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1. INTRODUCTION

Regression analysis is widely used in many disciplines, including busi-
ness, engineering, agriculture, and economics, to describe the statistical rela-
tionship between explanatory and response variables by using a model. The
linear regression model, which assumes that the response variable is normally
distributed, is one of the most commonly used statistical models. Let us con-
sider the following linear regression model:

(1.1) Y = Xβ + ε

where Y is an n×1 vector of dependent variables, X is an n×p full column rank
matrix of n observations on p independent explanatory variables, β is a p × 1
vector of unknown parameters, and ε is an n× 1 vector of random errors which
are distributed as Normal with the mean vector 0 and the covariance matrix σ2I.
The Ordinary Least Squares (OLS) estimator of β is given by

(1.2) β̂OLS = (X ′X)−1X ′Y .

In addition, the covariance matrix of β̂OLS is obtained as cov
(
β̂OLS

)
= σ2 (X ′X)−1.

In linear regression models, computational difficulties arise when the indepen-
dent variables are collinear. The problem of multicollinearity occurs when one
or more variables can be expressed as an exact or almost linear combination of
the others in the data set. Multicollinearity will also provide statistical chal-
lenges if the problem aims to estimate parameters. There are many criteria to
determine multicollinearity. Multicollinearity causes the diagonal elements of
(X ′X)−1 to inflate, which implies that the estimated variance of β̂OLS will be
large. In addition, the coefficients of the OLS estimator may have wrong signs
and large variances and be statistically insignificant. For such cases, alterna-
tive biased estimators have been proposed by many researchers to overcome the
problems caused by the presence of multicollinearity. Issues related to these
proposed biased estimators in linear regression models have been investigated
and discussed in the literature by many researchers (Stein [30]; Hoerl and Ken-
nard [12]; Liu [19]; Liu [20]; Kibria [15]; Özkale and Kaçıranlar [24]; Sakallıoğlu
and Kaçıranlar [27]; Yang and Chang [34]; Kurnaz and Akay [17]; Kurnaz and
Akay [18]; Qasim et al. [25]; Lukman et al. [21]; Lukman et al. [22]; Aslam and
Ahmad [4]; Zeinal and Azmoun [35]; Üstündağ et al. [33]; Ahmad and Aslam
[1]; Babar and Chand [5]; Dawoud et al. [6]; Qasim et al. [26]; Shewa and Ug-
wuowo [28]; Idowu et al. [14]). The Ridge Estimator (RE), proposed by Hoerl
and Kennard [12], is the most significant of these estimators. The RE is defined
by

(1.3) β̂RE = (X ′X + kI)−1X ′Y , k > 0

where k is a biasing parameter. On the other hand, Liu [19] proposed the Liu
Estimator (LE) combining the advantages of RE and Stein estimator. The Stein
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estimator was defined by Stein [30] as follows β̂S = cβ̂OLS where 0 < c < 1. The
LE is defined as follows:

(1.4) β̂LE = (X ′X + I)−1
(
X ′Y + dβ̂OLS

)
, 0 < d < 1

where d is a biasing parameter. On the other hand, Lukman et al. [22] noted
that the estimates of the parameter d in LE are usually negative. To overcome
this, model (1.1) is augmented with −dMLβ̂OLS = β+ε′ and then the OLS method
is used. The resulting estimator is called the Modified One-Parameter Liu (ML)
Estimator and is defined as follows:

(1.5) β̂ML = (X ′X + I)−1 (X ′X − dMLI) β̂OLS , 0 < dML < 1

where dML is a biasing parameter. According to Lukman et al. [22], this mod-
ification provides a positive value of the biasing parameter dML. However, al-
though RE and LE are often preferred in the presence of collinearity in linear
regression models, these estimators have some drawbacks. Researchers have de-
veloped estimators with two biasing parameters k and d to cover both RE and
LE. For example, Liu [20] introduced an estimator that is based on k and d as
follows:

(1.6) β̂LT E = (X ′X + kI)−1
(
X ′Y − dβ̂∗

)
, k > 0, −∞ < d <∞

where β̂∗ can be any estimator of β. This estimator, which is called the Liu-type
estimator, is obtained by augmenting

(
−d/k1/2

)
β∗ = k1/2β + ε′ to (1.1) and then

using the OLS method (Liu [20]). As an alternative, Özkale and Kaçıranlar [24]
introduced a Two-Parameter Estimator (TPE) as follows:

(1.7) β̂T P E = (X ′X + kI)−1
(
X ′Y + kdβ̂OLS

)
, k > 0, 0 < d < 1,

where k and d are two biasing parameters. The TPE is a general estimator that
includes the OLS, RE, and LE as special cases. As an alternative to the estimators
introduced so far, Kurnaz and Akay [17] proposed a general Liu-type estimator
that includes estimators given by(1.2), (1.3),(1.4), (1.5), (1.6), and (1.7) estima-
tors as special cases. The new Liu-type estimator is defined as follows:

(1.8) β̂NLTE = (X ′X + kI)−1
(
X ′Y + f (k) β̂∗

)
, k > 0

where β̂∗ is any estimator of β, and f (k) is a continuous function of the biasing
parameter k. Similarly, NLTE is obtained by augmenting f (k)

k1/2 β̂
∗ = k1/2β + ε′ to

(1.1) and then using the OLS method. For example, if f (k) = −k and β̂∗ = β̂OLS ,
the KL estimator given by Kibria and Lukman [16] is obtained. The KL estima-
tor, which is a special case of the estimator (1.8), is defined as follows:

(1.9) β̂KL = (X ′X + kI)−1 (X ′X − kI) β̂OLS , k > 0

where k is the biasing parameter. On the other hand, Qasim et. al. [26] proposed
a Two-Step Shrinkage (TSS) estimator in the presence of multicollinearity as
follows:

(1.10) β̂T SS = (X ′X + kI)−1 (X ′X − kdI) β̂OLS , k > 0, 0 ≤ d < 1
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where k and d are two biasing parameters. Note that this estimator given in
(1.10) can be obtained by taking f (k) = −kd and β̂∗ = β̂OLS in (1.8). Furthermore,
Sakallıoğlu and Kaçıranlar [27] proposed another biased estimator based on RE
which is given by

(1.11) β̂SK (k,d) = (X ′X + I)−1
(
X ′Y + dβ̂RE

)
, k > 0, −∞ < d <∞

where k and d are two biasing parameters. The estimator given in (1.11) is called
a k-d class estimator and is a general estimator that includes the OLS, RE, and
LEs as special cases ( Sakallıoğlu and Kaçıranlar [27]). The k-d class estimator is
obtained by augmenting the equation dβ̂RE = β + ε′ to (1.1) and using the OLS
method, too. Also, Yang and Chang [34] proposed a new biased estimator based
on RE as follows:

(1.12) β̂YC (k,d) = (X ′X + I)−1 (X ′X + dI) β̂RE , k > 0, 0 < d < 1

where k and d are two biasing parameters. The estimator given in (1.12) is ob-
tained by augmenting (d − k) β̂RE = β + ε′ to (1.1) and using the OLS method.
In addition, the YC estimator is a general estimator that includes OLS, RE, and
LE as special cases. Ahmad and Aslam [1] proposed another biased estima-
tor similar to the YC estimator. Instead of β̂RE in (1.12), they used the estimator
proposed by Dorugade [7] . This estimator, called Modified New Two-Parameter
Estimator (MNTPE), is given as follows:

(1.13) β̂MNT P = (X ′X + I)−1 (X ′X + dI) (X ′X + kdI)−1X ′Y , k > 0, 0 < d < 1

where k and d are two biasing parameters. Dawoud et al. [6] proposed another
biased estimator with the biasing parameters k and d similar to the YC estimator.
They also used a similar approach applied by Ahmad and Aslam [1]. Instead of
OLS in (1.7), defined by Özkale and Kaçıranlar [24], they preferred to use the
KL estimator. They defined this estimator, called the NBR estimator, as follows:

(1.14) β̂NBR = (X ′X + kI)−1 (X ′X + kdI) (X ′X + kI)−1 (X ′X − kI) β̂OLS ,

where k > 0 and 0 < d < 1 are two biasing parameters. On the other hand,
Shewa and Ugwuowo [28] proposed another biased estimator based on the KL
estimator. Following the modification by Aladeitan et al. [3], they proposed a
new estimator called KL-MRT as follows:

(1.15) β̂KLMRT = (X ′X + kI)−1 (X ′X − kI) (X ′X + k(1 + d)I)−1X ′Y , k ≥ 0,d ≥ 0

where k and d are two biasing parameters. On the other hand, Idowu et al.
[14] made a modification to the LE given by (1.4). Instead of the OLS estimator
utilized in LE, they used the KL estimator given by (1.9). Their estimator called
LKL is defined as follows:
(1.16)

β̂LKL = (X ′X + I)−1 (X ′X + dI) (X ′X + kI)−1 (X ′X − kI) β̂OLS , k > 0, 0 < d < 1

where k and d are two biasing parameters. The estimators with two biasing pa-
rameters k and d have been generally developed based on RE, LE, and LTE. In
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particular, these estimators depend on the OLS estimator, and a more powerful
estimator is preferred over the OLS estimator to minimize the effects of mul-
ticollinearity. In addition to these modifications to reduce the effects of mul-
ticollinearity, it is also necessary to consider the optimal performance of the
proposed estimator. From another point of view, as the number of biasing pa-
rameters included in the estimator increases, it becomes more difficult to assess
the optimal performance of the estimator because the performance of biased es-
timators is affected by the selection of the biasing parameter. In general, the
estimates of the biasing parameters are obtained in such a way that the scalar
mean square error function is minimized. Since the mean square error function
is a nonlinear function of the biasing parameters, the estimates of these biasing
parameters can be approximately obtained. There are many studies focusing on
this issue in the literature (Hoerl and Kennard [12]; Liu [20]; Kibria [15]; Yang
and Chang [34]; Sakallıoğlu and Kaçıranlar [27]; Shukur, Månsson, and Sjölan-
der [29]; Lukman et al. [22]; Ahmad and Aslam [1]; Dawoud et al. [6]; Qasim et
al. [25]; Shewa and Ugwuowo [28]; Idowu et al. [14]).

On the other hand, estimators with two biasing parameters k and d have
attracted the attention of many researchers in recent years. However, the most
important problem for these estimators is that the number of these biasing pa-
rameters is large and it is also very difficult to find their optimal estimates. Al-
though many iterative techniques have been proposed to find the optimal esti-
mates of these biasing parameters, it is a complex process to obtain these esti-
mates. In these cases, one of the biasing parameters can be estimated depending
on the other biasing parameters or vice versa (Liu [20]; Özkale and Kaçıranlar
[24]; Sakallıoğlu and Kaçıranlar [27]; Yang and Chang [34]; Ahmad and Aslam
[1]; Dawoud et al. [6]; Qasim et al. [26]; Shewa and Ugwuowo [28]; Idowu et al.
[14]). Therefore, it can be considered that there is an unknown functional rela-
tionship between these two biasing parameters k and d. In the literature, there
are some studies that examine the applications of this consideration in various
other statistical models(Ertan and Akay [9], Akay and Ertan [2], and Erkoç et al.
[8] )

The purpose of this paper is to examine the performance of the estima-
tor to be obtained under the hypothesis of an unknown functional relationship
between these two biasing parameters k and d. In this context, we first develop
a new hybrid estimator that combines the advantages of LE and RE. Then, we
try to find the optimal functional relationship between the biasing parameters.
With the help of the functional structure used in this hybrid estimator, it is ex-
pected that the estimated model parameter values will not be affected at large
biasing parameter values k. In addition to this feature, the proposed hybrid es-
timator can be defined to include the estimators given by (1.2), (1.3), (1.4), (1.5),
(1.11), and (1.12) estimators as special cases. In other words, it can be said that
the proposed estimator forms a general class of estimators like the estimator
given in (1.8). In addition, a comprehensive comparison of these two proposed
classes of estimators was carried out using simulation studies.
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The article is organized as follows: In Section 2, the proposed biased es-
timator is introduced and some properties are given. In Section 3, a general
theorem is given to compare RTE and NLTE in the sense of the matrix mean
square error. In Section 4, alternative approaches to determine the functional
relationship between the biasing parameters are presented. Two Monte Carlo
simulation studies are designed to evaluate the performances of the considered
estimators in Section 5. In Section 6, the performance evaluation of all consid-
ered estimators is given in the Portland cement data. Finally, the conclusion of
the study is given in Section 7.

2. A new general Ridge-type estimator

To mitigate the effect of multicollinearity, researchers have made efforts to
develop alternative estimators for linear regression models instead of the OLS,
which are affected by collinearity between variables. Especially when the esti-
mators given by (1.11) and (1.12) are examined, it is observed that RE, which
is more resistant to collinearity effects, is used instead of the OLS estimator.
However, a major disadvantage of RE is that it can result in small parameter
estimates at large values of the biasing parameter k. To overcome this problem,
researchers have developed hybrid estimators that combine the advantages of
RE and Liu Estimators (Sakallıoğlu and Kaçıranlar [27]; Yang and Chang [34]).
In order to collect these estimators under a general class with the help of an
unknown functional relationship that can be among the biasing parameters, we
can define the new Ridge-type estimator (RTE) for β as follows:

(2.1) β̂RTE (k) = (X ′X + I)−1 (X ′X + g (k) I) (X ′X + kI)−1X ′Y , k > 0

where g (k) is a continuous function of the biasing parameter k. We can obtain
the estimator given in (2.1) by augmenting (g (k)− k) β̂RE = β + ε′ to model (1.1)
and using the OLS method. The advantage of RTE over other estimators is that
the g (k) function helps us determine the optimal estimator. When we select g (k)
as a linear function of the biasing parameter, such as g (k) = ak + b where a,b ∈
R, RTE is a general estimator that includes other biased estimators as follows:
β̂RTE = β̂OLS for g (0) = 1 where k = 0 and b = 1. β̂RTE = β̂RE for g (k) = 1 where
a = 0 and b = 1. β̂RTE = β̂LE for g (0) = b where b corresponds to the biasing
parameter d. β̂RTE = β̂ML for g (0) = − b where b corresponds to the biasing
parameter dML. β̂RTE = β̂YC (k,d) for g (k) = b where a = 0 and the b corresponds
to the biasing parameter d. β̂RTE = β̂SK (k,d) for g (k) = k + b where a = 1 and b
corresponds to the biasing parameter d. Note that the proposed estimator given
in (2.1) is different from the biased estimator given in (1.7). That is, when we
use β̂RE instead of β̂∗ in (1.8), β̂NLTE does not correspond to the estimator in
(2.1). Also, if β̂RE is used instead of β̂∗ in (1.8), the obtained estimator does
not exactly correspond to the estimators proposed by Yang and Chang [34] and
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Sakallıoğlu and Kaçıranlar [27], respectively. We rewrite the model given in
(1.1) in canonical form:

(2.2) Y = Zα + ε

where Z = XQ, α = Q′β , and Q is the orthogonal matrix whose columns con-
stitute the eigenvectors of X ′X. Then Z ′Z = Q′X ′XQ = Λ = diag

(
λ1,λ2, ...,λp

)
where λ1 ≥ λ2 ≥ ... ≥ λp ≥ 0 are the ordered eigenvalues of X ′X. For the model
(2.2), we can rewrite the above estimators in canonical form as follows:
(2.3)

α̂NLTE = (Λ+ kI)−1 (Λ+ f (k) I) α̂OLS = (Λ+ kI)−1 (Λ+ f (k) I)Λ−1Z ′Y = A1Y

(2.4) α̂RTE = (Λ+ I)−1 (Λ+ g (k) I) (Λ+ kI)−1Z ′Y = A2Y

where the other existing estimators can be obtained based on the appropriate
selection of f (k) and g (k). As known, Matrix Mean Squared Error (MMSE) and
Scalar Mean Squared Error (SMSE) are the two most common methods used to
detect the superiority of the estimators to each other. The MMSE and SMSE of
an estimator β̃ is defined as:

(2.5)
MMSE

(
β̃
)

= var
(
β̃
)

+
[
bias

(
β̃
)] [

bias
(
β̃
)]′

SMSE
(
β̃
)

= tr
(
MMSE

(
β̃
))

= tr
(
var

(
β̃
))

+ bias
(
β̃
)′
bias

(
β̃
)
.

where var
(
β̃
)

is the variance-covariance matrix and bias
(
β̃
)

= E
(
β̃
)
− β is the

biasing vector. Let β̃1 and β̃2be any two estimators of parameter β. Then, β̃2 is
superior to β̃1 with respect to the MMSE criterion if and only if MMSE

(
β̃1

)
−

MMSE
(
β̃2

)
is a positive definite (pd) matrix. If MMSE

(
β̃1

)
−MMSE

(
β̃2

)
is a

non-negative definite matrix, then SMSE
(
β̃1

)
−SMSE

(
β̃2

)
≥ 0. But, the reverse

is not always true (Theobald, 1974). Because of the relation of α = Q′β; β̂OLS ,
β̂RE , β̂LE , β̂NLTE , β̂SK (k,d) , β̂YC (k,d) and β̂RTE (k) have the same mean squared
error values as α̂OLS , α̂RE , α̂LE , α̂NLTE , α̂SK (k,d) , α̂YC (k,d) and α̂RTE (k), respec-
tively. To compare the biased estimators mentioned above in terms of MMSE,
we use the following theorems:

Theorem 2.1. (Farebrother [10]): Let A be a positive definite matrix,
namely A > 0, and c be a nonzero vector. Then, A − cc′ is a positive definite
matrix iff c′A−1c ≤ 1.

Theorem 2.2. (Trenkler and Toutenburg [32]): Let β̃l = BlY , l = 1,2
be two homogeneous linear estimators of β and C be a positive definite matrix,
where C = B1B

′
1 − B2B

′
2. Then MMSE

(
β̃1

)
−MMSE

(
β̃2

)
> 0 if and only if

bias
(
β̃2

)′ (
σ2C + bias

(
β̃1

)
bias

(
β̃1

)′)−1
bias

(
β̃2

)
< 1.
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3. The superiority of the proposed Ridge-Type estimator

In this section, we give a general theorem to compare RTE and NLTE in the
sense of MMSE. With this general theorem, it is possible to compare the above-
mentioned estimators obtained by choosing different g (k) and f (k) functions in
terms of MMSE sense. As a result of this comparison, the superiority of RTE over
OLS, RE, LE, LTE, TPE, ML, TSS, and KL estimators is determined. Similarly, to
determine the superiority of the RTE over the MNTP, NBR, KLMRT, and LKL
estimators, the constraints on the function g (k) are given.

3.1. The comparison between the RTE and the NLTE estimator

Firstly, we can compute the MMSE of α̂NLTE = A1Y and α̂RTE = A2Y as
follows:
MMSE(α̂NLTE) =σ2A1A

′
1 + (A1Z − I)αα′ (A1Z − I)

=σ2(Λ+ kI)−1(Λ+ f (k)I)Λ−1(Λ+ f (k)I)(Λ+ kI)−1

+ (f (k)− k)2(Λ+ kI)−1αα′(Λ+ kI)−1

MMSE(α̂RTE) =σ2A2A
′
2 + (A2Z − I)αα′ (A2Z − I)

=σ2(Λ+ I)−1(Λ+ g(k)I)(Λ+ kI)−1Λ(Λ+ kI)−1(Λ+ g(k)I)(Λ+ I)−1

+((g(k)− k − 1)Λ− kI)(Λ+ I)−1(Λ+ kI)−1αα′(Λ+ kI)−1(Λ+ I)−1((g(k)− k − 1)Λ− kI)

Then, we can give the following theorem:

Theorem 3.1. Let be k > 0 and −λj−
|λj+f (k)|(λj+1)

λj
< g (k) < −λj+

|λj+f (k)|(λj+1)
λj

where j = 1,2, ...,p+ 1. Then, MMSE (α̂NLTE)−MMSE (α̂RTE) > 0 if and only if
(3.1)

bias (α̂RTE)
′ [
σ2 (A1A

′
1 −A2A

′
2) + bias (α̂NLTE)bias (α̂NLTE)

′ ]−1
bias (α̂RTE) < 1

where α̂RTE and α̂NLTE are two estimators for α and bias (α̂NLTE) = (f (k)− k) (Λ+ kI)−1α.

Proof: Using (2.3) and (2.4), we obtain

cov(α̂NLTE)− cov(α̂RTE ) = σ2
[
A1A

′
1 −A2A

′
2

]
= σ2

[
(Λ+ kI)−1(Λ+ f (k)I)Λ−1(Λ+ f (k)I)(Λ+ kI)−1

−(Λ+ I)−1(Λ+ g(k)I)(Λ+ kI)−1Λ(Λ+ kI)−1(Λ+ g(k)I)(Λ+ I)−1
]

= σ2 diag


(
λj + f (k)

)2

λj
(
λj + k

)2 −

(
λj + g(k)

)2
λj(

λj + 1
)2 (

λj + k
)2


p+1

j=1

.

We observe that A1A
′
1−A2A

′
2 > 0 if and only if

(
λj + 1

)2 (
λj + f (k)

)2
−λj

2
(
λj + g (k)

)2
>

0. If this inequality is rearranged for g (k) function, we can obtain −λj−
|λj+f (k)|(λj+1)

λj
<
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g (k) < −λj + |λj+f (k)|(λj+1)
λj

where j = 1,2, ...,p + 1. That is, the RTE is superior

to NLTE when g (k) function is selected as −λj −
|λj+f (k)|(λj+1)

λj
< g (k) < −λj +

|λj+f (k)|(λj+1)
λj

where j = 1,2, ...,p+1. Therefore, A1A
′
1−A2A

′
2 is the pd matrix. By

Theorem 2.2, the proof is complete. □

3.2. The comparison between the RTE and the MNTP estimator

The MMSE of α̂MNT P = (Λ+ I)−1 (Λ+ dI) (Λ+ kdI)−1Z ′Y = A3Y estimator
is

MMSE (α̂MNT P ) = σ2A3A
′
3 + (A3Z − I)αα′ (A3Z − I) .

We use the MMSE difference given below to compare the MNTP and the RTE:
MMSE (α̂MNT P ) −MMSE (α̂RTE) = σ2

[
A3A

′
3 −A2A

′
2

]
+ (A3Z − I)αα′ (A3Z − I) −

(A2Z − I)αα′ (A2Z − I)
Then, we give the following theorem:

Theorem 3.2. Let be k > 0, 0 < d < 1 and −λj−
(λj+d)(λj+k)

(λj+kd) < g (k) < −λj+

(λj+d)(λj+k)
(λj+kd) where j = 1,2, ...,p+ 1. Then, MMSE (α̂MNT P )−MMSE (α̂RTE) > 0 if

and only if

(3.2) bias (α̂RTE)
′ [
σ2 (A3A

′
3 −A2A

′
2) + (A3Z − I)αα′ (A3Z − I)

]−1
bias (α̂RTE) < 1

where α̂RTE and α̂MNT P are two linear estimators for the parameter α.

Proof: We can obtain

cov(α̂MNT P )− cov(α̂RTE ) = σ2
[
A3A

′
3 −A2A

′
2

]
= σ2

[
(Λ+ I)−1(Λ+ dI)(Λ+ kdI)−1Λ(Λ+ kdI)−1(Λ+ dI)(Λ+ I)−1

−(Λ+ I)−1(Λ+ g(k)I)(Λ+ kI)−1Λ(Λ+ kI)−1(Λ+ g(k)I)(Λ+ I)−1
]

= σ2 diag


(
λj + d

)2
λi(

λj + 1
)2 (

λj + kd
)2 −

(
λj + g(k)

)2
λj(

λj + 1
)2 (

λj + k
)2


p

j=1

.

We can observe that A3A
′
3 −A2A

′
2 > 0 if and only if

(
λj + d

)2 (
λj + k

)2

−
(
λj + g (k)

)2 (
λj + kd

)2
> 0. The RTE is superior to the MNTP estimator when

g (k) function is selected as −λj −
(λj+d)(λj+k)

(λj+kd) < g (k) < −λj + (λj+d)(λj+k)
(λj+kd) where

j = 1,2, ...,p + 1. Therefore, A3A
′
3 −A2A

′
2 is the pd matrix. By Theorem 2.2, the

proof is complete. □
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3.3. The comparison between the RTE and the NBR estimator

The MMSE of α̂NBR = (Λ+ kI)−1 (Λ+ kdI) (Λ+ kI)−1 (Λ− kI)Λ−1Z ′Y = A4Y
estimator is

MMSE (α̂NBR) = σ2A4A
′
4 + (A4Z − I)αα′ (A4Z − I) .

We use the MMSE difference given below to compare the NBR and the RTE:
MMSE (α̂NBR)−MMSE (α̂RTE) = σ2

[
A4A

′
4 −A2A

′
2

]
+ (A4Z − I)αα′ (A4Z − I)−

(A2Z − I)αα′ (A2Z − I). Then, we can give the following theorem:

Theorem 3.3. Let be k > 0, 0 < d < 1 and − (λj+kd)(λj+1)|λj−k|
λj(λj+k)

−λj < g (k) <

(λj+kd)(λj+1)|λj−k|
λj(λj+k)

−λj , where j = 1,2, ...,p+1. Then, MMSE (α̂NBR)−MMSE (α̂RTE) >

0 if and only if

(3.3) bias (α̂RTE)
′ [
σ2

(
A4A

′
4 −A2A

′
2

)
+ (A4Z − I)αα′ (A4Z − I)

]−1
bias (α̂RTE) < 1

where α̂RTE and α̂NBR are two linear estimators for α parameter.

Proof: We can obtain

cov(α̂NBR)− cov(α̂RTE ) = σ2
[
A4A

′
4 −A2A

′
2

]
= σ2

[
(Λ+ kI)−1(Λ+ kdI)(Λ+ kI)−1(Λ− kI)Λ−1(Λ− kI)(Λ+ kI)−1(Λ+ kdI)(Λ+ kI)−1

− (Λ+ I)−1(Λ+ g(k)I)(Λ+ kI)−1Λ(Λ+ kI)−1(Λ+ g(k)I)(Λ+ I)−1
]

= σ2 diag


(
λj + kd

)2 (
λj − k

)2

λj
(
λj + k

)4
−

(
λj + g(k)

)2
λj(

λj + 1
)2 (

λj + k
)2


p+1

j=1

.

We can observe that A4A
′
4−A2A

′
2 > 0 if and only if

(
λj + kd

)2 (
λj − k

)2 (
λj + 1

)2
−(

λj + k
)2 (

λj + g (k)
)2
λ2
j > 0. From the solution of this inequality with respect to

the function g (k) we can derive the following condition: − (λj+kd)(λj+1)|λj−k|
λj(λj+k)

−λj <

g (k) < (λj+kd)(λj+1)|λj−k|
λj(λj+k)

−λj , where j = 1,2, ...,p+ 1, k > 0, 0 < d < 1. RTE outper-

forms the NBR estimator in terms of MMSE if the function g (k) is determined
in a way that satisfies the condition given above. Therefore, A4A

′
4 −A2A

′
2 is the

pd matrix. By Theorem 2.2, the proof is complete. □

3.4. The comparison between the RTE and the KLMRT estimator

The MMSE of α̂KLMRT = (Λ+ kI)−1 (Λ− kI) (Λ+ k (1 + d) I)−1Z ′Y = A5Y is

MMSE (α̂KLMRT ) = σ2A5A
′
5 + (A5Z − I)αα′ (A5Z − I) .
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We get attention to the MMSE difference given below to compare the KLMRT
and the RTE:

MMSE (α̂KLMRT )−MMSE (α̂RTE) = σ2
[
A5A

′
5 −A2A

′
2

]
+(A5Z − I)αα′ (A5Z − I)−

(A2Z − I)αα′ (A2Z − I) . Then, we can give the following theorem:

Theorem 3.4. Let be k > 0, d > 0 and −λj −

√
(λj−k)

2(λj+1)2

λj(λj+k(1+d))2 < g (k) <

−λj+

√
(λj−k)

2(λj+1)2

λj(λj+k(1+d))2 , j = 1,2, ...,p+1. Then, MMSE (α̂KLMRT )−MMSE (α̂RTE) > 0

if and only if

(3.4) bias (α̂RTE)
′ [
σ2 (A5A

′
5 −A1A

′
1) + (A5Z − I)αα′ (A5Z − I)

]−1
bias (α̂RTE) < 1

where α̂RTE and α̂KLMRT are two linear estimators for the parameter α.

Proof: We can obtain

cov (α̂KLMRT )− cov (α̂RTE ) = σ2
[
A5A

′
5 −A2A

′
2

]
= σ2

[
(Λ+ kI)−1 (Λ− kI) (Λ+ k (1 + d) I)−1Λ (Λ+ k (1 + d) I)−1 (Λ− kI) (Λ+ kI)−1

− (Λ+ I)−1 (Λ+ g (k) I) (Λ+ kI)−1Λ (Λ+ kI)−1 (Λ+ g (k) I) (Λ+ I)−1
]

= σ2 diag


(
λj−k

)2(
λj+k

)2(
λj+k(1+d)

)2 −
(
λj+g(k)

)2
λj(

λj+1
)2(

λj+k
)2


p+1

j=1

.

We observe that A5A
′
5 −A2A

′
2 > 0 if and only if

(
λj − k

)2 (
λj + 1

)2
−(

λj + g (k)
)2 (

λj + k(1 + d)
)2
λj > 0. So, the RTE is superior to the KLMRT esti-

mator when g (k) function is selected as−λj −

√
(λj−k)

2(λj+1)2

(λj+k(1+d))2
λj

< g (k) < −λj +√
(λj−k)

2(λj+1)2

(λj+k(1+d))2
λj

, j = 1,2, ...,p + 1. Therefore, A5A
′
5 − A2A

′
2 is the pd matrix. By

Theorem 2.2, the proof is complete. □

3.5. The comparison between the RTE and the LKL estimator

The MMSE of α̂LKL = (Λ+ kI)−1 (Λ+ dI) (Λ+ kI)−1 (Λ− kI)Λ−1Z ′Y = A6Y
estimator is

MMSE (α̂LKL) = σ2A6A
′
6 + (A6Z − I)αα′ (A6Z − I) .

We use the MMSE difference given below to compare the LKL estimator and
RTE,
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MMSE (α̂LKL)−MMSE (α̂RTE) = σ2
[
A6A

′
6 −A2A

′
2

]
+ (A6Z − I)αα′ (A6Z − I)−

(A2Z − I)αα′ (A2Z − I). Then, we give the following theorem:

Theorem 3.5. Let be k > 0,0 < d < 1 and −λj −
|λj−k|(λj+d)

λj
< g (k) < −λj +

|λj−k|(λj+d)
λj

where j = 1,2, ...,p + 1. Then, MMSE (α̂LKL) −MMSE (α̂RTE) > 0 if
and only if

(3.5) bias (α̂RTE)
′ [
σ2 (A6A

′
6 −A2A

′
2) + (A6Z − I)αα′ (A6Z − I)

]−1
bias (α̂RTE) < 1

where α̂RTE and α̂LKL are two linear estimators for the parameter α.

Proof: We can obtain

cov (α̂LKL)− cov (α̂RTE) = σ2
[
A6A

′
6 −A2A

′
2

]
= σ2

[
(Λ+ I)−1 (Λ+ dI) (Λ+ kI)−1 (Λ− kI)Λ−1 (Λ− kI) (Λ+ kI)−1 (Λ+ dI) (Λ+ I)−1

− (Λ+ I)−1 (Λ+ g (k) I) (Λ+ kI)−1Λ (Λ+ kI)−1 (Λ+ g (k) I) (Λ+ I)−1
]

= σ2 diag


(
λj+d

)2(
λj−k

)2

λj

(
λj+1

)2(
λj+k

)2 −
(
λj+g(k)

)2
λj(

λj+1
)2(

λj+k
)2


p+1

j=1

.

We can observe that A6A
′
6 − A2A

′
2 > 0 if and only if

(
λj + d

)2 (
λj − k

)2
−(

λj + g (k)
)2
λ2
j > 0 where j = 1,2, ...,p+1. The RTE is superior to the MNTP esti-

mator when g (k) function is selected as −λj−
|λj−k|(λj+d)

λj
< g (k) < −λj+

|λj−k|(λj+d)
λj

where j = 1,2, ...,p + 1. Therefore, A6A
′
6 −A2A

′
2 is the pd matrix. By Theorem

2.2, the proof is complete. □

4. Determination of g (k) function

Determining the optimal estimate of the biasing parameter is very impor-
tant because it is associated with the performance of the biased estimator. For
practitioners, this is a complex process. This process becomes even more com-
plicated for a biased estimator with biasing parameters k and d. Many different
techniques have been proposed by many researchers to estimate the biasing pa-
rameter(s) (Hoerl and Kennard [12]; Liu [19][20]; Kibria [15]; Yang and Chang
[34]; Sakallıoğlu and Kaçıranlar [27]; Shukur, et al. [29]; Ahmad and Aslam [1];
Dawoud et al. [6]; Qasim et al. [26]; Shewa and Ugwuowo [28]).

The main advantage of RTE over the estimators with two biasing param-
eters k and d is that there is a functional relationship between the biasing pa-
rameters. The performance of the proposed RTE is based on g (k), and therefore
the single biasing parameter is k. Note that different choices of the g (k) func-
tion lead to different estimators. To find the optimal g (k) function, let’s take
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the derivative of SMSE (α̂RTE) depending on k. The SMSE (α̂RTE) is calculated
using (2.4) as follows:

(4.1) SMSE (α̂RTE) = σ2
p+1∑
j=1

(
λj + g (k)

)2
λi(

λj + 1
)2 (

λj + k
)2 +

p+1∑
j=1

(
(g (k)− k − 1)λj − k

)2
α2
j(

λj + 1
)2 (

λj + k
)2 .

Note that Equation (4.1) is a function of the k parameter; that is, h (k) = SMSE (α̂RTE).
We can find h′ (k) as follows:

h′ (k) =
p+1∑
j=1

2
[
λj

(
λj − g ′ (k)λj − g ′ (k)k + g (k)

)] [
α2
j

(
(k + 1− g (k))λj + k

)
− σ2

(
λj + g (k)

)]
(
λj + 1

)2 (
λj + k

)3 .

In case h′ (k) = 0, there are two scenarios:

Fact 1. λj

(
λj − g ′ (k)λj − g ′ (k)k + g (k)

)
= 0 differential equation is found. Then,

we have

(4.2) g (k) = ck + (c − 1)λj

where c is the constant of integration.

Fact 2. α2
j

(
(k + 1− g (k))λj + k

)
− σ2

(
λj + g (k)

)
= 0 equation is found. Here, g (k)

is obtained as follows:

(4.3)

g (k) =

(
1 +λj

)
α2
j

σ2 +λjα
2
j

k +

(
α2
j − σ

2
)

σ2 +λjα
2
j

λj or g (k) =

(
1 +λj

)
α2
j

σ2 +λjα
2
j

k +


(
1 +λj

)
α2
j

σ2 +λjα
2
j

− 1

λj

where j = 1,2, ...,p+1. Based on the first and second facts, it can be said that the
selection of g (k) as a linear function of the biasing parameter k is appropriate.
Also, g (k) which is obtained in Fact 2, is a solution of the differential equation,
which is obtained in Fact 1. Here, depending on the functions obtained in Fact
1 and Fact 2, we can observe the following results: Firstly, note that g (k) given
in (4.2) and (4.3) makes SMSE (α̂RTE) function approximately minimum for a
given j value. So, the determination of g (k) depends on the eigenvalues of X ′X,
the unknown α parameter, and the estimate of the biasing parameter k. In other
words, many g (k) functions can be determined depending on the functional
relationship given in (4.2) and (4.3). For example, the following functional rela-
tionships can be given to determine g (k) in this sense:

(4.4) g (k) =
(1 +λmin)α2

min

σ̂2 +λmaxα
2
max

k +
(

(1 +λmin)α2
min

σ̂2 +λmaxα
2
max
− 1

)
λmin

(4.5) g (k) =
(1 +λmin)α2

min

σ̂2 +λmaxα
2
max

k + min
(

α2 − σ̂2

σ̂2 +λmaxα
2
max

)
λmin
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(4.6) g (k) =
(1 +λmin)α2

min

σ̂2 +λmaxα
2
max

k + min
(
α2 − σ̂2

σ̂2 +λα2

)
λmin

where α2
min and α2

max are defined as the minimum and maximum value of α2
j , j =

1,2, ...,p + 1, respectively. Similarly, λmin and λmax indicate the minimum and
maximum values of the eigenvalues of X ′ŴX, respectively.

In this study, to determine the optimal g (k) function, we examined only
the first-degree polynomial functions such as those given in equations from (4.4)
to (4.6). Note that it is clear that g (k) can be selected as any continuous function
of k. However, the proposed estimator depends on a single biasing parame-
ter k. In this case, we should use an appropriate estimator of k to control the
conditioning of the X ′X matrix. Since the proposed estimator depends on a pa-
rameter k, a suitable estimator of k can be used, as given in Kibria [15]. In addi-
tion to the previously proposed estimators, we can use the following estimators

to estimate k: k̂RTE = pσ2α2
min

n , k̂RTE = pσ2λmin
nλmax

, k̂RTE = σ2

n
∑p+1

j=1 λjα
2
j

, k̂RTE = pσ2

nα2
max

,

k̂RTE =
pσ2 min

(
λjα

2
j

)
nmax

(
λjα

2
j

) , k̂RTE = λmax+λmin
p , k̂RTE = λmax−λmin

p where σ̂2 =
∑n

i=1(yi−ŷi )2

n−p−1 .

5. The Monte Carlo simulation studies

In this section, we designed two separate Monte Carlo simulations to ex-
amine the performance of the proposed biased estimator relative to other exist-
ing estimators in linear regression models. In the first design, we investigated
the effects of sample size (n), the degree of the collinearity (ρ), the number of
explanatory variables (p), and the variance

(
σ2

)
on the performances of OLS,

RE, LE, LTE, SK, YC, MNTP, NBR, ML, TSS, KLMRT, LKL estimators and RTEs.
In the second simulation design, we examined RTE and NLTE performances for
each of n, p, ρ, and σ2 values at certain values of k. For both simulation designs,
we generate the explanatory variables by following McDonald and Galarneau
[23] and Kibria [15] as

(5.1) xij =
(
1− ρ2

)1/2
wij + ρwip+1, i = 1,2, ..,n, j = 1,2, ...,p

where wij are independent standard normal pseudo-random numbers and ρ is
specified in such a way that the correlation between any two variables is given
by ρ2. These variables are standardized such that X ′X is a correlation matrix.
Four different sets of correlations are investigated corresponding to ρ = 0.8,0.9
and 0.99. The response variable is generated by

yi = β0 + β1x1i + β2x2i + ...+ βpxpi + εi , i = 1,2, . . . ,n

where εi ∼ N
(
0,σ2

)
and β0 considered to be zero. For different comparisons

of the error term, the value of σ2 is considered to be 0.5, 1, 5, and 10. For
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each set of explanatory variables, the real parameter vector β is chosen as the
normalized eigenvector corresponding to the largest eigenvalue of X ′X so that
β′β = 1. The sample size n is taken to be 50, 100, and 200. The number of
explanatory variables is chosen as p = 2, 4, 8, and 12.

In the simulation and application sections, the estimates of the biasing
parameters for RE, LE, LTE, SK, YC, MNTP, NBR, ML, TSS, KLMRT, and LKL
are chosen based on the best estimators suggested in the literature ( Kibria [15];
Liu [20]; Qasim et al. [25]; Sakallıoğlu and Kaçıranlar [27]; Yang and Chang
[34]; Ahmad and Aslam [1]; Dawoud et al. [6]; Idowu et al. [14]; Lukman et al.
[22]; Qasim et al. [26]; Shewa and Ugwuowo [28]).

To estimate the biasing parameter k in RE, Kibria [15] proposed the best

estimates of k as follows, k̂RE = σ̂2(∏p+1
j=1 α̂

2
j

) 1
p+1

where σ̂2 =
∑n

i=1(yi−ŷi )2

n−p−1 . Based on

the results given by Qasim et al. [25], we use the best estimation of d in LE as

d̂LE = max

0,min

 α̂2
j −σ̂2

max
(
σ̂2

λ̂j

)
+α̂2

max


 . On the other hand, kLT E and dLT E in LTE are

estimated by using the methods given by Liu [20]. Sakallıoğlu and Kaçıranlar
[27] and Yang and Chang [34] did not provide a specific technique for estimating
the biasing parameters k and d for SK and YC estimators, respectively. There-
fore, we used k̂RE as an estimate of k for the SK estimator. Also, the estimate
of the biasing parameter d was determined in such a way that SMSE (α̂SK ) was
minimized. Moreover, we used two methods proposed by Huang and Yang [13]
to estimate the biasing parameters of the YC estimator. Huang and Yang [13]
proposed two methods. We referred to these methods as (K1, D1) and (K2, D2)
(Huang and Yang [13]). We used these methods by adapting them for the YC
estimator in linear regression models. As a result, the estimator obtained with
(K1, D1) indicated YC I, and the estimator obtained with (K2, D2) indicated YC
II. Moreover, for the MNTP, NBR, ML, TSS, KLMRT, and LKL estimators, the
iterative techniques from the relevant papers are used together with the opti-
mal biasing parameters. Since there are many combinations to determine k and
g (k) functions in RTE, we only report the simulation results for the following k
estimates and g (k) functions:

RTE I: k̂RTE I = pσ2α2
min

n and g (k) = (1+λmin)α2
min

σ̂2+λmaxα2
max

k +
(

(1+λmin)α2
min

σ̂2+λmaxα2
max
− 1

)
λmin

RTE II: k̂RTE II =
pσ2 min

(
λj α

2
j

)
n and g (k) = (1+λmin)α2

min
σ̂2+λmaxα2

max
k + min

(
α2−σ̂2

σ̂2+λmaxα2
max

)
λmin

RTE III: k̂RTE III =
pσ2 min

(
λj α

2
j

)
nmax

(
λj α

2
j

) and g (k) = (1+λmin)α2
min

σ̂2+λmaxα2
max

k + min
(

α2
j −σ̂2

σ̂2+λj α
2
j

)
λmin

RTE IV: k̂RTE IV = λmax+λmin
p and g (k) = (1+λmin)α2

min
n(σ̂2+λmaxα2

max)k +
(

(1+λmin)α2
min

n(σ̂2+λmaxα2
max) − 1

)
λmin

The performance of the estimated MSEs (EMSEs) is used as the basis for
comparison of the proposed estimators calculated for an estimator β̂ of β as
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follows:

(5.2) EMSE
(
β̂
)

=
1
N

N∑
r=1

(
β̂r − β

)′ (
β̂r − β

)
where

(
β̂r − β

)
is the difference between the estimated and true parameter vec-

tors at rth replication, and N is the number of replications. For each case of n,
p, σ2, and ρ, the experiment was replicated 2000 times by generating response
variables using R programming. The results are given in Tables 1-4 where the
bold numbers show the smallest EMSE values. In addition, the signs (*), (**),
and (***) show the first, second, and third smallest EMSE values in each row,
respectively. Based on Tables 1-4, we can conclude that the degree of correla-
tion, number of explanatory variables, sample size, and variance have different
effects on all estimators in the simulation. Several observations can be obtained
as follows:

1. When the number of observations n and σ2 are kept constant, it is ob-
served that as the number of variables increased, generally, the EMSE val-
ues of the estimators tend to increase for models with low correlation vari-
ables and to decrease for models with high correlation. However, it is seen
that in the increasing trend of EMSE values, the slopes of the proposed
estimators RTE I, RTE II, RTE III, and RTE IV are much lower than the
other existing estimators.

2. It is observed that when the number of variables p, n, and σ2 are kept
constant, as the correlations of the variables increase, the EMSE values of
all estimators tend to decrease in general. However, the RTE I is not as
dramatically affected by the increase in the correlation between the inde-
pendent variables compared to the other existing estimators. Based on this
situation, it can be concluded that RTE I has a robust structure depending
on low or high correlation.

3. When the correlations ρ, n, and p are kept constant, the increase in the
variance leads to an increase in the EMSE values of all estimators. How-
ever, in terms of EMSE values, the increases in all proposed estimators are
smaller compared to the increases in other available estimators.

4. It is seen that when the number of variables p, ρ, and σ2 are kept constant,
the EMSE values of the proposed estimators are lower than the EMSE val-
ues of the existing estimators in n = 50,100,200. However, it is observed
that there is no significant systematic change in the EMSE values of all esti-
mators as the number of observations increases. As a result, it can be said
that compared to ρ and σ2, the number of observations has a relatively
small effect on EMSE values.

In all scenarios examined, it is observed that all our proposed estimators are
significantly superior to existing estimators: OLS, RE, LE, LTE, SK, YC I, YC II,
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MNTP, NBR, ML, TSS, KLMRT, and LKL. However, even if the estimators RTE I
and RTE IV are better than other estimators accessible in all cases, they behave
differently in each scenario. In general, RTE I has the best EMSE value in models
with few variables and low variance. In contrast, RTE IV has a smaller EMSE
value in models with large variance. When the number of variables increased,
RTE IV generally gave better results in all scenarios.

In the second simulation scheme, we only investigated the performances
of RTE and NLTE for each n, p, ρ, and σ2. The purpose of this simulation is
to examine the performances of NLTE and RTE at various values of the biasing
parameter k depending on EMSE values given in (5.2). There are many f (k) and
g (k) functions that can be considered to evaluate the performances of these two
classes of estimators. The biasing parameter k is not estimated in the second
simulation scheme. Only the EMSE values obtained by increasing k values in
the range [0, 1] by 0.05 are compared. In order to compare the performances of
these two estimators under some situations as an example, the following esti-
mators with f (k) and g (k) functions are taken:

β̂NLTE = (X ′X + kI)−1 (X ′X + f (k) I) β̂OLS

where f (k) = λminα
2
min

1+λmaxα2
max

k +
(

λminα
2
min

1+λmaxα2
max
− 1

)
λmin

β̂NLTE(RE) = (X ′X + kI)−1 (X ′X + (k + f (k)) I) β̂RE

where f (k) = α2
min(k+λmin)2

1+λmaxα2
max
− (k +λmin)

β̂RTE = (X ′X + I)−1 (X ′X + g (k) I) β̂RE

where g (k) = (1+λmin)α2
min

σ̂2+λmaxα2
max

k +
(

(1+λmin)α2
min

σ̂2+λmaxα2
max
− 1

)
λmin.

Note that, when we use β̂RE instead of β̂∗ in β̂NLTE , the obtained estimator is
shown as β̂NLTE(RE). Also, f (k) functions used in β̂NLTE and β̂NLTE(RE) were
determined in accordance with the rules given by [17]. We only consider the
cases ρ = 0.9, 0.99, n = 50, 200, and p = 4, 8, 12, and σ2 = 1, 10. Depending
on these n, ρ, p, and σ2 values, the explanatory variables are generated according
to equation (5.1). The simulation is repeated 2000 times for each k value. The
results are collectively presented graphically in Figures 1 and 2.

Based on Figures 1-2, we can interpret the results as follows depending on each(
n,ρ,p,σ2

)
.

1) At small values of the biasing parameter k, β̂RTE outperforms β̂NLTE and
β̂NLTE(RE). Although both β̂RTE and β̂NLTE(RE) include the β̂RE , the performance
of β̂NLTE(RE) is quite poor compared to β̂RTE at small values of the biasing pa-
rameter.
2) For p = 4 and ρ = 0.9, β̂NLTE(RE) exhibits quite different behavior from β̂NLTE

and β̂RTE . If the value of the biasing parameter and the number of explanatory
variables increases, β̂NLTE , β̂NLTE(RE), and β̂RTE show almost the same behav-
iors. In general, β̂RTE exhibits a more consistent behavior at different values of
the biasing parameter k.
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Figure 1: The EMSE values of NLTE I, NLTE(RE) I, RTE I as a function of k
where ρ = 0.9

Based on the results of the second simulation design, we can recommend
β̂RTE to the researchers because it is a more consistent estimator than β̂NLTE and
β̂NLTE(RE) for the considered conditions. In general, the performances of these
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Figure 2: The EMSE values of NLTE I, NLTE(RE) I, RTE I as a function of k
where ρ = 0.99

estimators depend on f (k) and g (k) functions. In practice, we need to replace
these functions with functional relationships that can occur between the biasing
parameters. Therefore, it should be kept in mind that the results of graphical
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findings may change.

6. Numerical example

In this section, we reconsider the Portland cement data that was analyzed
by Hald [11], Liu [19], Sakallıoğlu and Kaçıranlar [27], Yang and Chang [34],
and Kurnaz and Akay [18]. In this data set, the following four compounds
are independent variables: tricalcium aluminate(x1), tetracalcium silicate (x2),
tetracalcium alumino ferrite (x3), and dicalcium silicate (x4). The dependent
variable y is the heat evolved in calories per gram of cement. We fit a linear re-
gression model with intercept to the data by adding a column of ones to the ma-
trix X. Then, the eigenvalues of X ′X are λ1 = 44676.2059,λ2 = 5965.4221,λ3 =
809.9521, λ4 = 105.4187 and λ5 = 0.0012. The condition number is approxi-
mately 3.66×107, therefore the matrix X is quite ill-conditioned. The numerical
results are summarized in Table 5 to compare RTEs with other estimators. In ad-
dition, three different f (k) functions for both β̂NLTE and β̂NLTE(RE) are given in
Table 5. Since there are many combinations to determine k and f (k) functions
in NLTE and NLTE(RE), we use the following k estimators and f (k) functions
based on the Kibria [15] and Kurnaz and Akay [17]. Note that the function f (k)
that minimizes SMSE

(
β̂NLTE(RE)

)
is a quadratic function.

NLTE I: k̂NLTE I = σ2∑p
j=1 α

2
j

and f (k) = λminα
2
min

σ̂2+λmaxα2
max

k +
(

λminα
2
min

σ̂2+λmaxα2
max
− 1

)
λmin

NLTE II: k̂NLTE II = pσ2

n
∑p

j=1 α
2
j

and f (k) = λminα
2
min

σ̂2+λmaxα2
max

k − σ̂2λmin
σ̂2+λmaxα2

max

NLTE III: k̂NLTE III = σ̂2(∏p
j=1 α̂

2
j

) 1
p

and f (k) = λminα
2
min

σ̂2+λmaxα2
max

k −min
(

σ̂2

σ̂2+λj α
2
j

)
λmin

NLTE(RE) I: k̂NLTE(RE) I = σ2∑p
j=1 α

2
j

and f (k) = α2
min

σ̂2+λmaxα2
max

(k +λmin)2 − (k +λmin)

NLTE(RE) II: k̂NLTE(RE) II = pσ2

n
∑p

j=1 α
2
j

and f (k) = α2
max

σ̂2+λmaxα2
max

(k +λmin)2 − (k +λmin)

NLTE(RE) III: k̂NLTE(RE) II = σ̂2(∏p
j=1 α̂

2
j

) 1
p

and f (k) = α2
min

max(σ̂2+λiα
2
i )

(k +λmin)2−(k +λmin)

In addition, the bootstrap sampling method was used to obtain the actual pa-
rameter values to be used instead of the α parameter. Therefore, 10000 boot-
strap samples were created and the parameter estimates associated with the
estimators were calculated for each of the samples. The mean of the OLS es-
timates is considered as an estimate of α. The calculated SMSE values are given
in Table 5. As seen in Table 5, the estimated variance values and the SMSE val-
ues of RTE I, RTE II, RTE III, and RTE IV under the proposed g (k) functions
with k estimates can yield appropriate results compared to other existing es-
timators. To compare the estimators under the MMSE sense, α̂OLS is used in
place of the unknown parameter α. Here, the eigenvalues of the matrices ob-
tained with the MMSE differences are taken into account. That is, if any of the
eigenvalues is less than or equal to tolerance, then the MMSE difference is not
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pd. Otherwise, the MMSE difference is pd. The R Programming is used with
tolerance 10−10 to find whether MMSE differences are pd or not. To illustrate
Theorem 3.1, the function f (k) is taken as f (k) = 3.0866 × 10−13k − 0.0012 by
using NLTE I. Also, the g (k) is obtained as g (k) = 2.5372 × 10−10k − 0.0012 in
RTE I using (4.4). In this case, cov

(
β̂NLTE I

)
− cov

(
β̂RTE I

)
is the pd matrix for

k > 0. But, the criterion (3.1) given in Theorem 3.1 is not held. On the other
hand, if functions g (k) and f (k) are arbitrarily taken as f (k) = 0.5k − 0.05 and
g (k) = 0.6k − 0.05, cov

(
β̂NLTE

)
− cov

(
β̂RTE

)
is pd matrix for 0 < k ≤ 0.09754 or

k ≥ 0.09758. Also, k values which provide (3.1) criterion are 0 < k < 0.0479.
Consequently, MMSE

(
β̂NLTE

)
−MMSE

(
β̂RTE

)
is the pd matrix where 0 < k <

0.0479.

7. Conclusion

In this study, a new general biased estimator called RTE is proposed as
an alternative to other existing biased estimators used in the presence of multi-
collinearity. The RTE is a general estimator that includes other biased estima-
tors, such as the OLS, RE, LE, ML, YC, and SK estimators as special cases. The
RTE is based on a functional relationship g (k) between the biasing parameters,
which would provide an alternative method for overcoming multicollinearity.
In this study, we investigated several rules for determining the optimal function
g (k). The performance of these functions is analyzed using different k estima-
tors. Results revealed that the estimators obtained with these g (k) functions
outperformed the other existing estimators under the examined conditions. In
particular, RTE I has the best EMSE value in models with few variables and low
variance. On the other hand, RTE IV has a small EMSE value in high-variance
models. When the number of variables increased, RTE IV generally gave bet-
ter results in all scenarios. Besides, a general simulation study is performed to
compare RTE and NLTE. In the cases we have considered, it has been observed
that RTE performs well when the biasing parameter k is small values. Although
RTE and NLTE(RE) are both dependent on RE, the main advantage of RTE over
NLTE(RE) is that it can minimize the SMSE function with the help of a sim-
pler function. Additionally, Portland data is also considered to illustrate the
advantage of RTEs in the linear regression models. Since NLTE and RTE are
two general classes of biased estimators, a comparison of these classes is given
in Portland data from various perspectives. Finally, based on the results of the
simulations and application, it can be recommended that the RTE can be used
when there is multicollinearity in the linear regression models.
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Table 5: The estimated parameter values and the estimated variance values of
the estimators

β̂0 β̂1 β̂2 β̂3 β̂4 var
(
β̂
)

SMSE
(
β̂
)

β̂OLS 62.4054 1.5511 0.5102 0.1019 –0.1441 4912.0902
β̂RE

(
k̂RE = 1.4250

)
0.1003 2.1725 1.1568 0.7435 0.4882 0.067330 0.067346

β̂LE
(
d̂LE = 0

)
0.1230 2.1781 1.1552 0.7473 0.4871 0.071467 0.071479

β̂LT E
(
k̂LT E = 451.2736, d̂LT E = − 199.5073

)
27.6065 1.1641 1.0097 0.0891 0.2955 960.089121 960.375122

β̂SK
(
k̂SK = 1.4250, d̂SK = 493.7504

)
26.4790 8.5996 –0.6618 5.2740 –0.7883 878.099704 879.220053

β̂YC I
(
K̂1 = 0.0015, D̂1 = 0.9992

)
27.6068 1.9090 0.8688 0.4680 0.2075 959.502978 959.502981

β̂YC II
(
K̂2 = 0.0008, D̂2 = 0.7206

)
27.6067 1.9052 0.8697 0.4653 0.2080 959.502677 959.502680

β̂MNT P(
k̂MNT P = 1.3761× 10−6 , d̂MNT P = 0.0883

)
5.6197 2.1227 1.0983 0.6904 0.4314 39.291526 39.291535

β̂NBR
(
k̂NBR = 0.3388× 10−3 , d̂NBR = 0.0015

)
27.6068 1.9091 0.8688 0.468 0.2075 959.502980 959.502982

β̂ML
(
d̂ML = 0.4426

)
-27.4454 2.4556 1.4408 1.033 0.7665 954.838327 954.838351

β̂T SS
(
k̂T SS = 0.5509× 10−3 , d̂T SS = 0.7920

)
27.6068 1.9091 0.8688 0.468 0.2075 959.502980 959.502982

β̂KLMRT(
k̂KLMRT = 348.2785, d̂KLMRT = 0.4420

)
0.0244 0.2284 1.4622 0.0276 0.6772 0.001739 6.4125088

β̂LKL
(
k̂LKL = 0.4714× 10−3 , d̂LKL = 1

)
27.6068 1.9091 0.8688 0.468 0.2075 959.502980 959.502982

β̂NLT E I
(
f (k) = 3.0866× 10−13k − 0.0012

)
k̂NLT E I = 0.0015

0.0473 2.1925 1.1528 0.7580 0.4858 0.065275 0.065282

β̂NLT E II(
f (k) = 3.0866× 10−13k − 4.1930× 10−11

)
k̂NLT E II = 0.0006

42.0456 1.7605 0.7200 0.3161 0.06162228.180975 2228.180976

β̂NLT E III(
f (k) = 3.0866× 10−13 k − 6.0859× 10−8

)
k̂NLT E III = 1.4250

0.1003 2.1725 1.1568 0.7435 0.4882 0.067330 0.067346

β̂NLT E(RE) I(
f (k) = 2.5341× 10−10 (k + 0.0012)2 − (k + 0.0012)

)
k̂NLT E(RE) I = 0.0015

0.0473 2.1925 1.1529 0.758 0.4858 0.065273 0.065280

β̂NLT E(RE) II(
f (k) = 2.2383× 10−5 (k + 0.0012)2 − (k + 0.0012)

)
k̂NLT E(RE) II = 0.0006

0.0473 2.1925 1.1528 0.758 0.4858 0.065275 0.065282

β̂NLT E(RE) III(
f (k) = 3.6781× 10−6 (k + 0.0012)2 − (k + 0.0012)

)
k̂NLT E(RE) III = 1.4250

0.0468 2.1538 1.1618 0.7302 0.4917 0.062256 0.062300

β̂RT E I
(
g (k) = 2.5372× 10−10k − 0.0012

)
k̂RT E I = 0.1013

0.0471 2.1774 1.1563 0.7471 0.4881 0.064088 0.064099

β̂RT E II
(
g (k) = 2.5372× 10−10k − 4.1621× 10−11

)
k̂RT E II = 10.9035

0.0452 2.0425 1.1873 0.6513 0.5083 0.054048 0.054708

β̂RT E III
(
g (k) = 2.5372× 10−10k − 0.2692× 10−4

)
k̂RT E III = 0.9106× 10−4 0.1161 2.1781 1.1553 0.7474 0.4872 0.070216 0.070227

β̂RT E IV
(
g (k) = 0.1952× 10−10k − 0.0122

)
k̂RT E IV = 8935.2414

0.0231 0.2431 1.1857 0.2203 0.6003 0.000312 255.273061
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