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1. INTRODUCTION

Numerous applied as well as theoretical fields, such as medicine, sports, insurance,
etc., deal with a large number of count data sets. Hence, count data modelling is of
paramount importance. The Poisson (P) and negative binomial (NB) distributions are
the most commonly used for this purpose. When an over-dispersion problem occurs,
the P distribution is not considered ideal due to its equi-dispersion nature. The NB
distribution is then more useful. However, when data sets have large skewness and
kurtosis, the NB distribution is not well-adapted, and thus we look for more flexible
distributions.

Mixed P distributions were then introduced for modelling non-homogeneous pop-
ulations (see [20] for more details). It consists of mixing the P distribution with well-
known distributions. Mixed P distributions include the P Weibull distribution in [9], P
transmuted Lindley distribution in [1], P transmuted exponential distribution in [10],
P quasi Lindley distribution in [15], new P weighted exponential distribution in [3], P
Bilal distribution in [4], and P xgamma distribution in [8], among others.

For other purposes, the Lindley distribution was originally proposed in [21] in the
context of Bayesian statistics. Various extensions and generalizations of the Lindley
distribution have been proposed in the literature over the last decade. The authors
in [13] developed a continuous probability distribution with simple operations on two
independent Lindley random variables. In particular, the distribution of the sum of two
independent Lindley random variables with the same parameter is studied and named
the 2S-Lindley (2S-L) distribution. They investigated the applications and structural
properties of those models.

On the other hand, to model over-dispersed data, various count regression models
based on many discrete distributions, including mixed P distributions with auxiliary
variables, were introduced recently to predict the behavior of the count response variable
similar to that of the P regression model. A count regression model based on the
generalized Waring distribution was developed in [26]. A study on crash data was
done in [23] based on the NB-Lindley regression model. The authors in [27] introduced
the hyper-P regression model. The authors in [12] analyzed the P Weibull regression
model with real-life data sets. The P-weighted exponential distribution with its count
regression model was developed in [32]. The authors in [10] introduced a regression
model for the over-dispersed dependent variable based on the P transmuted exponential
distribution. Also, many authors compounded P with various generalized versions of
the Lindley distribution and hence introduced count regression models based on it (see
[24], [31], and [5]).

When the P distribution is used as the innovation distribution for the INAR(1)
process, equi-dispersion (empirical mean equals empirical variance) turns out to be a
disadvantage for modeling over-dispersed (empirical mean less than empirical variance)
time series of counts, primarily in [25] and [2], independently. Hence, to solve this, re-
searchers came up with various alternatives. The INAR(1) process with P-Lindley inno-
vations (INAR(1)PL) in [22], INAR(1) process with new P weighted exponential innova-
tions ((INAR(1)NPWE)) in [3], INAR(1) process with discrete three-parameter Lindley
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innovations in [14], INAR(1) process with P quasi xgamma innovations (INAR(1)PQX)
in [7], INAR(1) process with Bell innovations (INAR(1)BL) in [17], INAR(1) with
P transmuted exponential innovations (INAR(1)PTE) in [6], INAR(1) with discrete
pseudo Lindley innovations (INAR(1)DPsL) in [18] are some of the recently developed
over-dispersed INAR(1) processes.

In this paper, we construct a new one-parameter compound distribution based on
the P distribution and the probability density function (pdf) of the 2S-L distribution
as described above. The newly proposed distribution, named the P2S-L distribution, is
a one-parameter distribution having simple and explicit forms for its probability mass
function (pmf), cumulative distribution function (cdf), moments, probability generating
function (pgf), moment generating function (mgf), stress-strength reliability function,
etc. Under the P2S-L distribution, a count regression model and an INAR(1) process
are proposed to model over-dispersed data sets. Four data sets are used to illustrate the
capability of the P2S-L distribution.

The important feature of the P2S-L distribution is that it has a simpler explicit
expression for moments as well as other statistical properties, and the P2S-L distribution
is effective in modelling over-dispersed data sets. Furthermore, the 2S-L distribution was
chosen over the Lindley and exponential distributions because the convolution operation
defining its pdf makes it more flexible and suitable.

The rest of the paper is organized as follows: In Section 2, the proposed distri-
bution is defined and some statistical properties are derived. Section 3 describes the
estimation methods used to estimate the unknown parameter, and their finite sample
performance through a simulation study is checked. Section 4 introduces a new count
regression model, and Section 5 defines a new INAR(1)P2S-L process. Section 6 deals
with four real-life data sets to prove the potential of the proposed distribution. Section
7 includes concluding observations.

2. THE POISSON 2S-LINDLEY DISTRIBUTION

Let us first define the 2S-L distribution proposed in [13]. Suppose that Y1 and Y2 are
two independent random variables following the one-parameter Lindley distribution in
[21] with the same parameter denoted by θ. Then the random variable Y defined as the
sum of Y1 and Y2, i.e., Y = Y1 + Y2, possesses the following pdf:

f(y; θ) =
θ4

(1 + θ)2
y

(
y2

6
+ y + 1

)
e−θy, y, θ > 0.

It is understood that f(y; θ) = 0 for y ≤ 0. This pdf characterizes the 2S-L distribution.
The corresponding cdf is given as

F (y; θ) = 1− 1

6(1 + θ)2

[
θ3y

(
y2 + 6y + 6

)
+ 3θ2

(
y2 + 4y + 2

)
+ 6θ(y + 2) + 6

]
e−θy,

y, θ > 0.

The 2S-L distribution is the basis of our proposed one-parameter discrete com-

3



pound distribution, which is mathematically formulated in the definition below.

Definition 2.1. Suppose that X is a random variable having the Poisson 2S-
Lindley (P2S-L) distribution such that

X|λ ∼ P(λ) and λ|θ ∼ 2S-L(θ),

where λ > 0, θ > 0, and ∼ D denotes “follows the D distribution”. Then, the uncondi-
tional pmf of X is

(2.1) P (x; θ) =
θ4(1 + x)

6(1 + θ)6+x

[
x2 + 6(θ + 2)2 + x(11 + 6θ)

]
, x = 0, 1, 2, . . .

The distribution defined with the pmf (2.1) is referred to as the P2S-L distribution
with parameter θ.

Proof: Using the procedure of compounding and integral developments, we
have

P (x; θ) =

∫ ∞
0

e−λλx

x!

θ4

(1 + θ)2
λ

(
λ2

6
+ λ+ 1

)
e−θλdλ

=
θ4

x!(θ + 1)2

[
1

6

∫ ∞
0

e−λ(θ+1)λx+3dλ+

∫ ∞
0

e−λ(θ+1)λx+2dλ+

∫ ∞
0

e−λ(θ+1)λx+1dλ

]
=

θ4(1 + x)

6(1 + θ)6+x

[
x2 + 6(θ + 2)2 + x(11 + 6θ)

]
.

The proof is completed.

After some mathematical developments, the corresponding cdf of the P2S-L distribution
is

F (x; θ) =
1

6(1 + θ)6+x
{6 (−1 + (1 + θ)x) + θ [−6(6 + x)− 3(5 + x)(6 + x)θ

− (4 + x)(5 + x)(6 + x)θ2 − 6(11 + x(7 + x))θ3 − 6(2 + x)θ4

+ 6(1 + θ)x(2 + θ)
(
1 + θ + θ2

)
(3 + θ(3 + θ))

]}
.

Proposition 1. The pmf given in (2.1) is log concave.

Proof: We need to prove that P (x+1;θ)
P (x;θ) is a decreasing function in x. We have

P (x+ 1; θ)

P (x; θ)
=

(2 + x)
[
x2 + 6(2 + θ)(3 + θ) + x(13 + 6θ)

]
(1 + x)(1 + θ) [x2 + 6(2 + θ)2 + x(11 + 6θ)]

.

Hence, by considering this ratio as a continuous function with respect to x and taking
its derivative, we obtain

∂

∂x

P (x+ 1; θ)

P (x; θ)
= −

3
[

1
θ+1 + (4θ+4x+10)+2(x+1)(2θ(x+1)+3x+4)

(6(θ+2)2+x2+(6θ+11)x)2

]
(x+ 1)2

,

which is clearly negative, implying that P (x+1;θ)
P (x;θ) is a decreasing function in x for every

possible value of θ. This ends the proof.
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Figure 1 shows the possible pmf shapes of the P2S-L distribution for various values of
θ.
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Figure 1: Some plots of the pmf of the P2S-L distribution for chosen values for θ.

The figure clearly indicates that the P2S-L distribution is right-skewed and, as θ goes
larger, the mass will concentrate more on nearer to 0 values.

2.1. Moments, Skewness and Kurtosis

Some moment functions, skewness and kurtosis of the P2S-L distribution are now under
investigation. If X represents a random variable having the P2S-L distribution, then
the pgf of X is

G(s) = E(sX) =
∞∑
x=0

sxP (x; θ) =
θ4(2− s+ θ)2

(1 + θ)2(1− s+ θ)4
,(2.2)

for |s| < 1 + θ. The mgf of X can be obtained by substituting s in (2.2) by et, and we
obtain

M(t) = E(etX) =
θ4
(
2− et + θ

)2
(1 + θ)2 (1− et + θ)4 ,

for t ≤ ln(1 + θ). The rth factorial moment of X is described in the next result.

Proposition 2. The rth factorial moment of X is derived as

µ[r] = E(X(X − 1) . . . (X − r + 1)) =

[
r2 + 6(1 + θ)2 + r(5 + 6θ)

]
(r + 1)!

6θr(1 + θ)2
.
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Proof: The rth factorial moment of X is obtained by integrating. That is,

µ[r] =

∫ ∞
0

θ4

(1 + θ)2
λr+1

(
λ2

6
+ λ+ 1

)
e−θλdλ

=
θ4

(θ + 1)2

(
1

6

∫ ∞
0

λr+3e−θλdλ+

∫ ∞
0

λr+2e−θλdλ+

∫ ∞
0

λr+1e−θλdλ

)
=

[
r2 + 6(1 + θ)2 + r(5 + 6θ)

]
(r + 1)!

6θr(1 + θ)2
.

Hence the proof.

Based on Proposition 2, the first four moments of X follow as

E(X) =
2(2 + θ)

θ(1 + θ)
, E(X2) =

2
(
θ3 + 6θ2 + 14θ + 10

)
θ2(θ + 1)2

,

E(X3) =
2
(
θ4 + 12θ3 + 50θ2 + 90θ + 60

)
θ3(θ + 1)2

,

E(X4) =
2
(
θ5 + 24θ4 + 158θ3 + 490θ2 + 720θ + 420

)
θ4(θ + 1)2

and the variance of X is

Var(X) =
2
(
θ3 + 4θ2 + 6θ + 2

)
θ2(θ + 1)2

.

It is worth noting that when θ tends to 0, the above moment measures tend to ∞, and
when θ tends to∞, they tend to 0. The skewness and kurtosis of the P2S-L distribution
can be calculated using the following formulas:

(2.3) Skewness(X) =
E(X3)− 3E(X2)E(X) + 2[E(X)]3

[Var(X)]3/2

and

(2.4) Kurtosis(X) =
E(X4)− 4E(X3)E(X) + 6E(X2)[E(X)]2 − 3[E(X)]4

[Var(X)]2
,

respectively. Both equations (2.3) and (2.4) will result in explicit forms.

2.2. Dispersion Index and Coefficient of Variation

The expressions of the coefficient of variation and dispersion index of the P2S-L dis-
tribution are obtained in this section. The coefficient of variation (CV) is calculated
as

CV(X) =

√
2 (θ3 + 4θ2 + 6θ + 2)

2(θ + 2)
.

The dispersion index (DI) is given by

DI(X) = 1 +
1

θ
+

1

θ + 1
− 1

θ + 2
.
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Clearly, DI(X) is always greater than 1. As a result, the P2S-L distribution has over-
dispersed properties.

Numerical values for the mean, variance, DI, skewness, and kurtosis for different
sets of parameter values are reported in Table 1.

Table 1: Numerical values for some moment measures of the P2S-L distribution for
various values of θ.

Measures
θ

0.1 0.5 1.9 2.0 5.0 8.0
Mean 38.1818 6.6667 1.4156 1.3333 0.4667 0.2778

Variance 436.5289 21.7778 2.2858 2.1111 0.5711 0.3156
DI 11.4329 3.2667 1.6147 1.5833 1.2238 1.1361

Skewness 1.0120 1.1297 1.4551 1.4731 1.9126 2.2638
Kurtosis 4.5261 4.8364 5.9078 5.9709 7.5983 9.0977

From Table 1, the P2S-L distribution would be appropriate for modelling over-
dispersed, right-skewed and leptokurtic data sets.

2.3. Stress-Strength Analysis

Stress-strength reliability has wide applications in almost all fields of engineering
and machine learning. Let Xstress and Xstrength be discrete random variables with
positive integer values that model the stress and strength of a system, respectively.
Then, the expected reliability can be calculated using the following formula:

RStress-Strength = Pr (XStress < XStrength ) =

∞∑
x=0

PXStress
(x)(1− FXStrength

(x)),

where PX(x) and FX(x) are the pmf and cdf of a random variable X, respectively. The
expression for stress-strength reliability when XStress ∼ P2S-L with parameter θ1 and
XStrength ∼ P2S-L with parameter θ2, and XStress and XStrength are independent, is
obtained in explicit form as follows:

RStress−Strength =

θ42

(1 + θ1)
2 (1 + θ2)

2 (θ2 + θ1 (1 + θ2))
7 × θ

3
1 {35 + θ1 (5 + 2θ1) {30 + θ1 [39 + θ1 [30 + θ1 (11 + 2θ1)]]}}

+ θ21 {21 + θ1 {217 + θ1 [711 + θ1 [1111 + θ1 (953 + θ1 (471 + 16θ1 (8 + θ1)))]]}} θ2
+ θ1 (1 + θ1) (7 + θ1) {91 + θ1 {434 + θ1 [918 + θ1 [987 + θ1 (573 + θ1 (177 + 25θ1))]]}} θ22
+ (1 + θ1)

2 {1 + θ1 {21 + θ1 [126 + θ1 [350 + θ1 (477 + θ1 (331 + θ1 (119 + 19θ1)))]]}} θ32
+ (1 + θ1)

3 {2 + θ1 {19 + θ1 [65 + θ1 (110 + θ1 (92 + θ1 (39 + 7θ1)))]}} θ42 + (1 + θ1)
9 θ52.

Some numerical values for RStress−Strength for different values of the parameters are
given in Table 2.
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Table 2: Numerical values for RStress−Strength for different values of θ1 and θ2.

θ1 →
θ2 ↓

0.1 0.2 0.5 0.9 1 1.5 2 2.3

0.1 0.507498 0.196622 0.031747 0.008971 0.007219 0.003305 0.002029 0.001639

0.2 0.817939 0.514575 0.154903 0.058235 0.048808 0.025438 0.016749 0.013911

0.5 0.974228 0.871305 0.534687 0.310976 0.27908 0.183003 0.13734 0.120468

0.9 0.993732 0.958349 0.765952 0.560421 0.52376 0.397247 0.326012 0.297247

1 0.995124 0.966264 0.796984 0.602639 0.56673 0.439911 0.366428 0.336299

1.5 0.998087 0.984944 0.886158 0.742172 0.712211 0.597391 0.523796 0.49193

2 0.998971 0.991334 0.925507 0.815831 0.79141 0.693082 0.626112 0.596133

2.3 0.999227 0.993309 0.939357 0.844368 0.822612 0.733147 0.670611 0.642212

From Table 2, it is clear that the stress-strength reliability increases as θ2 → ∞
and it decreases as θ1 →∞.

2.4. Generating Random Values from the P2S-L Distribution

Random values from the P2S-L distribution can be generated using the steps given
below. For i = 1, 2, 3, . . . , n, consider

1. λi ∼ Lindley(θ) and λ∗i ∼ Lindley(θ), independently,

2. an observation xi of Xi ∼ P(λi + λ∗i ).

The obtained generated values are x1, x2, . . . , xn.

3. ESTIMATION METHODS

To accurately predict the behavior of a given distribution, the unknown parameter(s)
must be precisely estimated. Here, four classical estimation methods, such as the method
of moments (MM), maximum likelihood (ML), least square (LS) and weighted least
square (WLS) estimation methods, are used for this purpose. We assume that n ob-
servations of a random variable X with the P2S-L distribution having the unknown
parameter θ are x1, x2, . . . , xn.

3.1. Method of Moments

In the first method of estimation, the parameter of the P2S-L distribution is estimated
with the MM. The theoretical and empirical moments are equated and solved to obtain
the same. Based on the first sample moment given as xn = 1

n

∑n
i=1 xi, the MM estimate
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(MME) of θ, say θ̂MME , satisfies E(X) = xn, which implies that

θ̂MME =
2− xn +

√
4 + 12xn + x2

n

2xn
,

provided that xn > 0. A biased property of the MME is provided in the next proposition.

Proposition 3. The estimate θ̂MME is positively biased.

Proof: We have θ̂MME = g(xn), where g(t) = 2−t+
√

4+12t+t2

2t , with t > 0. Now,
since

g′′(t) =
8
[
2 +

√
4 + t(12 + t)

]
+ 2t

{
12
[
3 +

√
4 + t(12 + t)

]
+ t
[
30 + 3t+

√
4 + t(12 + t)

]}
t3 [4 + t(12 + t)]3/2

> 0,

g(t) is strictly convex. The Jensen inequality states that E
(
g
(
X̄n

))
> g

(
E
(
X̄n

))
when

considering the random version of xn, denoted by X̄n. This implies that the random
version of θ̂MME , say θ̃MME , satisfies the inequality E(θ̃MME) > θ. Therefore, θ̂MME

is positively biased. This ends the proof.

3.2. Maximum Likelihood Estimation

The second method of estimation consists of finding the ML estimate (MLE) of θ. To
this end, the likelihood function is

L =
n∏
i=1

θ4(1 + xi)

6(1 + θ)6+xi

[
x2
i + 6(θ + 2)2 + xi(11 + 6θ)

]
and the log of the likelihood function is

log L = 4n log θ − 6n log(1 + θ)− n log(6) +

n∑
i=1

log(1 + xi)

+

n∑
i=1

log
[
x2
i + 6(θ + 2)2 + xi(11 + 6θ)

]
− log(θ + 1)

n∑
i=1

xi.

Now, the MLE of θ, say θ̂MLE , satisfies

θ̂MLE = argmaxθ>0 L or θ̂MLE = argmaxθ>0 log L,

where argmax{c}G(c) are the points c of some function G at which the function values
are maximized. It can be obtained by solving the following non-linear equation:

∂ log L

∂θ
= 0 =⇒ 4n

θ
− 6n

θ + 1
− 1

1 + θ

n∑
i=1

xi +
n∑
i=1

6(4 + xi + 2θ)

x2
i + 6(2 + θ)2 + xi(11 + 6θ)

= 0.

(3.1)

We obtain θ̂MLE by numerically solving (3.1) using a mathematical software like MATH-
EMATICA, MATHCAD and R. In our study, we employ the optim function of the R
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software to obtain θ̂MLE . The variance and standard error (SE) of θ̂MLE are calculated
using the inverse of the observed scalar information matrix. The fdHess function of the
R software is used for the same purpose. For α ∈ (0, 1), the asymptotic 100(1 − α)%
confidence interval (CI) for the parameter θ is[

θ̂MLE ± zα/2
√

Var(θ̂MLE)

]
,

where zα/2 is the upper α/2 quantile of the standard normal distribution.

3.3. Least Square and Weighted Least Square Estimation

Let the ordered values of x1, x2, . . . , xn be x(1), x(2), . . . , x(n) and set

LS =
n∑
i=1

[
F
(
x(i); θ

)
− i

n+ 1

]2

and

WLS =
n∑
i=1

(n+ 1)2(n+ 2)

i(n− i+ 1)

[
F
(
x(i); θ

)
− i

n+ 1

]2

.

We obtain the LS estimate (LSE) and WLS estimate (WLSE) of θ by

θ̂LSE = argminθ>0 LS and θ̂WLSE = argminθ>0 WLS,

respectively, where argmin{c}G(c) are the points c of some function G at which the
function values are minimized. The LS and WLS estimates are optimized using the
optim function of the R software.

3.4. Simulation Study

An extensive simulation study is used in this section to compare the above-mentioned
methods for estimating the unknown parameter θ. Some arbitrarily chosen values for
θ, i.e., θ = 0.2, 0.5, 0.8, 1.3, 1.7, 2.2, are considered for different sample sizes (n = 25, 50,
100, 200, 400 and 800). Also, N = 1000 replications are used for the same. In addition,
measures such as bias and mean square error (MSE) are calculated with the following
formulas:

Bias =
1

N

N∑
i=1

|θ̂i − θ|, MSE =
1

N

N∑
i=1

(θ̂i − θ)2,

where the index i refers to the ith experiment. Simulation results, including the bias
and MSEs of the MME, MLE, LSE, and WLSE, are reported in Table 3.
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Table 3: Simulation results for the P2S-L distribution.

θ = 0.2

n
MME MLE LSE WLSE

Bias MSE Bias MSE Bias MSE Bias MSE
25 0.002781 0.000533 0.002770 0.000533 0.005383 0.000513 0.005375 0.000487
50 0.001035 0.000257 0.001018 0.000257 0.005271 0.000272 0.005362 0.000257
100 0.000993 0.000126 0.000991 0.000126 0.005270 0.000146 0.005299 0.000145
200 0.000832 0.000061 0.000833 0.000061 0.005268 0.000085 0.005206 0.000081
400 0.000315 0.000028 0.000314 0.000028 0.005161 0.000056 0.005172 0.000055
800 0.000109 0.000015 0.000111 0.000015 0.004723 0.000042 0.004943 0.000042

θ = 0.5

n
MME MLE LSE WLSE

Bias MSE Bias MSE Bias MSE Bias MSE
25 0.008855 0.003876 0.008701 0.003872 0.034054 0.004318 0.036604 0.004153
50 0.003064 0.001945 0.002984 0.001943 0.034036 0.002693 0.036014 0.002635
100 0.002575 0.001028 0.002517 0.001028 0.033953 0.001911 0.035450 0.001949
200 0.001375 0.000482 0.001366 0.000481 0.033330 0.001505 0.035239 0.001593
400 0.000750 0.000225 0.000731 0.000226 0.033178 0.001346 0.034293 0.001471
800 0.000674 0.000123 0.000667 0.000123 0.031546 0.001264 0.032465 0.001431

θ = 0.8

n
MME MLE LSE WLSE

Bias MSE Bias MSE Bias MSE Bias MSE
25 0.012386 0.012897 0.012017 0.012838 0.089365 0.014970 0.110187 0.015583
50 0.008235 0.006071 0.007991 0.006056 0.089177 0.011887 0.105940 0.012316
100 0.002922 0.003083 0.002862 0.003090 0.089012 0.009989 0.102034 0.012215
200 0.002850 0.001628 0.002788 0.001627 0.087833 0.008724 0.096044 0.011598
400 0.001502 0.000753 0.001477 0.000754 0.086976 0.008421 0.088295 0.011250
800 0.000509 0.000358 0.000511 0.000358 0.078654 0.008254 0.088295 0.010699

θ = 1.3

n
MME MLE LSE WLSE

Bias MSE Bias MSE Bias MSE Bias MSE
25 0.029639 0.048833 0.034871 0.052769 0.245340 0.072775 0.338869 0.115103
50 0.013136 0.022640 0.016509 0.022893 0.243812 0.067841 0.324150 0.105609
100 0.006243 0.011242 0.009289 0.010663 0.243389 0.064562 0.310919 0.097875
200 0.005737 0.005420 0.006728 0.005411 0.241816 0.060674 0.297188 0.091021
400 0.005690 0.002699 0.002866 0.002688 0.240467 0.060552 0.281971 0.085582
800 0.000949 0.001443 0.001221 0.001348 0.230707 0.059784 0.2664455 0.084874

θ = 1.7

n
MME MLE LSE WLSE

Bias MSE Bias MSE Bias MSE Bias MSE
25 0.067738 0.109771 0.053360 0.103309 0.417770 0.188135 0.590104 0.348501
50 0.024998 0.044997 0.034529 0.047393 0.417183 0.182087 0.569252 0.324724
100 0.007982 0.023980 0.017156 0.022596 0.416915 0.181277 0.546202 0.299772
200 0.006952 0.011087 0.007388 0.010343 0.414872 0.175299 0.524531 0.278230
400 0.002851 0.004889 0.001480 0.005598 0.411906 0.175281 0.498656 0.256103
800 0.000955 0.002690 0.000496 0.002784 0.399852 0.174821 0.465326 0.233700

θ = 2.2

n
MME MLE LS WLS

Bias MSE Bias MSE Bias MSE Bias MSE
25 0.116734 0.290218 0.115604 0.290072 0.688772 0.483882 0.954364 0.911138
50 0.037157 0.095885 0.036454 0.095643 0.686642 0.482239 0.925549 0.857396
100 0.012432 0.045527 0.012031 0.045469 0.686362 0.480097 0.894067 0.801097
200 0.009737 0.024009 0.009611 0.024004 0.686263 0.475233 0.863627 0.749363
400 0.005487 0.009871 0.005440 0.009866 0.684225 0.472904 0.826796 0.692542
800 0.004243 0.005719 0.004180 0.005725 0.666975 0.472544 0.780233 0.629468

According to Table 3, as n increases, the bias and MSE tend to 0. As a result, it is
clear that MME and MLE perform almost identically when estimating the unknown
parameter θ, and thus both methods are appropriate for small and large sample sizes.

4. P2S-L REGRESSION MODEL

In Section 2.1, it is clearly mentioned that the P2S-L model is capable of modelling
over-dispersed data sets. Over-dispersed data sets are of paramount importance since
they are most often observed in real life. Hence, we specialize in over-dispersion. This
section introduces a count regression model based on the P2S-L distribution for modeling
over-dispersed data sets.
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4.1. Model Construction

Let Y be the random variable which represents the counted number of occurrences
of an event. We assume that it has the P2S-L distribution and satisfies E(Y ) = µ,
implying the following reparametrization:

θ =
2− µ+

√
4 + 12µ+ µ2

2µ
.

Assume we have n observations of Y , which is also the response variable, with the ith

observation being a realization of a random variable Yi for i = 1, 2, . . . , n, and the mean
of Yi is linked to the random covariate XT = (X1, X2, . . . , Xk) using the log-link function
given by

(4.1) µi = E(Yi) = ex
T
i γ ,

where xTi = (xi1, xi2, . . . , xik) is the covariate vector and γ = (γ0, γ1, γ2, . . . , γk) is the
unknown vector of regression coefficients. Based on (4.1), a linear form for the pmf of
Yi|XT

i = xTi which follows the P2S-L distribution with parameter µi is obtained as

P (yi; e
xTi γ) =

[
2−ex

T
i γ+

√
4+12e

xT
i
γ
+(e

xT
i
γ
)2

2e
xT
i
γ

]4
(1 + yi)

6

{
1 +

[
2−ex

T
i
γ
+

√
4+12e

xT
i
γ
+(e

xT
i
γ
)2

2e
xT
i
γ

]}6+yi
×

y2i + 6

2− ex
T
i γ +

√
4 + 12ex

T
i γ + (ex

T
i γ)2

2ex
T
i γ

+ 2

2

+ yi

11 + 6

2− ex
T
i γ +

√
4 + 12ex

T
i γ + (ex

T
i γ)2

2ex
T
i γ

 ,

where yi = 0, 1, 2, . . .

4.2. Estimation of the Model

The ML method is used to estimate the regression coefficients in γ. The log of the
likelihood function, say U, of the P2S-L count regression model is given by

log U = 4

n∑
i=1

[
log

(
2− ex

T
i γ +

√
4 + 12ex

T
i γ + (ex

T
i γ)2

)
− log(2ex

T
i γ)

]
+

n∑
i=1

log(1 + yi)

− n log 6−
n∑
i=1

(6 + yi) log

1 +
2− ex

T
i γ +

√
4 + 12ex

T
i γ + (ex

T
i γ)2

2ex
T
i γ


+

n∑
i=1

log

y2i + 6

2− ex
T
i γ +

√
4 + 12ex

T
i γ + (ex

T
i γ)2

2ex
T
i γ

+ 2

2

+ yi

11 + 6

2− ex
T
i γ +

√
4 + 12ex

T
i γ + (ex

T
i γ)2

2ex
T
i γ

 .(4.2)
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Now an estimation of the unknown vector γ is obtained by maximizing (4.2):

γ̂ = argmaxγ log U.

In this regard, we use the optim function in the R software. Also, the SE of this estimate
is calculated using the fdHess function in the R software.

4.3. Simulation of the P2S-L Regression Model

In this part, the ML method employed to estimate the unknown regression parameters
is analyzed via a simulation study. By taking k = 2, the parametric combinations
(γ0 = 0.5, γ1 = 0.1, γ2 = 0.4) and (γ0 = 0.2, γ1 = 0.7, γ2 = 0.5) are used to generate
N = 1000 samples of sizes n = 50, 250, 500 and 1000 from the model, log (µi) =
γ0+γ1xi1+γ2xi2. We assume that xi1 and xi2 are generated from the U(0, 1) distribution.
Here, measures such as estimates, bias, and MSEs are used to prove the asymptotic
property of the MLEs. Table 4 reports the simulation results.

Table 4: Simulation results for the P2S-L regression model.

n Parameters
γ0 = 0.5, γ1 = 0.1, γ2 = 0.4 γ0 = 0.2, γ1 = 0.7, γ2 = 0.5

Estimates Bias MSE Estimates Bias MSE

50
γ0 0.459330 0.040670 0.069193 0.158021 0.041979 0.078119
γ1 0.115366 0.015366 0.077800 0.716583 0.016583 0.073192
γ2 0.403656 0.003656 0.079126 0.502873 0.002873 0.079101

250
γ0 0.492112 0.007888 0.011192 0.190608 0.009392 0.013913
γ1 0.097662 0.002338 0.014621 0.702769 0.002769 0.014656
γ2 0.402847 0.002847 0.014029 0.500762 0.000762 0.013577

500
γ0 0.494108 0.005892 0.006232 0.193702 0.006298 0.006675
γ1 0.098186 0.001814 0.007140 0.702319 0.002319 0.007309
γ2 0.401727 0.001727 0.007149 0.500547 0.000547 0.006969

1000
γ0 0.496372 0.003628 0.002971 0.197913 0.002087 0.003236
γ1 0.099694 0.000307 0.003512 0.702143 0.002143 0.003694
γ2 0.400233 0.000233 0.003518 0.500348 0.000348 0.003456

From Table 4, it is clear that as sample size increases, the bias and MSEs are nearer to 0,
implying the consistency property of the MLEs for estimating the regression parameters.

5. INAR(1) PROCESS WITH P2S-L INNOVATIONS

In this section, we use the P2S-L distribution as an innovation distribution for
the INAR(1) process for modelling over-dispersed count data sets. We have seen in the
earlier sections that the P2S-L distribution is appropriate for over-dispersed count data
sets. Also, in the empirical results section discussed later, we clearly prove that the P2S-
L model provides better fits and results than some other recently developed overdispersed
models. So the P2S-L distribution is applied here as an innovation distribution, and then
the statistical properties of the process are investigated. A simulation study is included,
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and the parameters are estimated using the conditional maximum likelihood.
The process {Xt}t∈Z defined by

(5.1) Xt = p ◦Xt−1 + εt,

with p ∈ [0, 1), is called the INAR(1) process if the innovations {εt}t∈Z are independent
and identically distributed (iid). The symbol ◦ in (5.1) denotes the binomial thinning
operator, which is described as

p ◦Xt−1 =

Xt−1∑
j=1

Cj ,

where {Cj}j∈Z is a sequence of iid Bernoulli random variables with parameter p. There-
fore, the corresponding INAR(1) process has the following one step transition probabil-
ity:

Pr (Xt = k | Xt−1 = l) =

min(k,l)∑
i=0

Pr (B(l, p) = i) Pr (εt = k − i) , k, l = 0, 1, . . . ,

where B(l, p) ∼ Binomial(l, p) and p ∈ [0, 1). Historically, the P distribution was the
first to be used with the INAR(1) process (for more information, see [25] and [2]).
If {εt}t∈Z has a P2S-L distribution with parameter θ, then the corresponding INAR(1)P2S-
L process has the one step transition probability given as

Pr (Xt = k | Xt−1 = l) =

min(k,l)∑
i=0

(
l

i

)
pi(1− p)l−i×

θ4 [1 + (k − i)]
6(1 + θ)6+(k−i)

[
(k − i)2 + 6(θ + 2)2 + (k − i)(11 + 6θ)

]
.

By using the expressions for the mean, variance, DI, conditional mean and conditional
variance of {Xt}t∈Z (see [30] and [2]), the mean, variance, DI, conditional mean and
conditional variance of the INAR(1)P2S-L process are derived as

µ∗ = E (Xt) =
2(2 + θ)

(1− p)θ(1 + θ)
,

σ2
∗ = Var (Xt) =

2
(
θ3(p+ 1) + θ2(3p+ 4) + 2θ(p+ 3) + 2

)
θ2(θ + 1)2 (1− p2)

,

DI∗ = DI(Xt) =
θ3(p+ 1) + θ2(3p+ 4) + 2θ(p+ 3) + 2

θ(θ + 1)(θ + 2)(p+ 1)
,

(5.2) E (Xt | Xt−1) = pXt−1 +
2(2 + θ)

θ(1 + θ)

and

(5.3) Var (Xt | Xt−1) = p(1− p)Xt−1 +
2
(
θ3 + 4θ2 + 6θ + 2

)
θ2(θ + 1)2

.
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5.1. Estimation of the Process

Here, the estimation procedure using the conditional maximum likelihood (CML) method
for the INAR(1)P2S-L process is examined. Let us consider T observations x1, x2, . . . , xT
of the INAR(1)P2S-L process from the random sample X1, X2, . . . , XT . Then the con-
ditional log likelihood function is

`(Θ) =
T∑
t=2

log [Pr (Xt = xt | Xt−1 = xt−1)]

=
T∑
t=2

log


min(xt,xt−1)∑

i=0

(
xt−1

i

)
pi(1− p)xt−1−i×

θ4 [1 + (xt − i)]
6(1 + θ)6+(xt−i)

[
(xt − i)2 + 6(θ + 2)2 + (xt − i)(11 + 6θ)

]}
,

where Θ = (θ, p)T is the unknown parametric vector to be estimated. The CML esti-
mates (CMLEs) are obtained by

Θ̂ = argmaxΘ `(Θ).

The optim and fdHess functions of the R program are used to obtain the CMLEs,
observed information matrix, and therefore the SEs of the parameter estimates.

5.2. Simulation of the INAR(1)P2S-L Process

A simulation study is used to thoroughly investigate the CML method for esti-
mating the parameters of the INAR(1)P2S-L process. Hence, we generated N = 1000
samples, each of sizes n = 20, 50, 100, 500, 1000, from the INAR(1)P2S-L process for
the following four sets of parameter values: (θ = 0.2, p = 0.3), (θ = 0.25, p = 0.5),
(θ = 1.2, p = 0.7) and (θ = 1.6, p = 0.9). For each n, the average bias and MSE for the
parameters were calculated, and the simulation results are presented in Table 5.
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Table 5: Simulation results for the INAR(1)P2S-L process.

n Parameters
θ = 0.2, p = 0.3 θ = 0.25, p = 0.5

Estimates Bias MSE Estimates Bias MSE

20
θ 0.219149 0.019149 0.002210 0.265957 0.015957 0.003318
p 0.337932 0.037932 0.008395 0.510654 0.010654 0.006919

50
θ 0.210206 0.010206 0.000677 0.258585 0.008585 0.001116
p 0.323072 0.023072 0.003635 0.507034 0.007034 0.002768

100
θ 0.205219 0.005219 0.000241 0.251768 0.001768 0.000489
p 0.308560 0.008560 0.001226 0.498929 -0.001071 0.001371

500
θ 0.203217 0.003217 0.000062 0.250827 0.000827 0.000094
p 0.311741 0.011741 0.000414 0.500856 0.000856 0.000272

1000
θ 0.204506 0.004506 0.000043 0.250165 0.000165 0.000045
p 0.312342 0.012342 0.000288 0.500012 0.000012 0.000136

n Parameters
θ = 1.2, p = 0.7 θ = 1.6, p = 0.9

Estimates Bias MSE Estimates Bias MSE

20
θ 1.326347 0.126347 0.134854 1.751818 0.151818 0.402999
p 0.724984 0.024984 0.006737 0.897135 -0.002865 0.001089

50
θ 1.289355 0.089355 0.055774 1.647628 0.047628 0.097429
p 0.716579 0.016579 0.002509 0.897772 -0.002228 0.000349

100
θ 1.282011 0.082011 0.014919 1.625991 0.025991 0.048762
p 0.711249 0.011249 0.000982 0.899145 -0.000855 0.000189

500
θ 1.243593 0.043593 0.008646 1.600812 0.000812 0.008673
p 0.705575 0.005575 0.000652 0.899731 -0.000269 0.000034

1000
θ 1.220952 0.020952 0.008867 1.602889 0.002889 0.004258
p 0.702504 0.002504 0.000261 0.900023 0.000023 0.000018

Table 5 makes it clear that the CML method is suitable for the estimation of the
parameters since the bias and MSEs decrease to 0 quickly for small as well as large
sample sizes.

6. EMPIRICAL STUDY

In this section, the proposed models under the P2S-L distribution are compared with
some discrete models using four real data sets to prove their efficiency. The first two
data sets illustrate the performance of the P2S-L distribution. The new P weighted
exponential (NPWE) distribution (see [3]), P xgamma (PX) distribution (see [8]), P Bilal
(PBl) distribution (see [4]), P Lindley (PL) distribution (see [28]) and P distribution
are considered for this purpose. The estimates of the involved parameters are computed
along with their SEs, CIs (in the form of lower and upper bounds (LCI and UCI,
respectively)), goodness of fit statistic (χ2 statistic), degrees of freedom, p-values, and
model adequacy measures such as the minus maximized log likelihood function (-Log L)
Akaike information criterion (AIC) and Bayesian information criterion (BIC). The third
data set is used to check the efficiency of the P2S-L regression model by comparing it
with the new P generalized Lindley (NPGL) regression model (see [5]), the PX regression
model, the PL regression model, and the P regression model by using the measures
-Log L, AIC, and BIC. The last data set is used to check the capability of an integer-
valued auto-regressive process with P2S-L innovations, the INAR(1)P2S-L process. The
INAR(1)P2S-L process is compared with the INAR(1)PTE process (see [6]), INAR(1)PX
process (see [8]), INAR(1)PL process (see [22]), INAR(1)P process, and the INAR(1)G
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process by means of -Log L, AIC, BIC, and fitted measures such as mean, variance, and
DI.

6.1. Bacterial Clumps

This data set contains measures of the distribution of bacterial clumps per field in a
milk film. A microscope slide was split into 400 regions of equal area, and the number
of bacterial clumps on each was counted. The authors in [11] considered this data set
and fitted it by the NB distribution rather than the P distribution. Table 6 contains
some descriptive measures of the fitted P2S-L distribution using this data set. Hence,
it is evident that the fitted P2S-L distribution is over-dispersed, right-skewed, and lep-
tokurtic.

Table 6: Values of some descriptive statistics of the P2S-L distribution for the bacterial
clumps data set.

Mean Variance DI Skewness Kurtosis

2.4625 5.7029 2.3159 2.1017 10.7154

The MLEs with their corresponding SEs, CIs under the form (LCI,UCI) for the
parameter(s) and goodness-of-fit statistic for the bacterial clumps data set are given in
Table 7.

Table 7: The MLE, LCI, UCI, -Log L, AIC, BIC, χ2 and p-values for the distributions
considered using the bacterial clumps data set.

X Observed frequency
Expected frequency

P2S-L NPWE PX PBl PL P
0 56 74.13 116.28 105.96 82.04 100.07 34.86
1 104 88.85 82.48 79.90 89.32 83.40 85.07
2 80 76.84 58.50 61.50 73.14 64.29 103.78
3 62 57.42 41.49 46.40 53.38 47.28 84.41
4 42 39.36 29.43 33.95 36.63 33.68 51.49
5 27 25.46 20.88 24.09 24.20 23.44 25.13
6 9 15.79 14.81 16.63 15.58 16.04 10.22
7 9 9.48 10.50 11.21 9.85 10.83 3.56
8 5 5.55 7.45 7.40 6.15 7.24 1.09
9 3 3.18 5.28 4.81 3.80 4.79 0.29
10 2 1.79 3.75 3.08 2.33 3.15 0.07
11 0 0.99 2.66 1.94 1.42 2.06 0.02
12 1 1.17 6.49 3.13 2.17 3.74 0.00

Total 400 400 400 400 400 400 400

θ

MLE 1.1915 0.3724 0.8540 0.3411 0.6523 2.4400
SE 0.0023 0.2782 0.0018 0.0008 0.0015 0.0039
LCI 1.1870 0 0.8505 0.3395 0.6493 2.4323
UCI 1.1960 0.9177 0.8576 0.3427 0.6552 2.4477

α

MLE - 0.1004 - - - -
SE - 0.8219 - - - -
LCI - 0 - - - -
UCI - 1.7114 - - - -

χ2 10.9593 73.5180 52.3447 18.3150 43.9591 42.7049
degrees of freedom 8 7 8 8 8 8

p-value 0.2785 <0.001 <0.001 0.0317 <0.001 <0.001
-Log L -795.5053 -829.4187 -817.7587 -798.9790 -813.0958 -831.6082
AIC 1593.0106 1660.8373 1637.5174 1599.9580 1628.1917 1665.2165
BIC 1597.0021 1664.8288 1641.5089 1603.9495 1632.1831 1669.2079

According to Table 7, the P2S-L distribution performs well because it has the lowest
AIC, BIC, and χ2 values with a higher p-value. Also, the estimated pmfs of the fitted
distributions are diagrammatically represented in Figure 2.

17



0 5 10 15
0

20
40

60
80

10
0

P2S−L

x

P
M

F

Obs

Exp

0 5 10 15

0
20

40
60

80
10

0

NPWE

x

P
M

F

Obs

Exp

0 5 10 15

0
20

40
60

80
10

0

PX

x

P
M

F

Obs

Exp

0 5 10 15

0
20

40
60

80
10

0
PBl

x

P
M

F

Obs

Exp

0 5 10 15
0

20
40

60
80

10
0

PL

x

P
M

F

Obs

Exp

0 5 10 15

0
20

40
60

80
10

0

P

x

P
M

F

Obs

Exp

Figure 2: The estimated pmfs of the fitted distributions for the bacterial clumps data
set.

From Figure 2 also, we can infer that the P2S-L distribution yields the best fit
among other fitted distributions.

6.2. Yeast Cells

The second data set contains measurements of yeast cell distribution per square
in a hemocytometer (see [11]). The authors of this reference also used this data set
to claim the fit of the NB distribution because it lacks randomness. Table 8 contains
some descriptive measures of the fitted P2S-L distribution for this data set. Hence, here
also, it is evident that the fitted P2S-L distribution is over-dispersed, right-skewed, and
leptokurtic.

Table 8: Values of some descriptive statistics of the P2S-L distribution for the yeast
cells data set.

Mean Variance DI Skewness Kurtosis

0.69 0.91118 1.3205 1.7254 6.7372

Table 9 shows the MLEs with their corresponding SEs, CIs in the form (LCI, UCI)
for the parameter(s), and goodness-of-fit statistic for the yeast cells data set.

18



Table 9: The MLE, LCI, UCI, -Log L, AIC, BIC, χ2 and p-values for distributions
considered using the yeast cells data set.

X Observed frequency P2S-L NWPE PX PBl PL P
1 213 221.22 237.74 237.14 199.88 234.04 202.14
2 128 114.24 96.44 95.85 116.68 99.41 137.96
3 37 43.56 39.12 39.87 51.43 40.50 47.08
4 18 14.58 15.87 16.41 20.29 16.04 10.71
5 3 4.53 6.44 6.59 7.55 6.22 1.83
6 1 1.86 4.39 4.14 4.17 3.79 0.28

Total 400 400 400 400 400 400 400

θ

MLE 3.5683 1.1235 2.3330 0.9990 1.9502 0.6825
SE 0.0109 2.2302 0.0072 0.0031 0.0064 0.0021
LCI 3.5470 0 2.3189 0.9930 1.9377 0.6785
UCI 3.5897 5.4947 2.3470 1.0050 1.9627 0.6865

α

MLE - 0.3041 - - - -
SE - 2.5888 - - - -
LCI - 0 - - - -
UCI - 5.3782 - - - -

χ2 3.0015 13.8457 14.4230 9.1358 11.0452 10.0362
degrees of freedom 2 1 2 2 2 2

p-value 0.3914 0.0031 0.0024 0.0275 0.0115 <0.001
-Log L -447.3560 -454.4330 -454.3928 -451.9304 -452.6185 -449.5038
AIC 896.7120 910.8660 910.7857 905.8609 907.2370 901.0076
BIC 900.7035 914.8574 914.7771 909.8524 911.2285 904.9990

From Table 9, it is clear that the P2S-L distribution is the best among the considered
competitive models since it has the lowest -Log L, AIC, BIC and χ2 value with the
highest p-value.
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Figure 3: The estimated pmfs of the fitted distributions for the yeast cells data set.

From Figure 3, we can infer that the P2S-L distribution yields the best fit among other
fitted distributions.

6.3. Length of Hospital Stay

The third data set is utilized to examine the proficiency of the count regression model
proposed under the P2S-L distribution. The data set consists of 3589 observations from

19



the files of 1991 Arizona cardiovascular patients found in the COUNT package in R
software. The P2S-L regression model is used to model the length of stay (yi) by using
the covariates: cardiovascular procedure (x1i) (1 = CABG, 0 = PTCA), sex (x2i) (1 =
male, 0 = female), type of admission (x3i) (1 = urgent, 0 = elective) and age (x4i) (1
= age > 75, 0 = age ≤ 75). Given below is the regression structure that will be fitted
by the P2S-L, NPGL, PX, PL, and P regression models:

µi = eγ0+γ1x1i+γ2x2i+γ3x3i+γ4x4i .

The mean and variance of the dependent variable are calculated as 8.831 and 47.973,
respectively, stating the clear over-dispersion. Table 10 gives the parameter estimates
and results of the information criterion.

Table 10: The MLE, -Log L, AIC and BIC of the fitted regression models for the length
of stay data set.

Covariates
P PL PX NPGL P2SL

Estimate
SE

p-value
Estimate

SE
p-value

Estimate
SE

p- value
Estimate

SE
p-value

Estimate
SE

p-value

γ0
1.4560

<0.001
1.4133

<0.001
1.3996

<0.001
1.4044

<0.001
1.4159

<0.001
0.0158 0.0372 0.0349 0.0353 0.0298

γ1
0.9606

<0.001
0.9843

<0.001
0.9725

<0.001
0.9761

<0.001
0.9835

<0.001
0.0122 0.0291 0.0270 0.0274 0.0231

γ2
-0.1240

<0.001
-0.1288

<0.001
-0.1269

<0.001
-0.1267

<0.001
-0.1262

<0.001
0.0118 0.0304 0.0280 0.0285 0.0240

γ3
0.3266

<0.001
0.3843

<0.001
0.3732

<0.001
0.3759

<0.001
0.3746

<0.001
0.0121 0.0302 0.0280 0.0284 0.0240

γ4
0.1224

<0.001
0.1193

<0.001
0.1202

<0.001
0.1198

<0.001
0.1197

<0.001
0.0124 0.0323 0.0298 0.0303 0.0255

-Log L -11189.8976 -10625.5957 -10569.8162 -10563.2551 -10164.8969
AIC 22389.7952 21239.1913 21127.6324 21114.5102 20317.7938
BIC 22420.7233 21202.0775 21090.5187 21077.3964 20280.6801

The authors in [5] used this data set to prove the better fit of the NPGL regression
model. Hence, the obtained -Log L, AIC and BIC were better than those of the NB
regression model. From Table 10, it is clear that the P2S-L regression model is better
than the NB regression model. Now, since the P2S-L regression model has minimized
values for its -Log L, AIC, and BIC, we conclude that it will be a more appropriate
model than the other models for modelling this data set. As a result, we can say that
the length of hospital stay increases when people have CABG cardiovascular surgery,
are admitted urgently, and are over the age of 75. Additionally, female individuals have
a longer hospital stay than male individuals.

6.4. Number of Weakly Sales

The fourth data set that we consider is the series of weekly sales (in integer units) of a
particular soap product in a supermarket. The information comes from the Kilts Center
for Marketing, Graduate School of Business, University of Chicago, and can be found
at: http://gbswww. uchicago.edu/kilts/research/db/dominicks. (The product is ‘Zest
White Water 15 oz.’, with code 3700031165). We consider it to prove the applicability of
the P2S-L distribution as an innovation distribution for the INAR(1) process. The one
step transition probabilities of the competitive INAR(1) models used here for comparison
are given in Appendix I.
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The mean, variance, and DI of the data set are 242, 5.44, and 15.40, respectively.
The test proposed in [29] for determining statistically significant over-dispersion shows
a p-value less than 0.001, indicating the data possess significant over-dispersion. The
autocorrelation function (ACF), partial ACF (PACF), histogram, and time series plots
are displayed in Figure 4 and in the PACF plot, the only first-lag significance proves
that this data set can be used for modelling the INAR(1) process.
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Figure 4: ACF, PACF, time series and histogram plots for the numbers of weekly sales
data.

The fitted INAR(1) processes with the P2S-L innovation and other corresponding in-
novations used for comparison yield the parameter estimates along with SE, AIC, BIC,
theoretical mean, variance, and DI as given in Table 11. The minimum values of AIC
and BIC statistics for the INAR(1)P2S-L process prove that it provides a better fit
than the INAR(1)PTE, INAR(1)PX, INAR(1)PL, INAR(1)P and INAR(1)G processes.
Furthermore, the theoretical DI value of the INAR(1)P2S-L process is close to the em-
pirical DI value. As a result, it is convincing that the INAR(1)P2S-L process effectively
explains the data set’s characteristics.

Table 11: The estimates and modelling adequacy statistics of the fitted distributions for
the number of weekly sales data set.

Model Parameters Estimates SE AIC BIC µ∗ σ2
∗ DI∗

INAR(1)P2S-L
θ 0.7569 0.0485

1244.4780 1251.4559 5.3926 12.6378 2.3436
p 0.2407 0.0426

INAR(1)PTE
α -0.9999 0.2946

1246.4137 1256.8805 1.6240 3.1983 1.9694θ 0.3839 0.0353
p 0.2860 0.0516

INAR(1)PX
θ 0.6086 0.0397

1250.5878 1257.5656 3.1074 7.1419 2.2983
p 0.3241 0.0369

INAR(1)PL
θ 0.4533 0.0325

1249.0689 1256.0467 5.4545 15.2780 2.8010
p 0.3202 0.0369

INAR(1)P
θ 4.1853 0.2110

1363.8119 1370.7898 5.5041 5.4045 0.9819
p 0.2341 0.0324

INAR(1)G
θ 0.2253 0.0152

1260.3368 1267.3147 0.3347 0.3315 0.9904
p 0.3713 0.0324

Empirical 5.4421 15.3376 2.8183

A residual analysis is done to check whether the fitted INAR(1)P2S-L process is sta-
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tistically accurate. For that, the Pearson residuals r1, . . . , rT are calculated, where, for
any t = 1, 2, . . . , n,

rt =
xt − E (Xt | Xt−1 = xt−1)

Var (Xt | Xt−1 = xt−1)1/2
,

where E (Xt | Xt−1) and Var (Xt | Xt−1) are given in (5.2) and (5.3), respectively. The
statistical validity of the fitted INAR(1) process is proved by acquiring a zero mean and
unit variance for the uncorrelated Pearson residuals (see [16]). The mean and variance of
the Pearson residuals of the INAR(1)P2S-L process were 0.0419 and 1.0033, respectively,
which are very close to the desired values. This proves our INAR(1)P2S-L process is
statistically valid for the data set. According to the findings in [19], the INAR(1)P2S-L
process for the data is such that

Xt = 0.2407 ◦Xt−1 + εt,

where the innovation process satisfies εt ∼ P2S-L(0.7569).
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Figure 5: The predicted values of the number of weekly sales data set (left) and the
ACF plot of the Pearson residuals (right).

Additionally, the ACF plot of the Pearson residuals in Figure 5 specifies that there is no
presence of autocorrelation for the Pearson residuals. The plot for actual and predicted
values of the monthly number of claims is displayed on the left side of Figure 5.

7. CONCLUDING REMARKS

A one-parameter discrete compound distribution, namely the Poisson 2S-Lindley (P2S-
L) distribution, was proposed. It was shown that it can effectively model over-dispersed
data sets. Flexibility is attained by having a closed form for almost every statistical
and mathematical property. Methods such as the MM, ML, LS, and WLS methods
were used for estimating the unknown parameter and were compared using a broad
simulation study. More importantly, a new count regression model and an INAR(1)
process based on the P2S-L distribution were introduced and described in detail. Four
real-life data sets were evaluated to determine the applicability of the proposed model.
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Thus, the P2S-L distribution-based models will be effective in modeling count data,
particularly over-dispersed count data sets.
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[22] Ĺıvio, T., Khan, N. M., Bourguignon, M.and Bakouch, H. S. (2018). An INAR(1)
model with Poisson–Lindley innovations, Economics Bulletin, 38, 3, 1505–1513.

[23] Lord, D. and Geedipally, S. R. (2011). The negative binomial–Lindley distribution
as a tool for analyzing crash data characterized by a large amount of zeros, Accident
Analysis & Prevention, 43, 5, 1738–1742.

[24] Mahmoudi, E. and Zakerzadeh, H. (2010). Generalized poisson–Lindley distribution,
Communications in Statistics—Theory and Methods, 39, 10, 1785–1798.

[25] McKenzie, E. (1985). Some simple models for discrete variate time series 1, JAWRA
Journal of the American Water Resources Association, 21, 4, 645–650.
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APPENDIX

Transition probabilities for the processes used for comparison in Section 6.4.

1. Transition probability for the INAR(1)PTE process:

Pr (Xt = k | Xt−1 = l) =

min(k,l)∑
i=0

(
l

i

)
pi(1− p)l−iθ

(
1− α

(1 + θ)1+k−i
+

2α

(1 + 2θ)1+k−i

)
,

with |α| ≤ 1 and θ > 0.

2. Transition probability for the INAR(1)PX process:

Pr (Xt = k | Xt−1 = l) =

min(k,l)∑
i=0

(
l

i

)
pi(1− p)l−i ×

θ2
[
2(1 + θ)2 + θ(k − i+ 2)(k − i+ 1)

]
2(1 + θ)k−i+4

,

with θ > 0.

3. Transition probability for the INAR(1)PL process:

Pr (Xt = k | Xt−1 = l) =

min(k,l)∑
i=0

(
l

i

)
pi(1− p)l−i θ

2(k − i+ θ + 2)

(θ + 1)k−i+3
,

with θ > 0.

4. Transition probability for the INAR(1)P process:

Pr (Xt = k | Xt−1 = l) =

min(k,l)∑
i=0

(
l

i

)
pi(1− p)l−i e

−θθk−i

(k − i)!
,

with θ > 0.

5. Transition probability for the INAR(1)G process:

Pr (Xt = k | Xt−1 = l) =

min(k,l)∑
i=0

(
l

i

)
pi(1− p)l−iθ(1− θ)k−i,

with θ ∈ (0, 1).

25


	INTRODUCTION
	THE POISSON 2S-LINDLEY DISTRIBUTION
	Moments, Skewness and Kurtosis 
	Dispersion Index and Coefficient of Variation
	Stress-Strength Analysis
	Generating Random Values from the P2S-L Distribution

	ESTIMATION METHODS
	Method of Moments
	Maximum Likelihood Estimation
	Least Square and Weighted Least Square Estimation
	Simulation Study

	P2S-L REGRESSION MODEL
	Model Construction
	Estimation of the Model
	Simulation of the P2S-L Regression Model

	INAR(1) PROCESS WITH P2S-L INNOVATIONS 
	Estimation of the Process 
	Simulation of the INAR(1)P2S-L Process

	EMPIRICAL STUDY
	Bacterial Clumps
	Yeast Cells
	Length of Hospital Stay
	Number of Weakly Sales

	CONCLUDING REMARKS

