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1. INTRODUCTION

In the statistical literature, the methods to understand the relationship of
explanatory variables on each individual outcome variable are well developed and
widely applied. However, in most health-related studies given the technological
advancement and sophisticated methods of obtaining and storing data, a need
to perform joint analysis of mean and covariance parameters simultaneously and
accounting for the correlations is in high demand since a good covariance mod-
elling approach improves statistical inference of the mean of interest ([2]- [4]).
Furthermore, the covariance structure itself may be of scientific interest [5].

Model parsimony in regression analysis, specially in the context of longi-
tudinal data regression analysis, is important in biomedical fields. Zhang et al.
[1] propose joint parametric modelling of the means, the variances, and the cor-
relations by decomposing the correlation matrix via hyperspherical co-ordinates
and show that this results unconstrained parameterization, fast computation,
easy interpretation of the parameters, and model parsimony. Zhang et al. ([1],
pp 237) comment that the decomposition of the correlation matrix opens many
new avenues for future research and that with unconstrained structures, we can
model the mean, the variance, and the correlation non-parametrically and semi-
parametrically. In this paper we deal with the semiparametric modelling. Our
main aim, though, is to find whether semi-parametric modelling improves model
parsimony over the parametric modelling approach.

Suppose longitudinal measurements yi = (yi1, . . . , yimi)
′ and covariate vec-

tors (xi1, . . . , ximi)
′ (i = 1, . . . , n), with xij = (xij1, . . . , xijp)

′ for j = 1, . . . ,mi,
collected from n subjects, are observed at times ti = (ti1, . . . , timi)

′. In longi-
tudinal data analysis it is important that statistical analysis takes into account
that the repeated observations yij , j = 1, . . . ,mi are correlated ([2]- [4]). Accord-
ingly we assume that yi ∼ N(µi,Σi), where µi = (µi1, . . . , µimi)

′, Σi = DiRiDi,
Di = diag(σi1, . . . , σimi), and Ri = (ρijk)

mi
j,k=1 is the correlation matrix of yi with

ρijk = corr(yij , yik) being the correlation between the jth and kth measurements
of the ith subject. The main purpose in such longitudinal studies is to estimate
the parameters involved in the means, the variances, and the correlation matrices.
This can be done by maximizing the log-likelihood or by solving the maximum
likelihood estimating equations. However, the constraints involved in the corre-
lation parameters create a challenge. This can be overcome by decomposing the
correlation matrix by Cholesky decomposition.

Zhang et al. [1] proposed to parametrize the correlation matrix Ri for
subject i (we suppress i) via hyperspherical co-ordinates by the Cholesky decom-
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position R = TT ′, where T = (Tjk) is a lower triangular matrix given by

T =



1 0 0 · · · 0
c21 s21 0 · · · 0
c31 c32s31 s32s31 · · · 0
...

...
...

. . . 0

cm1 cm2sm1 cm3sm2sm1 · · ·
m−1∏
l=1

sml


,

with cjk = cos(φjk) and sjk = sin(φjk) are trigonometric functions of angles φjk.

For subject i, the total number of angles φijk (1 ≤ k < j ≤ mi) is mi(mi−
1)/2, which is the same as that of the free parameters in the correlation matrix.
The decomposition of R has several advantages (i) diagonal elements of TT ′ are
1, and all other elements fall between -1 and 1, (ii) TT ′ is always non-negative
definite, satisfying the requirements of a correlation matrix, and (iii) the angles
φjk of T as parameters are unconstrained in the range [0, π). It also establishes
a hierarchical connection between the correlations and the angles (for further
discussion on this see Zhang et al., [1]). They then propose a joint regression
model for the means, the variances, and the correlations as

g(µij) = x′ijβ, log σ2ij = z′ijλ, and φijk = w′ijkγ,(1.1)

where xij are the usual known covariates as mentioned earlier, zij and wijk

may contain baseline covariates, as well as polynomials in time (time related to
longitudinal data) and their interactions. The unknown regression parameters
β,λ, and γ are of dimensions p× 1, d× 1, and q× 1 respectively. In practice we
may choose wijk as a polynomial of time lag (tik − tij). Zhang et al. [1] estimate
the parameters β,λ, and γ of the model in equation (1) via quasi-Fisher scoring
algorithm, a review of which is given in Section 2.

For investigating the properties of the estimates of the regression parame-
ters through semiparametric modelling of the means and variances and to study
the impact of this to model parsimony we consider three models.
Model 1: the parametric model (Zhang et al. [1]) given above (equation (1.1)),
Model 2: a model in which only the means are modelled semiparametrically,
which is,

g(µij) = x′ijβ + f1(tij), log(σ2ij) = z′ijλ, and φijk = w′ijkγ,

Model 3: a model in which the means and the variances are modelled semipara-
metrically, which is,

g(µij) = x′ijβ + f1(tij), log(σ2ij) = z′ijλ+ f2(tij), and φijk = w′ijkγ.

In Model 2 and Model 3, f1(·) and f2(·) are smooth functions parametrized by
regression splines.

As in Zhang et al. [1] we decompose the correlation matrix via hyperspher-
ical co-ordinates and as in Lang, Zhang and Pan [6] we use B-spline to estimate
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the unknown functions f1(·) in Model 2 and f1(·) and f2(·) in Model 3. Five
further investigations were conducted. First of these is to see the performance of
the estimators of the regression parameters in terms of bias and efficiency and to
see the effect of fixing the knots in spline smoothing. The second is to study the
performance of the estimators of the regression parameters when some covariates
are correlated, the third is a robustness study where the normality assumption of
the error distribution is replaced by a mixture of normal distributions, the fourth
is to see whether use of penalized spline results in improved estimation of the
non-parametric functions in comparison to using B-spline, and the fifth is to see
the effects of estimators by fitting the data generated from the semiparametric
model to the parametric model and vice versa.

Section 2 deals with the method of estimation of the parameters of Model
3 in which the correlation matrix is decomposed via hyperspherical co-ordinates
and the unknown functions f1(·) and f2(·) are estimated using B-spline basis
functions. Estimation procedures in Model 2 and Model 1 are discussed as special
cases of Model 3. An extensive simulation study is conducted and results are
summarized in Section 3. Detailed analysis of two real data sets is given in
Section 4 and a discussion follows in Section 5.

2. ESTIMATION IN JOINT SEMIPARAMETRIC MODELS

2.1. Estimation in Model 3 based on B-spline

We estimate the regression parameters of Model 3 (given above) where
the means and the variances are modelled semiparametrically. As in Zhang et
al. [1], we parametrize Ri via hyperspherical co-ordinates. For simplicity, we
assume that f1 and f2 have the same smoothness property. Without loss of
generality, we assume that the domain of tij is in the interval [0, 1] with partitions
0 = a0 < a1 < · · · < akn < akn+1 = 1. Using the ai’s as knots, we have K = kn+l
normalized B-spline basis functions of order l that form a basis for the linear spline

space. The B-spline basis of order l, B
(l)
i (t), is defined as

B
(l)
i (t) =

t− ai
ai+l−1 − ai

B
(l−1)
i (t) +

ai+l − t
ai+l − ai+1

B
(l−1)
i+1 (t), and

B
(1)
i (t) =

{
1, ai ≤ t < ai+1

0, otherwise.

Note that B
(l)
i (t) is a polynomial function of degree l − 1. More details on

the construction of B-spline basis can be found in Schumaker [7]. Thus f1(t)
and f2(t) are approximated by π′(t)α and π′(t)α̃, respectively, where π(t) =

(B
(l)
1 (t), . . . , B

(l)
K (t))′ is the vector of basis functions and α, α̃ ∈ RK are the spline

coefficient vector. Let πij = π(tij). With this notation, the nonlinear regression
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models can be linearized as in what follows

g(µij) = x′ijβ + π′(tij)α = Π′ijθ and log(σ2ij) = z′ijλ+ π′(tij)α̃ = Υ′ijρ,

where Π′ij = (x′ij ,π
′
ij), Υ′ij = (z′ij ,π

′
ij), θ = (β′,α′)′, and ρ = (λ′, α̃′)′. Suppose

Πi = (Π′i1,Π
′
i2, . . . ,Π

′
imi

)′ and Υi =
(
Υ′i1,Υ

′
i2, . . . ,Υ

′
imi

)′
.

Thus, now the parameters of interest are θ, ρ, and γ. Let ri = yi − µi.
Then, εi = (εi1, . . . , εimi)

′ = T−1i D−1i ri ∼ N(0, Imi). Denoting l to be the log-
likelihood apart from a constant it can be shown that

−2l =

n∑
i=1

mi∑
j=1

(log σ2ij + log T 2
ijj + ε2ij).

From this, omitting details, by usual derivations, we can show that the maximum
likelihood estimating equations for θ,ρ, and γ are

U1 =
n∑
i=1

Π′i∆iΣ
−1
i (yi − µi(Πiθ)) = 0,

U2 =
1

2

n∑
i=1

Υ′i(qi − 1mi) = 0, and

U3 =
n∑
i=1

mi∑
j=1

[
∂ log Tijj
∂γ

(ε2ij − 1) + εij

j−1∑
k=1

bijkεik

]
= 0

respectively, where ∆i = ∆i(Πiθ) = diag{ġ−1(Π′i1θ), . . . , ġ−1(Π′imi
θ)}, ġ−1(·) is

the derivative of the inverse link function g−1(·), µ(·) = g−1(·),

qi = diag(R−1i D−1i rir
′
iD
−1
i ), and bijk =

j∑
l=k

∂Tilk
∂γ aijl with aijl being the (j, l)

element of T−1i . As in Zhang et al. [1] these equations are solved by the quasi-
Fisher scoring algorithm which is described in Appendix A.

2.2. Estimation in Model 2 based on B-spline

If we consider a semiparametric model with only the mean having semi-
parametric term as g(µij) = x′ijβ + f1(tij), log(σ2ij) = z′ijλ, and φijk = w′ijkγ,
then we need to estimate θ,λ, and γ which are obtained by solving

V 1 =
n∑
i=1

Π′i∆iΣ
−1
i (yi − µi(Πiθ)) = 0,

V 2 = 1
2

n∑
i=1

Z′i(qi − 1mi) = 0, and

V 3 =
n∑
i=1

mi∑
j=1

[
∂ log Tijj

∂γ (ε2ij − 1) + εij
j−1∑
k=1

bijkεik

]
= 0.
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These equations can also be solved using the algorithm in Appendix A. At conver-
gence the variance-covariance of θ̂, λ̂, and γ̂ are obtained by inverting the Fisher
information matrix given in Appendix B. Parameters of Model 1, are estimated,
of course, by setting f1(ti,j) = 0 in the above 3 equations.

2.3. Estimation in Model 2 based on penalized Spline

The B-spline methodology, in some applications, produces over fitting of
the data (Carroll and Ruppert, [8]). In such cases penalized spline has been used
to overcome this (Eilers and Marx, [9]). So, here, we further use the penalized
spline in Model 2 instead of the B-spline to see whether it produces improvement
in estimation of the non-parametric functions. As in Section 2.2, f1(·) can be
approximated by π′(t)α. Now, we impose a penalization upon the parameters

α1, α2, . . . , αK , so that they are constrained such that
K∑
i=1

α2
i ≤ C.

With this constraint the log-likelihood apart from a constant can be written
as

−2l =
n∑
i=1

[
log |Σi|+ (yi − µi(Πiθ))′Σ1

i (yi − µi(Πiθ))
]
− τθ′Dθ,

where τ > 0 is a constant and D =

[
0p×p 0p×K
0K×p IK×K

]
.

Using Lagrange multiplier the score equations for θ,λ, and γ can be written
as

W 1 = −
n∑
i=1

Π′i∆iΣ
−1
i ∆i(yi − µi) + τDθ = 0,

W 2 = 1
2

n∑
i=1

Z′i(qi − 1mi) = 0, and

W 3 =
n∑
i=1

mi∑
j=1

[
∂ log Tijj

∂γ (ε2ij − 1) + εij
j−1∑
k=1

bijkεik

]
= 0.

All these equations can then be solved using the same algorithm as what we use
in Section 2.1. All of the block components of the Fisher information matrix
remain the same as Model 2 except I11 which in this case is

I11 = −E
[
∂2l

∂θ∂θ′

]
=

n∑
i=1

Π′i∆iΣ
−1
i ∆iΠi + τD.
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2.4. Knot Selection

The importance of knot selection in spline smoothing work has been well
described in two pioneering papers by He, Fung and Zhu [4] and Leng et al.
[6]. These authors found that knot selection is less critical for the estimation
of β than for the estimation of the nonparametric functions involved in Model
1 and Model 2 discussed in Section 1. However, in most situations, they found
it appropriate to use the sample quantiles of {tij , i = 1, . . . , n, j = 1, . . . ,mi} as
knots. We follow their suggestion and note that the number of knots are not

prespecified, rather, it depends on the total sample size N =
n∑
i=1

mi. Through

detailed asymptotic theoretical study Leng et al. [6] show that the number of
internal knots to be used is the integer part of N1/5.

3. SIMULATION STUDY

As indicated in Section 1, an extensive simulation investigation is conducted
in this section. Our purpose in this simulation, in addition to the study of the
performance of the estimators of the regression parameters in terms of bias and
efficiency, to study the effect of fixing the number of knots, the effect of correlated
covariates, the effect of misspecifying the error distribution (robustness study),
and compare performance of the estimation methods using B-spline and penalized
spline. These simulations are performed in sections, 3.1, 3.2, 3.3, and 3.4. A
further study, in section 3.5, is conducted to compare the estimators by fitting
the data generated from the semiparametric model to the parametric model and
vice versa.

3.1. Study 1: Properties of the regression parameters

For this purpose we generate response data from each of the 3 models
(Model 1, Model 2, and Model 3)

yij = xij1β1 + xij2β2 + eij , log(σ2ij) = zij1λ1 + zij2λ2;

yij = xij1β1 + xij2β2 + f1(tij) + eij , log(σ2ij) = zij1λ1 + zij2λ2;

and

yij = xij1β1 + xij2β2 + f1(tij) + eij , log(σ2ij) = zij1λ1 + zij2λ2 + f2(tij).

For each model, values of parameters considered were (β1, β2) = (1, 0.5), (γ1, γ2) =
(0.35, 0.5) and (λ1, λ2) = (−0.5, 0.2). Following Leng et al. [6] we generate the
observation times as in what follows.
For each individual we consider a set of scheduled time points {0, 1, 2, . . . , 12}.
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At each scheduled time, except time 0, each individual has a 20% probability of
missing a fixed time point. To make it irregular and unequal time distances for
different individuals a uniform [0, 1] random variable is added to a non skipped
scheduled time. This results in different observed time points tij per subject.
However, while analysis tij is transformed onto [0, 1].

For covariates, we take xij1 = tij + δij , where δij follows the standard
normal distribution and xij2 is generated from a Bernoulli(0.5) distribution. The
nonparametric functions are taken as f1(t) = cos(πt) and f2(t) = sin(πt). The
error (ei1, . . . , eimi) is generated from a multivariate normal distribution with
mean 0 and covariance Σi = DiRiDi, where Ri = TiT

′
i with wijk = (1, tij − tik)′,

and zij = xij . The expected sample size (for the calculation of the number of
knots) is about 1040 (=100× 13× 0.8). The number of the knots is taken to be
4 ≈ 10401/5 (He et al., [4]). Here, as can be seen, the number of knots is not
prespecified. Parameters of the above models were estimated using the R package
jmcm for the simulation studies.

Bias of the estimates of the parameters of all three models along with their
standard errors, and MSE (S) of the non-parametric functions f1 and f2, based
on 1000 replications, are given in Table 1.

Par.
Tr.

Zhang et al. Semi. with Semi. with Semi. with Semi. with
val. (2015) mean mean and var mean and var mean and var

(Model 1) (Model 2) (Model 3) when knot=10 when knot=20
Bias SE Bias SE Bias SE Bias SE Bias SE

β1 1.0 0.00 0.02 -0.02 0.22 0.09 0.27 0.00 0.24 -0.01 0.25
β2 0.5 0.00 0.05 0.01 0.11 -0.03 0.14 0.01 0.12 0.01 0.13
γ1 0.35 -0.27 1.30 6.61 1.42 3.14 2.25 -21.51 2.42 -41.93 3.41
γ2 0.5 -0.35 2.29 6.62 2.53 5.56 4.12 -3.62 4.08 -5.74 5.04
λ1 -0.5 0.00 0.07 0.00 0.00 0.00 0.08 0.00 0.07 0.00 0.07
λ2 0.2 0.00 0.13 -0.01 0.01 0.01 0.15 0.01 0.14 0.00 0.14

S(f̂1) 11.89 10.90 496.59 516.37

S(f̂2) 112.87 373.95 642.26

Table 1: Bias and standard error of the estimated parameters based on
1000 replications; all the results are multiplied by a factor of
103

Table 1 shows that our semiparametric methods yield similar bias property
of the estimates as compared to that for the parametric model. We redo the
simulations by fixing the number of knots as kn = 10 and kn = 20. The results
show that as the number of knots increase, the MSE of the estimated functions f1
and f2, bias, and standard error of the estimates of the parameters also increase.



Longitudinal Data Regression Analysis 9

3.2. Study 2: Properties of the regression parameters when some co-
variates are correlated

We have done a simulation study where all the covariates are correlated.
The data sets are generated from the model

yij = xij0β0 + xij1β1 + xij2β2 + f1(tij) + eij (i = 1, . . . , n; j = 1, . . . ,mi),

φijk = γ0 + wijk1γ1 + wijk2γ2, and

log(σ2ij) = zij0λ0 + zij1λ1 + zij2λ2 + f2(tij).

where (xij0, xij1, xij2)
′ is generated from a multivariate normal distribution with

mean 0, marginal variance 1, and correlation 0.5. We take zij = xij and wijk =
(1, tij − tik, (tij − tik)2)′. tij , eij , f1(t), and f2(t) are same as study 3.1.

Parameter
True Parametric Semiparametric
value Bias SE Bias SE

β0 1.0 0.00 0.02 0.05 0.12
β1 -0.5 0.00 0.02 -0.05 0.11
β2 0.5 0.00 0.01 0.03 0.02
γ0 0.35 -0.04 1.43 3.42 2.34
γ1 0.5 -0.08 3.41 5.71 4.81
γ2 -0.3 0.05 1.93 -3.74 2.82
λ0 -0.5 0.00 0.01 0.00 0.05
λ1 0.5 0.00 0.02 0.00 0.04
λ2 -0.3 0.00 0.01 0.00 0.05

MSE(f̂1) 9.62

MSE(f̂2) 98.84

Table 2: Bias and standard error of the estimated parameters based on
1000 replications when the covariates are correlated; all the re-
sults are multiplied by a factor of 103

Table 2 shows that both parametric and semiparametric methods yield
similar bias and standard error property of the estimates.

3.3. Study 3: A robustness study. Properties of the regression pa-
rameters and the functions f1 and f2 when error follows mixture
of normal distributions

Again, another study, similar to what was done in study 3.1, has been
conducted, in which, for generating the response data of Model 2 and Model
3, we consider a mixture of two multivariate normal distributions with error
distributions Nmi(0,Σi) and Nmi(0, 0.252Σi) with equal probability. The results
for the simulation study are displayed in Table 3 which show that the bias and
the standard errors of the estimates, and the MSE of f1 remain almost the same
as those in study 3.1. However, MSE of the fitted function f2 in Model 3 increases
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significantly. Note that the function f2 is associated with the variance and the
function f1 is associated with the mean.

Note that the mixed modeling affects only the MSE of the estimates of f2
in the semi-parametric model 3, but not f1. Although we are not aware of a proof
as to why mixed modelling affects only the MSE of the estimates of f2, but not
f1, experience in this context and other similar contexts show that parameters or
functions associated with the variance parameter are more difficult to estimate
and show more bias and MSE than parameters or functions associated with the
mean parameter. See, for example, Zhang et al. ([1], pp 234) and Saha and
Paul ( [10], pp 183). In estimating the mean parameter m and the dispersion
parameter c, Saha and Paul [10] find that estimates of the mean parameter m or
regression parameters show much smaller bias and standard error than that of
the dispersion parameter c.

Par.
True Semi. Semi. Semi. Semi.
value (Model 2) (Model 2) (Model 3) (Model 3)

(without mixed) (with mixed) (without mixed) (with mixed)
Bias SE Bias SE Bias SE Bias SE

β1 1.0 -0.02 0.22 -0.02 0.21 0.09 0.27 0.11 0.22
β2 0.5 0.01 0.11 0.01 0.13 -0.03 0.14 -0.04 0.11
γ1 0.35 6.61 1.42 6.61 6.32 3.14 2.25 8.84 2.36
γ2 0.5 6.62 2.53 -8.57 8.17 5.56 4.12 13.48 4.39
λ1 -0.5 0.00 0.00 0.00 0.1 0.00 0.08 0.00 0.09
λ2 0.2 -0.01 0.01 0.00 0.1 0.01 0.15 -0.02 0.18

MSE(f̂1) 11.89 11.89 10.90 11.00

MSE(f̂2) 112.87 693.49

Table 3: Simulation results for Study 3.3 in Model 2 and Model 3 over
1000 replications when error terms follow mixture of normal
distribution; n = 100; all the results are multiplied by a factor
of 103

3.4. Study 4: Comparison of using B-spline and penalized spline in
Model 2

A further study is conducted to compare the B-spline and the penalized
spline to estimate the nonparametric function f1 in Model 2. The estimation
procedure to estimate all parameters are discussed in Section 2.3. We have used
generalized cross-validation approach to find the penalty parameter for penalized
splines. To generate response variable we consider the same mean and variance
models as those in study 3.1 and the results are presented in Table 4. Results in
Table 4 show no advantage of using the penalized spline over the B-spline.
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Parameter
True Semiparametric Model 2
value B spline Penalized spline

Bias SE Bias SE
β1 1.0 -0.02 0.22 -0.01 0.22
β2 0.5 0.01 0.11 0.01 0.11
γ1 0.35 6.61 1.42 6.60 1.38
γ2 0.5 6.62 2.53 6.50 2.51
λ1 -0.5 0.00 0.00 0.00 0.08
λ2 0.2 -0.01 0.01 -0.02 0.15

MSE(f̂1) 11.89 11.89

Table 4: Bias and standard error of the estimated parameters in Model 2
based on 1000 replications using B-spline and penalized spline;
all the results are multiplied by a factor of 103

3.5. Study 5: Comparison of the estimators by fitting the data gen-
erated from the semiparametric model to the parametric model
and vice versa

We have done a simulation study by fitting the data generated from the
semiparametric model to the parametric model and vice versa. We generate the
response variable from Model 1 similar to study 3.2 and estimate the regression
parameters by fitting Model 3 and vice versa. The results for the simulation study
are displayed in Table 5 which show that bias and standard errors of the estimates
are reasonable by fitting the data generated from the parametric model and
estimating the regression parameters by the semiparametric model. In contrast,
bias and standard errors increase significantly if we generate response variable
using the semiparametric model and estimate the regression parameters by the
parametric model.

Parameter
True Parametric to Semiparametric to
value Semiparametric Parametric

Bias SE Bias SE
β0 1.0 0.00 0.06 -46.48 7.63
β1 -0.5 0.00 0.06 46.87 7.64
β2 0.5 0.00 0.04 -27.46 7.84
γ0 0.35 -1.74 2.53 473.47 15.79
γ1 0.5 -2.83 5.47 -40.41 13.92
γ2 -0.3 1.64 3.13 702.96 133.61
λ0 -0.5 0.00 0.05 95.04 16.74
λ1 0.5 0.00 0.05 -92.93 16.71
λ2 -0.3 0.00 0.05 57.25 16.72

Table 5: Bias and standard error of the estimated parameters based on
1000 replications by fitting the data generated from the semi-
parametric model to the parametric model and vice versa; all
the results are multiplied by a factor of 103

A note on the simulation results is that the choice of the values of the
parameters, such as, β1 and β2 in Table 1, does not affect the results on the
properties of the estimates. For example, the simulations for the results in Table
1 for Model 3 was re-run with β1 = 0.5 and β2 = 2.5 instead of β1 = 1 and
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β2 = 0.5 as in Table 1. The bias and SE of the estimates of all the parameters
were virtually unchanged.

4. ANALYSIS OF TWO REAL DATA SETS ARISING IN BIOMED-
ICAL/ENVIRONMENTAL STUDIES

The purpose of this section is to study the impact of semiparametric mod-
elling on model parsimony through the analysis of two real life longitudinal data
sets arising in biomedical/environmental studies. The first data set is regarding
progesterone metabolite (pregnanediol-3-glucuronide, PdG) measures that was
obtained by the Institute for Toxicology and Environmental Health at the Uni-
versity of California, Davis in collaboration with the Reproductive Epidemiology
Section of the California Department of Health Services, Berkeley (Brumback and
Rice, [11]). The second data set is regarding CD4 cell counts of 369 HIV-infected
men obtained by Kaslow et al. [12]. The first data set involves polynomials in
time and the second data set involves polynomials in time as well as real covari-
ates. Full description and analysis of the these two data sets are given in Sections
4.1 and 4.2.

In order to select the most parsimonious model we need to identify the
best integer triple representing, namely, the degrees of the three polynomial func-
tions for the mean structure, the correlation structure and the variance structure.
Similar to Pourahmadi [13] and Pan and Mackangee [14], we use the Bayesian
information criterion, BIC, to identify the best triple as follows

BIC(p, q, d) = −2l̂max/n+ (p+ q + d+ 3) log(n)/n,

where l̂max is the maximum of the log-likelihood, p, q and d lie in the range of 0
to (m− 1) with m = max1≤i≤n{mi}.

Thus, (p′, q′, d′) is the optimal triplet which minimizes BIC(p, q, d). Shao
[15] and Shi and Tsai [16] demonstrated that BIC-criterion can identify the true
model consistently. Although, in the literature BIC is preferred over the AIC
(Akakie Information Criterion)

AIC(p, q, d) = −2l̂max/n+ 2(p+ q + d+ 3)/n,

we include the later here for comparison in our model selection.

4.1. Progesterone metabolite data

The Brumback and Rice [11] data consist of repeated progesterone metabo-
lite (pregnanediol-3-glucuronide, PdG) measures from day -8 to day 15 in the
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menstrual cycle (day 0 denotes ovulation day) on a sample of 22 conceptive cy-
cles from 22 women and 29 non-conceptive cycles from another 29 women to
study of early pregnancy loss. Altogether 1130 observations were obtained from
51 women, with each woman contributing 9 to 24 observations over time. The
data are reproduced in Table 1 of the Supplementary Material.

As in Brumback and Rice [11], we take a log transformation of these data to
make the normality assumption reasonable. Using our semiparametric modelling,
the full model is

g(µij) = β0 + xijβ1 + · · ·+ xpijβp + f1(tij),

φijk = γ0 + wijkγ1 + · · ·+ wqijkγq,

and

log(σ2ij) = λ0 + zijλ1 + · · ·+ zdijλd + f2(tij),

where xij = zij = tij , wijk = tij − tik and p, q, and d lie in the range of 1 to 23.
The parametric model, of course, will not have the non-parametric functions.

We now analyze the data using these parametric and semiparametric mod-
els. The results are given in Table 6. Note that here we give 9 most parsimo-
nious models to capture the model having smallest BIC and/or smallest AIC.
Results in Table 6 show that the most parsimonious model having the smallest
BIC (BIC = 0.47) and the smallest AIC (AIC = −0.29) obtained by parametric
modelling has (p, q, d) = (7, 3, 7). Where as the corresponding most parsimonious
model by semiparametric modelling has (p, q, d) = (2, 2, 1) with BIC = -0.61 and
AC=-0.92. Thus the final models for these data are

g(µij) = f1(tij) + β0 + xijβ1 + x2ijβ2,

φijk = γ0 + wijkγ1 + w2
ijkγ2,

and

log(σ2ij) = f2(tij) + λ0 + zijλ1,

where xij = zij = tij and wijk = tij − tik. Note that both the BIC and the AIC
criteria choose the same model for these data.

4.2. Analysis of CD4 cell data

The data comprise CD4 cell counts of 369 HIV-infected men with six co-
variates including time since seroconversion (tij), age (relative to arbitrary origin,
xij1), packs of cigarettes smoked per day (xij2), recreation drug use (xij3), num-
ber of sexual partners (xij4), and mental illness score (xij5). In total there are
2376 observations with multiple repeated measurements taken for each individ-
ual at different times, covering a period of approximately eight and a half years.
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(p, q, d) No. of par.
Parametric Semiparametric

l̂max BIC AIC l̂max BIC AIC
(2,2,1) 8 -71.66 3.43 3.12 31.34 -0.61 -0.92
(2,2,2) 9 -66.59 3.31 2.96 31.34 -0.54 -0.88
(2,1,1) 7 -129.58 5.62 5.36 16.01 -0.09 -0.35
(2,1,4) 10 -66.98 3.40 4.53 16.38 0.12 -0.25
(3,1,4) 11 -28.97 1.98 3.09 16.38 0.21 -0.21
(3,1,5) 12 -28.20 2.03 3.00 19.58 0.16 -0.30
(2,1,6) 12 -65.84 3.51 4.42 23.73 -0.005 -0.46
(3,2,3) 11 -32.85 2.14 1.81 31.34 -0.38 -0.80
(7,3,7) 20 27.31 0.47 -0.29 42.06 -0.11 -0.87

Table 6: Progesterone hormone data: A comparison of various models
using parametric (Zhang et al., [1]) and semiparametric ap-
proaches

The number of measurements for each individual varies from 1 to 12 taken at
unequally spaced time points.

Now, for these data mi varies from 1 to 12, so p, q, and d all lie in the range
of 0 to 11. The values of p, q, and d for the most saturated model are 11. So, we
have a total 11×11×11 = 1331 models of which we present 6 most parsimonious
models.

4.2.1. Analysis using polynomials in time

This data set has been analyzed by others in the past (for example, Zeger
and Diggle, [17] and Ye and Pan, [18]) using polynomials in time. Most recently
Zhang et al. [1], in order to jointly model the mean, correlation and variance
structures, fit polynomial regressions of time

g(µij) = β0 + xijβ1 + · · ·+ xpijβp,

φijk = γ0 + wijkγ1 + · · ·+ wqijkγq, and

log(σ2ij) = λ0 + zijλ1 + · · ·+ zdijλd,

where xij = zij = tij and wijk = tij − tik.

We now analyze these data using the above parametric models and our
method of semiparametric modelling Model 3 developed in Section 2.1. The
results, in terms of l̂max, BIC and AIC of the parametric and semiparametric
models are given in Table 6. Note that here we provide all relevant information
of 6 most parsimonious models. Of these, the most parsimonious model obtained
from parametric modelling has (p, q, d) = (8, 1, 1) with l̂max = −4892.72, BIC
=26.72, and AIC =26.58 (smallest BIC as well as smallest AIC among all these
6 models). This finding is in agreement with what was found by Zhang et al. [1].
The semiparametric modelling, however, shows (p, q, d) = (4, 1, 1) with l̂max =
−4877.41, BIC =26.58, and AIC =26.48 (smallest BIC as well as smallest AIC
among all these 6 models). Including the intercept parameters the semiparametric



Longitudinal Data Regression Analysis 15

model has 9 parameters as opposed to 13 parameters of the model obtained by
the parametric model. Thus, the semiparametric modelling shows a significant
improvement in model parsimony as compared to the parametric modelling and
the most parsimonious model for these data is

g(µij) = f(tij) + β0 + xijβ1 + x2ijβ2 + x3ijβ3 + x4ijβ4,

φijk = γ0 + wijkγ1,

and

log(σ2ij) = g(tij) + λ0 + zijλ1,

where xij = zij = tij and wijk = tij − tik.

Note that the same parsimonious model is obtained by both the BIC and the
AIC procedures. To investigate the stability of AIC and BIC, a simulation study
is conducted by choosing p, q, and d from 1, 2, . . . , 11 and obtain that the stability
of AIC and BIC are very similar which is 62%. From the same simulation study,
we further investigate the parametric and semi-parametric models performances
in terms of AIC and BIC and found that parametric models perform better than
semiparametric models.

(p, q, d) No. of par.
Parametric Semiparametric

l̂max BIC AIC l̂max BIC AIC
(4,1,1) 9 -4910.87 26.76 26.67 -4877.41 26.58 26.48
(3,1,1) 8 -4926.88 26.83 26.74 -4882.11 26.59 26.50
(8,1,1) 13 -4892.72 26.72 26.58 -4874.40 26.63 26.49
(8,3,1) 15 -4890.44 26.75 26.59 -4881.66 26.69 26.64
(3,3,3) 12 -4919.52 26.85 26.73 -4879.37 26.64 26.51
(8,3,3) 17 -4886.36 26.76 26.58 -4872.74 26.68 26.50

Table 7: CD4 cell data: A comparison of various models using parametric
(Zhang et al., [1]) and semiparametric approaches with polyno-
mials in time

4.2.2. Analysis using polynomials in time and the covariates

We now analyze the CD4 data using the Model 3 regression models after
including 5 covariates in the mean model. The results, in terms of l̂max, BIC,
and AIC of the parametric and the semiparametric models, are given in Table 8.
Here also we provide all relevant information of 6 best (parsimonious) models. Of
these, the most parsimonious model by the parametric modelling has (c, p, q, d) =
(3, 8, 1, 1) with 16 parameters by both the BIC and the AIC procedures, where
c represents the number of covariates in the model. However, the most parsimo-
nious model by the semiparametric modelling has (c, p, q, d) = (3, 2, 1, 1) with 10
parameters using the BIC procedure (BIC=26.47)and has (c, p, q, d) = (3, 4, 1, 1)
with 12 parameters using the AIC procedure (AIC=26.38).
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(c, p, q, d) No. of par.
Parametric Semiparametric

l̂max BIC AIC l̂max BIC AIC
(3,2,1,1) 10 -4944.54 26.91 26.84 -4863.43 26.47 26.40
(5,2,1,1) 12 -4938.40 26.88 26.80 -4862.52 26.47 26.39
(3,4,1,1) 12 -4891.12 26.65 26.56 -4858.68 26.48 26.38
(5,4,1,1) 14 -4889.44 26.65 26.55 -4857.85 26.47 26.38
(5,3,1,1) 13 -4905.57 26.72 26.63 -4862.52 26.48 26.40
(3,8,1,1) 16 -4873.51 26.62 26.49 -4857.16 26.53 26.40

Table 8: CD4 cell data: A comparison of various models using parametric
(Zhang et al., [1]) and semiparametric approaches with polyno-
mials in time and covariates

Thus, the most parsimonious models for the CD4 data involving time and
the covariates is

g(µij) = β0 + xijβ1 + x2ijβ2 + xij2β3 + xij3β4 + xij5β5 + f(tij),

φijk = γ0 + wijγ1,

and

log(σ2ij) = λ0 + zijλ1 + g(tij),

where xij = zij = tij and wijk = tij − tik.

Our finding is that both the BIC and the AIC select same or similar models,
although, BIC has some advantage over the AIC in the sense that, in some cases,
the model selected by the BIC is slightly more parsimonious than the model
selected by the AIC. Further, the semiparametric modelling obtains a model that
is much more parsimonious than the model obtained by the parametric modelling
approach.

5. DISCUSSION

We develop joint estimation procedure for the mean (regression) and the
variance parameters in longitudinal data using semiparametric modelling of the
mean and the variance, regression spline, and by decomposing the correlation
matrix via hyperspherical co-ordinates. Through an extensive simulation study
we compare our method with the parametric method by Zhang et al. [1]. Further,
the effect of the misspecification of the error distribution and of the number
of knots used in the estimation of the nonparametric functions, and whether
the penalized spline procedure improves the estimation of the nonparametric
functions over the B-spline are investigated. Furthermore two real data sets
arising from biomedical/environmental study are analyzed.

The main findings of the simulation study are: (a) the parametric modelling
and the semiparametric modelling produce similar bias and efficiency property of
the regression parameters, (b) good choice of number of knots can have significant
impact of estimation and inference on non-linear trends (e.g., the nonparametric
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functions) using regression B-splines, and (c) use of the penalized spline does not
improve the efficiency of the estimates of the nonparametric functions.

Through data analysis: (i) our findings regarding the model selection proce-
dures are that both the BIC and the AIC select same or similar models, although,
BIC has some advantage over the AIC in the sense that, in some cases, the model
selected by the BIC is slightly more parsimonious than the model selected by the
AIC, (ii) the main advantage of the semiparametric modelling over the paramet-
ric modelling is that the former produces a much more parsimonious model than
the latter.

We also analyzed some other real bio-medical data sets and obtained similar
conclusions, the details of which are not given here.
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Appendix A: Solution of the Estimating Equations of Model 3

We apply the quasi-Fisher scoring algorithm to solve estimating equations of
Model 3 where the parameters θ,ρ and γ solve sequentially one by one with
other parameter keep fixed in optimization:

Step 1 : Choose initial values of the parameters as θ(0),ρ(0) and γ(0). Set k = 0

Step 2 : Calculate Σi by using ρ(k) and γ(k). Update θ as

θ(k+1) = θ(k) + I−111 U1|θ=θ(k)

Step 3 : Given θ = θ(k+1), update γ and ρ by using(
γ(k+1)

ρ(k+1

)
=

(
γ(k)

ρ(k

)
+

[(
I22 I23
I32 I33

)−1(
U3

U2

)]
|γ=γ(k),ρ=ρ(k)

Step 4 : Set k ← k+1 and repeat steps 2 and 3 until a desired convergence criteria
is satisfied.
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Note that block components of Fisher information matrix I are:

I11 = −E
[
∂2l

∂θ∂θ′

]
=

n∑
i=1

Π′i∆iΣ
−1
i ∆iΠi,

I12 = −E
[

∂2l

∂θ∂γ ′

]
= −

n∑
i=1

[
Π′i∆i

∂Σ−1i
∂γ ′

(E(yi)− µi)
]

= 0,

I13 = −E
[
∂2l

∂θ∂ρ′

]
= 0,

I22 = −E
[

∂2l

∂γ∂γ ′

]
=

n∑
i=1

mi∑
j=1

[
2
∂ log Tijj
∂γ

∂ log Tijj
∂γ ′

+

j−1∑
k=1

bijkb
′
ijk

]
,

I23 = −E
[

∂2l

∂γ∂ρ′

]
=

n∑
i=1

mi∑
j=1

[
∂ log Tijj
∂γ

Υ′ij +
1

2

j−1∑
k=1

bijk

j∑
l=k

aijlTilkΥ
′
il

]
,

I33 = −E
[
∂2l

∂ρ∂ρ′

]
=

1

4

n∑
i=1

Υ′i
[
Imi +R−1i ◦Ri

]
Υi,

where ’◦’ represents the Hadamard product.

Appendix B: Block Components of Fisher Information Matrix of the Estimating
Equations of Model 2

I11 = −E
[
∂2l

∂θ∂θ′

]
=

n∑
i=1

Π′i∆iΣ
−1
i ∆iΠi,

I12 = −E
[

∂2l

∂θ∂γ ′

]
= −

n∑
i=1

[
Π′i∆i

∂Σ−1i
∂γ ′

(E(yi)− µi)
]

= 0,

I13 = −E
[

∂2l

∂θ∂λ′

]
= 0,

I22 = −E
[

∂2l

∂γ∂γ ′

]
=

n∑
i=1

mi∑
j=1

[
2
∂ log Tijj
∂γ

∂ log Tijj
∂γ ′

+

j−1∑
k=1

bijkb
′
ijk

]
,

I23 = −E
[

∂2l

∂γ∂λ′

]
=

n∑
i=1

mi∑
j=1

[
∂ log Tijj
∂γ

Z ′ij +
1

2

j−1∑
k=1

bijk

j∑
l=k

aijlTilkZ
′
il

]
,

I33 = −E
[

∂2l

∂λ∂λ′

]
=

1

4

n∑
i=1

Z′i
[
Imi +R−1i ◦Ri

]
Zi,

where ’◦’ represents the Hadamard product.
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