sizes of the four PBLRT s have been presented in Table 2 for various sample sizes. This

simulation requires two loops of replications. The outer loop has M = 104 replications, and

the inner loop which produces the critical value also uses B = 104 replications.

Table 2: Size values of the four PBLRT s for λ = λ0 = 0
Test n = 10 n = 20 n = 30 n = 40 n = 50

PBLRT1 0.054 0.052 0.054 0.052 0.050
PBLRT2 0.052 0.051 0.055 0.052 0.049
PBLRT3 0.052 0.051 0.055 0.052 0.049
PBLRT4 0.053 0.051 0.054 0.052 0.050

Remark 4.2. (a) First of all, in terms of simulated size, all the four PBLRT s ap-

pear to be adhering to the level condition very closely. The differences between the simulated

size and α appear to be within one standard error (SE) of the simulated size; and hence, all

the four PBLRT s appear to be α-reliable for all n. (The SE of each simulated size is about

0.002.)

(b) Notice the stark difference between the ALRT and PBLRT1 (which uses the classical

LRT statistic under a PB framework). While PBLRT1 looks highly α-reliable, its asymp-

totic version doesn’t appear to be so for those selected values of n (10 ≤ n ≤ 100) (see Table

1). In other words, the asymptotic cut-off point χ2
1;(1−α) is not a reliable cut-off point for the

classical LRT statistic for small to moderately large sample sizes. The PBLRT1 method

uses a more accurate cut-off point for the statistic Λ∗∗(λ̂ML) than the asymptotic one (i.e.,

χ2
1;(1−α)).

To see for what sample size the Chi-square cut-off point is “close” to the true one, we

have computed Λ∗∗(λ̂ML|α) (which is a function of n and λ0 for various values of n ranging

from 0 to 300, and λ0 = 0. These cut-off points have been plotted against n in Figure 3 for

α = 0.05. It appears that the asymptotic Chi-square cut-off point can be used for PBLRT1

only when n ≥ 300, since Λ∗∗(λ̂|α) ≈ χ2
1;(1−α) = 3.84 for α = 0.05.

4.3.2. Comparisons of Four PBLRT s in terms of Power

From the simulated size study, it is established that the PBLRT s are complying with

the level condition whereas the asymptotic tests are far from satisfactory. Since all the
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Figure 3: Plot of PBLRT1 cut-off points against n and comparison with
fixed Chi-square ALRT cut-off point (dashed line)

Table 3: Power of four PBLRT s at λ ̸= λ0 when λ0 = 0 and α = 0.05
n Test λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5 λ = 0.6 λ = 0.7 λ = 0.8 λ = 0.9

10

PBLRT1 0.052 0.055 0.061 0.067 0.078 0.093 0.110 0.125 0.149
PBLRT2 0.054 0.055 0.059 0.074 0.082 0.095 0.107 0.127 0.150
PBLRT3 0.051 0.055 0.059 0.064 0.078 0.091 0.106 0.127 0.142
PBLRT4 0.051 0.055 0.059 0.064 0.078 0.091 0.107 0.126 0.142

20

PBLRT1 0.052 0.060 0.074 0.092 0.113 0.142 0.179 0.220 0.271
PBLRT2 0.051 0.054 0.071 0.087 0.113 0.145 0.177 0.212 0.270
PBLRT3 0.051 0.059 0.070 0.086 0.108 0.131 0.177 0.209 0.259
PBLRT4 0.051 0.058 0.068 0.085 0.106 0.130 0.175 0.208 0.259

30

PBLRT1 0.054 0.064 0.084 0.110 0.146 0.192 0.245 0.315 0.388
PBLRT2 0.051 0.065 0.080 0.107 0.141 0.192 0.246 0.309 0.382
PBLRT3 0.058 0.064 0.083 0.107 0.140 0.197 0.240 0.307 0.387
PBLRT4 0.059 0.065 0.082 0.108 0.139 0.197 0.242 0.308 0.389

40

PBLRT1 0.055 0.070 0.095 0.130 0.180 0.240 0.315 0.400 0.494
PBLRT2 0.052 0.069 0.097 0.125 0.178 0.232 0.305 0.391 0.487
PBLRT3 0.056 0.066 0.099 0.135 0.175 0.241 0.324 0.398 0.498
PBLRT4 0.056 0.066 0.100 0.134 0.175 0.242 0.324 0.399 0.500

50

PBLRT1 0.056 0.075 0.109 0.154 0.217 0.292 0.384 0.488 0.591
PBLRT2 0.055 0.077 0.114 0.162 0.217 0.300 0.388 0.500 0.595
PBLRT3 0.053 0.075 0.110 0.156 0.208 0.292 0.380 0.471 0.588
PBLRT4 0.052 0.074 0.108 0.156 0.207 0.289 0.379 0.470 0.588

PBLRT -s are α-reliable, in a bid to choose the most powerful test among the four proposed

tests, we have studied the power of the PBLRT s for testing H0 : λ = 0 vs HA : λ ̸= 0. Due

to the symmetric parameter space, we have presented the power results in Table 3 on the

positive part of the parameter space only.

Remark 4.3. The four PBLRT s, as it appears from the simulated power study in

Table 3, are equivalent in nature. The difference in the power values are negligible. Each

simulated value has an SE bounded above by 0.004. In other words, all the differences are

within 2SE of each other. Hence to test the association parameter in FGMD any one of the

four tests is applicable and recommended.
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5. An application with real-life datasets

5.1. Background of the dataset

Severe arsenic concentration in groundwater has been a major problem in densely

populated glacial river downstream across the globe. One of the hotspots that has been

hit by arsenic contamination in groundwater is the Mekong Delta Region (MDR) in southern

part of Vietnam. Researchers have been carrying out surveys in the MDR to assess arsenic

prevalence and to have a better understanding on how this carcinogenic element is associated

with other elements present in groundwater. Along with the concentration of Arsenic (As)

in the groundwater which is well known to have adverse effects on the human health when

consumed beyond the tolerance limit, concentration of Chlorine (Cl), Redox level (Eh) and

the pH level of the groundwater have been collected from several water-wells with locations

scattered across the Dong Thap Province of the MDR as reported by Merola et al. (2015).

The study area covers two sub regions, namely - North and South, and the complete dataset

pertaining to the aforementioned elements have been reproduced in SI: Section 4.

The fact that the two subregions (North and South) are vastly different can be seen

from the following Table 4 which gives the p-values of the Kolmogorov - Smirnov test (KST)

which compares the empirical distributions of each element for the two subregions. From the

Table 4: KST P -values to test the equality of distributions in two subre-
gions.

As Cl Eh pH

P -value < 0.0001 0.0004 < 0.0001 < 0.0001

P - values it is evident that the distribution of each variable is significantly different for the

two subregions i.e. Groundwater samples from the North (near Tan Hong) with a sample of

size nT = 23; and Groundwater samples from the South (near Thanh Binh) with a sample of

size nS = 44. SI: Figure 8 provides the sample relative frequency histograms of all the four

elements for the two subregions mentioned above.

The relative frequency histograms of the four elements (As, Cl, Eh and pH ) in two

subregions (North and South) as shown in SI: Figure 8 clearly demonstrate mostly non-

normality, and formal normality tests like Anderson - Darling test (ADT ) and Shapiro -

Wilks Test (SWT ) do confirm this.

Table 5: ADT and SWT P -values to test the normality in two subregions

Test Subregion As Cl Eh pH

ADT
North < 0.0001 0.0414 0.1404 0.0029
South 0.0001 < 0.0001 < 0.0001 0.4363

SWT
North < 0.0001 0.0286 0.0914 0.0012
South 0.0002 < 0.0001 < 0.0001 0.6933

Our main objective is to study the relationship between As and other three elements
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through bivariate distributions using FGMC. The bivariate plots as shown in SI: Figure 9

show the highly non-linear association in the bivariate distributions.

Remark 5.1. The initial exploratory analysis points towards the fact that the MDR

dataset consists of components which, firstly, have distinct distributions over the two sub-

regions; and secondly, have mostly skewed marginal distributions. We further delve into the

exploration of the nature of pairwise association present among the variables in this dataset.

We employ the FGMD model for modeling pairwise datasets as shown in Figure 9 in SI.

However, one can raise a question about the goodness of fit of FGMD to these datasets. It

is worth noting that there is no ”one stop solution” for the goodness of fit problem for the

host of available copula in the literature and it remains an open problem. Several goodness

of fit tests are available across the literature but to the best of our knowledge there doesn’t

exist one for FGMC. We have proposed and developed a novel data driven goodness of

fit test for FGMD, which does not assume any known asymptotic distribution of the test

statistic under the null hypothesis. A detailed study of this goodness of fit test including the

test procedures, as well as the size and the power of the tests is given in Chatterjee and Pal

(2024). The goodness of fit tests accept FGMD for the aforementioned bivariate datasets.

5.2. Analysis of the groundwater data in MDR using FGMD

From the scatter plots in SI: Figure 9, all but (e) and (f) show possible nonlinear trends.

To explore the association among the pairwise variables, a common approach is to resort to

the standard correlation coefficients such as Pearson’s (ρP ), Spearman’s (ρS) and Kendall’s

(τ). Pearson’s correlation is inappropriate here because of the obvious non-linear association

between the two components. On the other hand Spearman’s and Kendall’s correlation

measures do go beyond linearity but is not of much help when it comes to regressing one

variable on the other. In this regard our proposed FGMD not only helps us in measuring

the association between the two components under study but also helps us in regressing

one variable from the other one thereby predicting Arsenic based on the other components

in a pairwise set-up. Table 6 reports the standard correlation coefficients along with the

corresponding (asymptotic) P -values in parentheses for testing H0 : Standard Correlation =

0 vsHA : Standard Correlation ̸= 0. These tests are easily available in any standard statistical

package. The three standard correlation measures portray some interesting scenarios as noted

in Remark 5.2.

Remark 5.2. (a) In the North, all three correlations indicate that there is no asso-

ciation between As and Cl. However, in the South, they all indicate a significant negative

association.

(b) Between As and Eh, there appears to be a significant negative association in both the

subregions. A conflicting picture provided by ρP in the North which shows a significant

positive association. Between As and pH, there appears to have no significant association as

all but one p-values are quite high (more than 20%). However, ρP shows a strong positive

association.

Now we turn our attention to our proposed FGMD model to the MDR dataset. Using
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Table 6: Standard correlation coefficients along with P -Values

North (nT = 23) South (nS = 44)
As vs Cl As vs Eh As vs pH As vs Cl As vs Eh As vs pH

ρP 0.182 0.525 0.754 −0.325 −0.668 0.119
(0.405) (0.010∗) (< 0.001∗∗∗) (0.031∗∗) (< 0.001∗∗∗) (0.442)

ρS 0.018 −0.414 0.260 −0.320 −0.753 0.156
(0.936) (0.050∗∗) (0.231) (0.035∗∗) (< 0.001∗∗∗) (0.314)

τ 0.012 −0.323 0.188 −0.230 −0.577 0.101
(0.937) (0.032∗∗) (0.213) (0.028∗∗) (< 0.001∗∗∗) (0.336)

Table 7: Estimates of the FGMD association parameter in the MDR
sub-regions

Pair of Elements
North South

λ̂ML λ̂BFP λ̂BJP λ̂BAJP λ̂ML λ̂BFP λ̂BJP λ̂BAJP

As vs Cl 0.085 0.053 0.064 0.108 −0.982 −0.621 −0.674 −0.81
As vs Eh −1 −0.587 −0.646 −0.803 −1 −0.872 −0.892 −0.941
As vs pH 0.746 0.423 0.475 0.666 0.611 0.431 0.469 0.648

Table 8: PBLRT test statistic values along with the simulated P -Values

Test
North South

As vs Cl As vs Eh As vs pH As vs Cl As vs Eh As vs pH

PBLRT1 0.017 3.959∗ 1.366 4.447∗ 17.099∗ 1.364
(0.899) (0.047∗∗) (0.263) (0.039∗∗) (< 0.001∗∗∗) (0.251)

PBLRT2 0.013 2.792 1.108 3.841 15.266∗ 1.262
(0.208) (0.101∗) (0.485) (0.076∗) (0.002∗∗∗) (0.503)

PBLRT3 0.015 2.986 1.186 4.006 15.577∗ 1.305
(0.216) (0.101∗) (0.491) (0.076∗) (< 0.001∗∗∗) (0.506)

PBLRT4 0.016 3.475 1.350 4.309 16.280∗ 1.353
(0.239) (0.098∗) (0.503) (0.076∗) (< 0.001∗∗∗) (0.495)

the estimates from the MDR dataset in Table 7, we proceed to perform PBLRT1, PBLRT2,

PBLRT3 and PBLRT4 to test the hypothesis H0 : λ = 0 vs HA : λ ̸= 0. Table 8 gives the

PBLRT test statistic values along with the simulated P -values.

Remark 5.3. (a) With the application of FGMD we were able to estimate the

underlying association among the pairwise variables using the four estimators. According

to the estimates in Table 7 there exists a strong negative association between Eh and As in

the northern region. λ̂ML estimates the strongest negative association among the variables,

followed by λ̂BAJP , λ̂BJP and λ̂BFP . Only through PBLRT1 we see the presence of strong

association between As and Eh in the northern subregion. The highly negative association

between As and Eh in the northern subregion, which was partially captured by the Spear-

man’s and Kendall’s, is ratified by the estimates of the association parameter of FGMD and

PBLRT1 at a 5% level of significance.

(b) In the case of As vs pH it is crucial to note that in the northern sub-region, Spearman’s

rho and Kendall’s Tau contradicted Pearson’s correlation coefficient which showed a strong

linear association.

(c) In the southern subregion, the standard correlation coefficients estimate a considerable
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negative linear association between As and Eh. Although there is evidence of association

between As and Eh, and to some extent in between As and Cl, but labeling it as a linear

association will be an over simplification and inaccurate. The estimates in Table 7 of the

association parameter λ shows a strong negative association between As and Eh, and in be-

tween As and Cl. The MLE registers the strongest association among the variables As and

Eh followed by λ̂BAJP , λ̂BJP and λ̂BFP . The same case holds for As and Cl as well. There is

a positive association among the variables As and pH as estimated by all the estimators, reit-

erating the same phenomenon by our FGMD model as that of Spearman’s rho and Kendall’s

tau.

6. Observations and Concluding Remarks

(a) In our study we have provided a systematic approach of estimating the association

parameter in FGMD with the help of a few competing estimators. With the help

of extensive simulation we have been able to demonstrate that the MLE may not be

the best choice as an estimator for the association parameter. A family of Bayesian

estimators shows a better performance in terms of MSE.

(b) In order to test H0 : λ = λ0 vs HA : λ ̸= λ0, we have proposed four parametric

bootstrap likelihood ratio type tests (PBLRTs) and through extensive simulation we

have been able to show that they have better size and power than the usual asymptotic

normal or the asymptotic likelihood ratio tests. We were able to demonstrate that a

requirement of a large sample size (approximately n = 300 or higher) is necessary to

attain the asymptotic property of the ALRT .

(c) The FGMD is found to be appropriate in modeling Arsenic contamination in MDR

in the presence of other benign elements. Through our proposed tests Arsenic can be

highly associated some other benign elements which can be a beneficial information for

the applied researchers.

(d) The authors will be happy to share the R codes used to run all computations with any

interested reader/researcher.
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