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1. INTRODUCTION

In social surveys, researchers often encounter the semi-continuous variable.
A typical feature of semi-continuous variable is that its realizations are nonneg-
ative but with a large proportion of zeros. The dataset illustrates strong hetero-
geneity. In understanding such data structure, two-part model (TPM, [7, 8];[31])
is an appreciated statistical method. TPM assumes that the overall model is con-
sisted of two submodels: a binary value model (Part one) and a continuous value
model (Part two). The binary model is usually formulated via logistic or probit
regression model to indicate the effects of explanatory factors on the propor-
tion of zeros in data, and the continuous model is generally specified within the
log-normal or log-skew-elliptical linear regression model to describe the effects of
covariates on the means of responses. By integrating binary model and continu-
ous process into one, TPM provides a unified and flexible way to describe various
relevances for semi-continuous data. Now, TPM has been widely used in the fields
of household finance, public health, psychological education, finance insurance or
other fields, see for example, [8], [20], [27], [31], [33], [34]; [37], [39], [54] and ref-
erences therein. The reader can also refer to, for example, [11], [19], [26], [53] and
[55] for the extensions of TPM in the latent variable analysis context. However,
most developments mentioned above are confined to the parametric fitting, that
is, particular parametric assumptions are specified to the positive-valued part to
facilitate statistical computation and/or theoretical results. As is the well-known,
parametric assumption is more sensitive to the distributional deviations or out-
liers. It readily results in biased inferences or misleading conclusions when the
posited model is not consistent with true population.

In recent years, much effort has been devoted to robustifying two-part
model fitting. For example, Chai and Bailey [6] suggested using a skewed normal
distribution to fit the log-transformed positive values to accommodate skewness
arising from the log-transformation. Manning et al. [32] proposed a flexible one-
part generalized gamma distribution that included log-normal, Weibull and ex-
ponential distributions as special cases to adjust the skewness of semi-continuous
data. In the analysis of alcohol consumption data, Liu et al. [28] extended tradi-
tional TPM to the situation where the mixed-effects were incorporated into the
analysis of TPM and argued that a generalized gamma distribution in Part two
could provide the best fit in the comparisons with models with log-skew-normal
distribution and Box-Cox transformation; for the spatial semi-continuous data,
Neelon, Zhu and Neelon [37] developed a broad class of Bayesian two-part spatial
models to address the heterogeneity underlying Part two. The skewed-normal
and skewed t-distributions were fitted to the positive values on log-scale to ac-
commodate skewness or heavier-than-normal tails. Moreover, a mixture model
was applied to the overall model to explore the heterogeneity of population. Xing
et al. [54] claimed that fitting a skewed -normal distribution to the logarithmic
positive values may overcorrect the skewness of data. They suggested model-
ing a skewed normal or skewed t-distribution on the continuous positive values
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directly. Though more appealing, these developments are still confined to the
parametric fitting. It heavily depends on the form of parametric distribution,
and hence is rather limited in dealing with the distributional deviation or model
mis-specification.

In this paper, we proposed a Bayesian semiparametric fitting for the contin-
uous part of semi-continuous data. Our approach is more along with lines of the
mixture method in [37] but we pursue a Bayesian fitting for the log-transformed
positive-valued part, not exploring the heterogeneity of entire population. We
resort to the Dirichlet process mixture model(DPM, [2], [9], [10], [14], [21], [22],
[29], [30], [35], [41] and among others). The normal assumption on the errors
of Part two is replaced by the normal mixture model mixed with Dirichlet pro-
cess(DP). By taking advantage of the sparsity of DP, the posited model can be
automatically selected from the space of all possible distribution functions. Such
a relaxation gives relatively weak assumptions on the sampling model and hence
could provide a sufficiently flexible modeling for data.

Within the Bayesian paradigm, the analysis of TPM usually resorts to the
approximation methods. Markov chain Monte Carlo sampling method (MCMC,[15];
[17]) is undoubtedly a powerful tool in dealing with the complex models and hi-
erarchically structured data, see [11]; [53] and [52] in the context of MCMC
sampling for TPM within the framework of latent variables. However, MCMC
often suffers some limitations, e.g., slow convergence, time-consuming cycles and
non-ignorable sampling errors. In this paper, we pursue a variational Bayesian
(VB) inference procedure ([4, 5], [24], [42], [50], [51]). An appeal underlying VB
is its elegant computation efficiency and deterministic solutions. It is also more
convenient for dealing with big data. Up to now, variational Bayesian inference
has been widely used in computer vision and robotics, and others, see [5] for a
review of recent applications of VB. But to the best of our knowledge, no devel-
opments have been made on the analysis of semi-continuous data, especially for
the analysis of TPM under the Bayesian semiparametric fitting.

The rest of the paper is organized as follows. Section 2 introduces the
proposed model for semi-continuous data. Section 3 gives variational inference
procedure under the Bayesian framework. Parameter estimation, variable selec-
tion and model assessment are also presented in this section. A simulation study
to assess the performance of the proposed model is given in Section 4. In Section
5, we apply the proposed method to the China household finance data. Section
6 concludes the paper with a discussion. Some technical details are given in the
supplementary material.



Robust model fitting for Two-Part Model 5

2. MODEL DESCRIPTION

2.1. Two-part semi-parametric model

Suppose that for i = 1, · · · , n, yi is a semi-continuous variable which takes
value in [0,∞); xi is a generic vector of fixed covariates, consisted of q categorical
or continuous variables, used to identify the variability of yi. To deal with the
excess zeros in semi-continuous data, in the literature, yi is usually identified with
an indicator variable ui and an intensity variable zi as that ui = I{yi > 0} and
zi = log(yi|yi > 0), where I{A} is the indicator function of set A. In this case,
the population of yi is totally determined by the joint distribution of ui and zi.

In exploring the effects of xi on yi, two-part model(TPM,[8],[31]) specifies
two submodels, say Part one and Part two, for ui and zi respectively. Part one
assumes that conditional on xi, ui satisfies the following generalized linear model
[38]

h(P (ui = 1|xi)) = α+ xTi β,(2.1)

where h(·) is any link function used to link the predictor to the mean of ui, α
is the intercept and β is the vector of regression coefficients. Various constructs
can be chosen for h (see for example, [46]). We here prefer using the sigmoid or
logistic function for the inverse of h, i.e., h−1(x) = σ(x) = 1/(1 + e−x). Such a
choice is also popular in the pattern recognition and machine learning ([3]).

Under the parametric modeling framework, Part two usually formulates zi
via linear normal regression model as follows

zi|ui = 1 ∼ N(γ + xTi ψ, σ
2)(2.2)

where ψ is the vector of regression coefficients, and γ and σ2 are the scalars
of intercepter and scale respectively. However, in many circumstances, single
normal assumption on zi may be inappropriate. It is especially true when dataset
takes on the high skewness, heavy tails and/or multi-modalities. Although least
square estimates (LSE) of regression coefficients are more robust against the
distributional deviations, their standard deviations will be seriously distorted
when the posited model is misspecified. To robustify model fitting, in this paper,
we extend the parametric model (2.2) to the semi-parametric setting in which
the normal distribution is replaced by the normal mixture model mixed with the
Dirichlet process (DP, [13]). To this end, let ϵi = zi − xTi ψ be the idiosyncratic
part in zi. Unlike that in (2.2), we first assume that conditional on ui = 1, ϵi has
the normal distribution with inhomogeneous mean and variance as follows:

ϵi|ui = 1
ind.∼ N(γi, σ

2
i ),(2.3)

where γi and σ2i are the subject-specific latent variables taking value in R and
R+ respectively. Further, let θi = (γi, σ

2
i )
T . We assume that θis are iid. with
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the common distribution P , while P is treated to be random distributed with
the DP prior D(cF0), where c > 0 is the concentration parameter controlling the
variability of P around F0, and F0 is the baseline distribution representing the
center of P . As pointed out by Lo [29], the normal mixture of DP is more flexible
in the semiparametric Bayesian fitting and it can provide enough functions to be
chosen from the space of all probability distributions on R.

It follows from the Sethuraman’s construction [47] that P can be stochas-
tically expressed as the mixture model in the form P (·) =

∑∞
k=1 πkδθ∗k(·), where

θ∗k = (γ∗k , σ
∗2
k )T s are the iid. atoms with the common distribution F0, and πk are

the random weights constructed via stick-breaking procedure given by

π1 = V1, · · · , πk = Vk

k−1∏
ℓ=1

(1− Vℓ)(k = 2, 3, · · · ),(2.4)

where Vk are the iid. Beta(1, c) random variables. The discreteness of P induces
an infinite normal mixture model

∑∞
k=1N(γ∗k , σ

∗2
k ) for ϵi. In real applications,

the infinite sum is usually truncated at the finite level, say K, which results in
the following truncated DP (TDP, [22])

P
D
=

K∑
k=1

πkδθ∗k(·),(2.5)

in which VK in πK is set at 1 to ensure the sum of πk to be unity, and K is a posi-
tive integer representing the level of truncation in approximating DP. Essentially,
TDP is a finite dimensional distribution prior. It puts the space of P on the
union of the spaces of the finite mixtures with at most K atoms. In the context
of linear models, Ishwaran and James [23] exploited some theoretical properties
of TDP. They provided a guideline to assess the sufficiency of approximation.
According to their developments, the setting n = 400, K = 100 and c = 2 yields
an L1 bound 1.272 × 10−19 for the distance between the marginal likelihoods
under DP and TDP. Therefore, even for huge sample sizes, a mere truncation
leads to an approximating hierarchical model that is virtually indistinguishable
from one based on the DP prior (see [23] for more discussions). More impor-
tantly, they showed that working with TDP can lead to effective Gibbs updates
in MCMC sampling. Note that TDP can be re-expressed by introducing the con-
figuration variables si ∈ {1, 2, · · · ,K} such that θi = θ∗k if si = k. In this case,

si|π
iid.∼

∑K
k=1 πkδk(si), and θi is totally determined by θ∗k and si.

2.2. Pólya-gamma stochastic repression

The main challenge in the current analysis comes from the logistic function,
a nonlinear model which forbids the explicit form of the posterior of regression
parameters. To facilitate the posterior analysis, we follow the routine in [43] and
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rewrite equation (2.1) as follows:

exp(uiηi)

1 + exp(ηi)
= 2−1 exp{κiηi}

∫ ∞

0
exp

{
−u

∗
i

2
η2i

}
pPG(u

∗
i )du

∗
i ,(2.6)

where ηi = α + xTi β and κi = ui − 1/2; pPG(u
∗
i ) is the standard Pólya-Gamma

PG(1, 0) probability density function [43]. An advantage of working with equation
(2.6) is that if we introduce auxiliary variables u∗i and augment them with ui, then
equation (2.1) can be considered as the marginal density of the joint distribution

p(ui, u
∗
i |xi, α,β) = 2−1 exp

{
κiηi −

u∗i
2
η2i

}
pPG(u

∗
i ).(2.7)

Note that the exponential part in the brackets is the kernel of normal density func-
tion with respect to ηi. Hence, it admits conjugate full-conditional distributions
for all model parameters, leading to a straightforward Bayesian computation,
though at the expense of sampling from pPG(u

∗
i ).

Let U = {ui}ni=1 and Z = {zi}i∈I be the sets of the observed responses,
where I is the set of indices such that ui = 1; we refer to U∗ = {u∗i }ni=1 and
S = {si : i ∈ I} as the sets of local latent responses, and V = {V1, V2, · · · , VK}
and θ∗ = {θ∗1,θ∗2, · · · ,θ∗K} as the global latent variables; we write η for the vector
of unknown parameters {α,β,ψ}. The joint distribution of U, U∗, S, V, θ∗ and
Z (suppressing the fixed covariates) is given by

p(U,U∗,Z,S,V,θ∗|η, c) = p(U,U∗|α,β)p(Z|U,S,θ∗,ψ)p(S|V)p(V |c)p(θ∗).

The observed-data likelihood is obtained by integrating out the latent quantities,
which touches on the high-dimensional integration. In the following, we pursue
Bayesian analysis for η.

2.3. Prior

Bayesian analysis requires assigning priors to the parameters and/or hy-
perparameters to complete Bayesian model specification. In the current context,
the parameters are consisted of γ, β and ψ, and the hyper-parameters are formed
by F0 and c. By model convention, we assume they are mutually independent.

First, we assign a conjugate normal prior N(α0, σ
2
α0) to α, where α0 and

σ2α0 are the hyper-parameters treated as fixed. The α0 is usually set at zero and
σα0 is taken a large value to ensure the distribution of α inflated enough. In the
situation where the informative information about α0 and σα0 can be available,
one could expect such prior will be helpful in improving statistical inference.
Next, we assume F0 = Ga(µγ0, σ

2
γ0) × IG(αϵ0, βϵ0), where ‘Ga’ and ‘IG’ refer

to the Gamma and inverse Gamma distributions respectively. This is also the
conjugate prior of γ and σ2 under the parametric setting. Similarly, to avoid
overly subjective information, the values of µγ0, σ

2
γ0, αϵ0, and βϵ0 can be chosen to
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ensure F0 to be dispersed enough. For example, setting αϵ0 = βϵ0 = 2.0 produces
the mean 2 and variance infinity for σ2. However, some cautions should be
imposed on the choice of concentration parameter c since it controls the amount
of clustering and hence is critical for inference about fϵ, the density function of
ϵi. To model c properly, we follow the routine in [23] and assign c ∼ Ga(τ1, τ2)
with small values τ1 and τ2 (e.g., τ1 = τ2 = 2.0) which will encourage both small
and large values for c.

Finally, we assign the following Laplace (double-exponential) priors to β
and ψ for variable selection:

p(β|γβ) =
1

2

q∏
k=1

γβke
−γβk|βk|, p(ψ|γψ) =

1

2

q∏
k=1

γψke
−γψk|ψk|,(2.8)

where γβk(> 0) and γψk(> 0) are the tuning parameters used to control the
amount of shrinkage of βk and ψk respectively.

Laplace distribution is usually used to fit the distribution of errors or ran-
dom effects to downweight the influence of outliers(e.g., [25]). In the context
of regression shrinkage and selection, Tibshirani [49] noted that his pioneered
lasso estimates are equivalent to the Bayes posterior mode under the independent
Laplace priors for the regression coefficients. Park and Casella [40] later extended
it to the situation with Bayesian feature extraction and developed Bayesian Lasso
formally. In their seminar paper, Park and Casella [40] set the tuning parame-
ters to be homogeneous across the components of regression coefficients. Here we
adopt Zou’s adaptive lasso [56] which allows tuning parameters to vary with the
components.

Similar to [40], we recast prior (2.8) as hierarchical model as follows

p(β|τ 2
β) = Nq(0, diag(τ

2
β)), p(τ

2
β|γβ) =

q∏
k=1

Exp(γ2βk/2),(2.9)

p(ψ|τ 2
ψ) = Nq(0, diag(τ

2
ψ)), p(τ

2
ψ|γψ) =

q∏
k=1

Exp(γ2ψk/2),(2.10)

where ‘Exp(λ)’ is the exponential distribution with mean 1/λ; τ 2
β = (τ2β1, · · · , τ2βq)T

and τ 2
ψ = (τ2ψ1, · · · , τ2ψq)T are the latent variables with τβk > 0, τψk > 0(k =

1, · · · , q).

The choices of γ2
β and γ2

γ should be selected with care since they determine
the amount of shrinkage of regression directly. It follows from (2.8) that larger
values of γβ and γψ favor more penalty on the regression coefficients. Hence, we
follow the routine in [40] and assign gamma priors to them, i.e.,

p(γ2
β) =

q∏
k=1

p(γ2βk) =

q∏
k=1

Ga(ak0, bk0), p(γ2
ψ) =

q∏
k=1

p(γ2ψk) =

q∏
k=1

Ga(ck0, dk0),

where the values of ak0, bk0, ck0 and dk0 are set to encourage small and large
values for γ2

β and γ2
ψ respectively. In the context of Bayesian adaptive lasso for
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ordinal regression analysis, Feng et al. [12] suggested using shape unity and scale
0.05 in gamma prior to enhance the robustness of inferences. Their routine is
also followed in our empirical study.

2.4. Posterior Distribution

With the priors given above, the statistical inference about η is based on
the posterior distribution p(η|U,Z). Under the MCMC sampling framework,
the posterior analysis is carried out via data augmentation technique [48], i.e.,
augmenting the observed data with latent variables to form the complete-data.
The inference is made on the basis of the joint posterior of latent quantities and
unknown parameters. Apparently, the joint posterior distribution is given by

p(U∗,S, τ 2
β, τ

2
ψ,γ

2
β,γ

2
ψ,V,θ

∗,η, c|U,Z).(2.11)

Markov Chains Monte Carlo ([17]; [18]) sampling, in particular, the blocked Gibbs
sampler ([15]; [23]) is implemented by drawing observations from the full condi-
tional distributions of (2.11). Upon the convergence, the posterior analysis is
conducted based on the simulated observations. Surely, MCMC is very powerful
and particularly suitable to the situations with complex data structure and/or hi-
erarchical model. However, as a stochastic approximation method, MCMC sam-
pling also suffers some limitations, e.g., slow convergence and time-consuming.
In particular, the sampling errors often make model comparison infeasible since
they may vary with the competing models. In this paper, we consider varia-
tional Bayesian inference. Compared with the Monte Carlo sampling method,
variational Bayes provides a deterministic solution.

3. VARIATIONAL BAYESIAN INFERENCE

3.1. Variational density

For ease of exposition, we write W as the collection of latent quantities
in the posterior and D as the collection of observed data. Rather than working
with p(W|D), variational Bayes aims to find a computationally feasible distribu-
tion q(W) within the variational density family to approximate posterior. The
approximation is achieved via maximizing the following evidence lower bound
(ELBO)

ELBO(q,D) =

∫
q(W) log(p(D,W)/q(W))dW ≤ log p(D)(3.1)

where p(D) is the model evidence and p(D,W) is the joint density of D and W.
Generally, the complexity of optimization (3.1) depends on the complexity of the
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variational density family. If the variational density family is restricted within
the mean-field family, i.e., q(W) =

∏M
m=1 qm(wm), then it can be shown that the

optimal solution satisfies

qj(wj) ∝ exp
{
Eq\j log p(D,W)

}
, (j = 1, · · · ,m)(3.2)

where Eq\j denotes the expectation with respect to all variational density factors
but qj . Notice that equation (3.2) provides an iterative solution to q(·). It
depends on the ordinates qm : m ̸= j conditionally. Hence, the coordinate ascent
variation inference algorithm can be implemented by solving qj : j = 1, · · · ,M
via (3.2) one by one till the convergence of ELBO is achieved.

Let’s return to the problem (2.11). Based on the model formulation, it is
natural to consider the following mean-field variational family Q:

q(U∗,S,V,θ∗,η, c) = q(U∗)q(S)q(V)q(θ∗)q(η)q(c).

where q(η) = q(α)q(β)q(ψ). Furthermore, we take the variational density factors
as follows:

q(U∗) =

n∏
i=1

q(u∗i ) =

n∏
i=1

PG(1, ηui ), q(S) =

n∏
i=1

q(si|ϕi1, · · · , ϕiK),

q(V) =
K−1∏
k=1

q(Vk) =
K−1∏
k=1

Beta(ζk1, ζk2), q(c) = Ga(αc, βc),

q(θ∗) =

K∏
k=1

q(γ∗k , σ
∗2
k ) =

K∏
k=1

IG(σ∗2k |αϵk, βϵk)×N(γ∗k |µγk, σ∗2k σ2γk),

q(β) = Nq(µβ,Σβ), q(ψ) = Nq(µψ,Σψ),

q(τ−2
β ) =

q∏
j=1

IGauss(µβj , λβj), q(τ−2
ψ ) =

q∏
j=1

IGauss(µψj , λψj),

q(γ2
β) =

q∏
j=1

Ga(aβj , bβj), q(γ2
ψ) =

q∏
j=1

Ga(aψj , bψj),

where ‘IGauss(µ, λ)’ denotes the inverse Gaussian distribution with mean µ and
scale λ; the scalars ηui , ϕk, ζk2, ζk2, αc, βc, αϵk, βϵk, µγk, σ

2
γk, µβj , λβj , µψj ,

λψj , aβj , bβj , aψj , bψj , the vectors µβ, µψ, and the matrices Σβ, Σψ are the
variational parameters which are required to be estimated.

We implement coordinate ascent (CA) variational algorithm as follows:
Step 1: Give the initial values of variational parameters;
Step 2: Update variational parameters via coordinate ascent algorithm;
Step 3: Compute ELBO;
Step 4: Repeat Steps 2 and 3 till convergence.

Upon the convergence, the variational Bayesian estimate of η and its vari-
ance and covariance estimates are given by Eqη and Covq(η) respectively, where
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the expectations are taken with respect to the variational density evaluated at
the converged variational parameters. In particular, the posterior predictive dis-
tribution of ϵi is given by

f̂(ϵ) =
K∑
k=1

Eq(πk)Eqp(ϵ|γ∗k , σ∗2k ) =
K∑
k=1

(Eqπk)tνk(ϵ|µγk,m
2
k)(3.3)

where νk = 2αϵk, m
2
k = 2βϵk(1 + σ2γk), and tν(a, σ

2) is the t-distribution with

degrees of freedom ν, location a and dispersion σ2.

As noted in [5], ELBO is (generally) a nonconvex objective function and
coordinate ascent variational algorithm only guarantees convergence to a local
optimum, which can be sensitive to the initialization. In practice, one can
implement a small amount of MCMC sampling to explore rough starting val-
ues. The convergence of algorithm can be monitored by observing the change
of ELBOs against the number of iterations and terminating iterations when
|ELBO(k+1)−ELBO(k)| < ϵ, where ϵ > 0 is a previously specified positive number.
A simpler way is to observe the stability of the estimates by plotting their traces
against the number of iterations. The update scheme of variational parameters
is given in Section 1 in the supplementary material.

Computing ELBO involves the calculations of integrals of complete-data
log-likelihood with respect to the variational density q and the K-L divergence
between the prior densities and target distribution, that is,

ELBO =(3.4)

Eq log p(U,U
∗,Z,S,θ∗,V∗|η, c) + Eq log p(η, c)− Eqq(U

∗,S,V∗,θ∗,η, c).

Due to the independence of variational density factors, most calculations are
straightforward. However, the expectations Eq log q(u

∗
i ) are more intractable

since they touch on the infinite sum. We address this issue in Section 2 in the
supplementary material.

3.2. Variable selection and model determination

The Laplace prior introduced before is mainly used to shrink regression
coefficients β and ψ. However, unlike that under the frequenist statistical frame-
work, Bayesian lassos produce the estimates β̂ and ψ̂ not exactly equal to 0.
This requires determining whether or not the regression coefficient is zero. The
problem is generally solved via posterior confidence intervals. For example, [12]
suggested a hard threshold guideline to select variables. Note that in the cur-
rent analysis, both of q∗(β) and q∗(ψ) are the multivariate normal distributions.
Therefore, we assume that: if

|β̂j |/sd(β̂j) < zα/2, |ψ̂j |/sd(ψ̂j) < zα/2,(3.5)
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then βxj and ψxj can be considered as 0, where zα is the upper α percentile point
of standard normal distribution and α is the nominal level specified in advance,
e.g., α = 0.05.

Beyond the estimation, it is practically important to evaluate the adequacy
of model fits. In the current context, it is of interest to determine whether
the semi-parametric fitting is helpful in improving model fits. In the Bayesian
paradigm, the model evaluation is often addressed via model selection procedure.
Among various-easy-constructs, we prefer using the Akaike information criterion
(AIC; [1]) and the Bayesian information criterion (BIC, [45]) for simplicity. The
AIC and BIC are formally defined as AIC = −2 log L̂ + d log(n) and BIC =
−2 log L̂+2d, where L̂ is the observed-data likelihood evaluated at the maximum
likelihood (ML) estimate of the unknown parameters, d is the model complexity
and n is the sample size of the observations. The model with the smallest value(s)
of AIC and/or BIC is being selected. In practice, the Bayesian estimates are
close to the ML estimates, hence they can be used to replace the ML estimates
in computing AIC and BIC. In this paper, we employ the variational Bayesian
estimates.

4. SIMULATION STUDY

In this section, a simulation study is conducted to assess the performance
of the proposed method. The main objective is to investigate the accuracy of
variational Bayesian estimates, the model adequacy via variable selection and the
model selection among the competing models. We consider one semi-continuous
variable of which the indicator variable ui satisfies equation (2.1) while given
ui = 1, the intensity variable zi is generated from the following equations:

• scenario I: zi − xTi ψ ∼ N(0.8, 1.0);

• scenario II: zi − xTi ψ ∼ 0.3N(−3.5, 1.0) + 0.7N(3.0, 4.0);

• scenario III: zi − xTi ψ ∼
7∑

k=0

1
8N(3{(23)

k − 1}, (23)
2k);

in which scenario I denotes the single normal model, scenario II represents the
multi-modal model with two modes, and scenario III, followed by [36], is the
strongly skewed model (see Figure 1).

We generate five fixed covariates from the multivariate normal distribution
N5(0,Σ) with Σjk = 0.5|j−k|(j, k = 1, · · · , 5), where Σjk is the (j, k) element
of Σ. The true values of population parameters are set as follows: α = 0.7,
β = (0.7, 0.0, 0.7, 0.0, 0.7), ψ = (0.0, 0.0, 0.7, 0.7, 0.7). To investigate the effect
of sample size on the accuracy of estimates, we take n = 300 and 1000, which
represents the small and large sample sizes.
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Figure 1: Plot of the histograms of data and the variational Bayesian den-
sity estimates under n = 300. Panels (i) to (iii) correspond to
the data under scenarios I to III, and panels (a) to (c) correspond
to the posterior predictive densities: the solid lines represent the
semiparametric fitting (K = 100) and the dotted lines denote
the parametric fitting.

For the Bayesian analysis, we consider the following inputs for the hyper-
parameters: for the intercept parameter α, we take α0 = 0 and σ2α0 = 100.0. The
large variance σ2α0 ensures a large interval with high probability to accommodate
initial value of α; for the baseline distribution F0, we set mean and variance of
γ∗k as the same as that of α, while the scale βϵ0 and the shape αϵ0 in the inverse
gamma are fixed at 2.0; the inputs of hyper-parameters in the Laplace priors are
taken as the same as those in [12]. Finally, for τ1 and τ2, we set them at 2.0.
Note that these values can guarantee these distributions to be less informative.

The proposed algorithm given in Section 3 is implemented to produce the
variational Bayes estimates. The truncated level involved in (2.5) is taken as
K = 100. Before formal implementation, a few test runs are conducted as a pilot
to monitor the convergence of VB algorithms. For comparison, we also investigate
the convergence of MCMC sampling via blocked Gibbs sampler [22]. The full
conditionals involved in the blocked Gibbs sampler are easily derived and omitted
to save spaces. We examine the trace plots of the estimates against the number
of iterations under three different starting values. Figure 2 gives the traces of
EPSR (e.g.,[16]) of unknown parameters in the first 64 iterations for the MCMC
sampling, and ∥∆η(t)∥ = ∥η(t+1) − η(t)∥ in the first 30 iterations for the CA
algorithm. It can be seen that the CA algorithm converges faster than the blocked
Gibbs sampling. It only needs about three iterations to achieve convergence, while
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Gibbs sampler requires about at least 50 iterations to guarantee EPSR less than
1.2. Moreover, MCMC sampling algorithm illustrates strong variation due to its
stochastic approximation, while VB produces a deterministic solution.
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Figure 2: Plots of the values of EPSR and ∥∆η(t)∥ of unknown parameters
against the number of iterations under three different starting
values (n = 300): (a) MCMC, (b) VB.

We calculate the bias(BIAS), the root of mean squares(RMS) and the stan-
dard deviations(SD) of VB estimates under the parametric and semiparametric
fittings across 100 replications. The resulting summary is given in the section
3 in the supplementary material (see Tables 1 and 2 therein). Examinations of
results show that: (i) for scenario I, the performance of VB estimates under semi-
parametric fitting is the same as those under parametric fitting. The BIAS, RMS
and SD of two estimates are exactly identical regardless of n = 300 or 1000; This
suggests that the semiparametric fitting can automatically adjust their random
weights (2.5) to shrink data into one cluster to meet the assumption of the single
parametric model; (ii) for scenario II, we find there exist larger differences be-
tween two estimates. The totals of RMS and SD under normal fitting equal to
2.304 and 1.703 at n = 300, while under semi-parametric fitting amount to 1.403
and 1.032. This reveals the fact that the normal fitting accommodates multiple
modes via inflating the variances of the estimates; (iii) for scenario III, though not
significant, the VB estimates under semiparametric fitting still outperforms those
under parametric fitting; (iv) As expected, with the increase of sample sizes, two
estimates becomes more and more accurate but the differences between them are
still not ignorable when the posited models are not specified correctly; (v) Since
the estimates of regression coefficients involved in Part one are not affected by
the semiparametric fitting in Part two, the behavior of VB estimates in Part one
under two fittings are wholly identical.

Another simulation focuses on the performance of variable selection using
(3.5) under the parametric and semi-parametric Bayesian fittings. In this study,
the simulation design is taken as the same as scenario II except that the sample
sizes are set at 300, 500 and 1000, and the true values of regression coefficients
are taken as β = (1, 0, 1, 0, 1)T and ψ = (0, 0, 1, 1, 1)T . Table 1 presents the
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Table 1: Summary of variable selection in the simulation study: scenario
II data.

Norm. Semi.
Para. True value n = 300 n = 500 n = 1000 n = 300 n = 500 n = 1000

β1 ̸= 0 100 100 100 – – –
β2 = 0 96 95 97 – – –
β3 = 0 100 100 100 – – –
β4 ̸= 0 93 97 98 – – –
β5 = 0 100 100 100 – – –
ψ1 = 0 94 95 98 96 96 98
ψ2 = 0 95 97 96 96 97 97
ψ3 ̸= 0 74 98 100 100 100 100
ψ4 ̸= 0 80 100 100 100 100 100
ψ5 ̸= 0 83 98 100 99 100 100

summary of variable selection over 100 replications, in which the summary related
to β under the semiparametric fitting are omitted. Based on Table 3, it can be
found that for ψ1 and ψ2, the semiparametric fitting produces the result similar
to that under the parametric fitting. However, for ψj(j = 3, 4, 5), the false rates
under the parametric setting are higher than those under the semiparametric
fitting. This is not surprising since our variable selection method is closely related
to the standard deviations, and parametric method easily inflates the standard
deviations when model is misspecified.

Finally, as suggested by two reviewers, we consider two special cases for ϵi.
One case is that ϵi has the t distribution with 4 degrees of freedom, and the other
is that ϵi contains outliers. The former corresponds to the heaver-than-normal
data while the latter represents the contaminated data. For the latter, we gen-
erate ϵis independently from the standard normal distribution and add 10.0 to
them with proportions 5% and 10%, respectively. The sample size, analogous to
the real example, is taken as n = 1000. The other model settings are the same
as the previous situation. We calculated BIAS, RMS and SD of the estimates
of regression coefficients ψj under the parametric and semiparametric fittings re-
spectively. The summary is reported in section 3 in the supplementary material
(see Table 3 therein). We also investigate the performance of feature selection
via confidence intervals. Figure 4 gives the box plots of the estimates of regres-
sion coefficient ψj under two different fittings. Examinations of the simulated
results and Figure 4 give the following facts: for the heavy-tailed and symmetric
data with single mode, the semiparametric fitting is very close to the parametric
fitting and slightly outperforms the parametric fitting. The underlying reason
is that for the unimodal and symmetric data, the atoms in the semiparametric
fitting are adaptively clustered into one group and the fitting model behaves more
like the parametric model. Instead, for the contaminated data, the results pro-
duced by the semiparametric method are better than those under the parametric
method. Moreover, as the levels of contamination increase, the estimates pro-
duced by semiparametric method are more stable and their confidence intervals
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are uniformly narrower. It reveals that the proposed method is rather effective
in dealing with outliers.
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Figure 3: Boxplots of ψj under the parametric and semiparametric fit-
tings: panels (a),(c) and (e) corresponds to the parametric fit-
ting and panels (b), (d) and (f) correspond to the semiparamet-
ric fitting; The panels in the first row correspond to the heavier-
than-normal data while the panels in the second and last rows
correspond to the contaminated data with contamination levels
at 5% and 10% respectively. The sample size n = 1000.

In summary, although the estimates of regression coefficients are less depen-
dent on the distributional assumptions of the responses, the standard deviations
obtained under the parametric fitting are more sensitive to the model specifica-
tions. In contrast, as a correction to the parametric method, the semiparametric
method can accommodate various assumptions of the underlying distribution,
thus more robust against the distributional deviations. For computation, all pro-
grams are coded in C language and implemented on Inter(R) Core(TM), i5-6500
processor with CPU 3.20GHz on Microsoft Windows 7 operating system. For
n = 1000, it takes about two minutes to complete 100 replications for semi-
parametric fitting with K = 100 and 30 seconds to complete 100 replications for
parametric fitting. Request on codes can be send to the corresponding author.
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5. HOUSEHOLD FINANCIAL SURVEY DATA

In this section, we analyze a small portion of household financial debt data
to illustrate the actual merits of the methodology. The data set is selected from
the China Household Finance Survey(CHFS)(https://chfs.swufe.edu.cn) conducted
by the institute of China Finance survey, a nonprofit institute organized by the
Southeast University of Finance and Economics. The survey covers a series of
questions which touch on the information about various aspects of the house-
hold’s financial situation. In this study, we only focus on the measurement ‘gross
debts per household (DEB)’, the amount of the secured debt and unsecured debt
of a household under investigation. This is a primary measure of interest in the
finance survey. It indicates whether a family would be willing to hold the finan-
cial debt and if so, how much debt a household holds. After removing the missing
data, the sample size is 1047. A rough data analysis shows that the measurement
DEB contains excessive zeros and the proportion of zeros is about 72.58%. Nat-
urally, we treat this measurement as the semi-continuous yi, and identify it with
ui and zi. Figure 4 presents the histogram of DEB as well as the logarithms of
the positive values. It can be seen clearly that data set illustrates strong hetero-
geneity. The skewness and kurtosis of DEB are 1.1042 and 2.3361, respectively,
which indicates that single parametric model on DEB may be unappreciated.
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Figure 4: Histograms of DEB and the logarithms of their positive values:
China household finance survey data. Left panel corresponding
the DEB and right panel corresponding to log(DEB|DEB > 0).

Motivated by the existing economic literature (e.g.,[44]), the following mea-
surements were included as the explanatory factors to explore the causal effects:
gender (x1; scaled via 0-1 point: 1 to male and 0 to female), age(aged from 21 to
94), marital status (x5; scaled by points 2 to 6), health condition (x6), educational
degrees (x7; scaled via 1 to 7 according to the educational level), employment(x8;
scaled on 0-1: 0 to unemployed and 1 to employed), the number of adults (aged
> 16) in a family (x9); and the household income (x10). Moreover, in view of the
large spread of ages, we group the subjects into five categories according to their
ages, each assigned to a binary indicator: aged from 21 to 35(x2; including 35,
the same below), 35 to 45 (x3), 45 to 60 (x4), and over 60. Moreover, we refer to
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Table 2: Descriptive statistics of explanatory variables: CHFS data .

Variable. Description. Mean. Max. Min. SD

Gender (x1) =1, male; =0, otherwise 0.756 1 0 0.430
Age:

aged 21 to 35 (x2) =1, yes; 0, otherwise 0.061 1 0 0.239
aged 36 to 45 (x3) =1, yes; 0, otherwise 0.132 1 0 0.339
aged 46 to 60 (x4) =1, yes; 0, otherwise 0.240 1 0 0.427

Marital status (x5) =1, married; 0, otherwise 0.863 1 0 0.344
Health condition (x6) =1, good; 0, otherwise 0.833 1 0 0.373
Education degree (x7) =1, high school or above;

=0, otherwise 0.352 1 0 0.478
Employment (x8) =1, yes; 0, otherwise 0.092 1 0 0.290
No. of adults (x9) 3.002 3 0 1.301
Income (CYN)(x10)

∗ 2000 20000 1000 0.232

∗

Note: the measurement is the middle value of the option in the questionnaire.

the last group as the reference and remove it for model identification. As a result,
there are ten covariates in total. Table 2 provides the description summary of
the explanatory variables under consideration. To unify the scale, all covariates
are standardized.

We fit the parametric and semi-parametric models mentioned before to the
data. Similar to those in the simulation study, the inputs of hyperparameters in
the prior are taken as follows: α0 = γ0 = 0, σ2α0 = σ2γ0 = 0.01, a0 = c0 = 1.0
and b0 = d0 = 0.05, αϵ0 = βϵ0 = 2.0 and τ1 = τ2 = 2.0. Moreover, we investigate
the effects of truncation levels in the semiparametric fitting on model fits. We
implement CA algorithm to calculate the estimates of AIC and BIC across com-
peting models. The convergence of algorithm is monitored by observing the trace
of ∥∆η∥. We terminate the cycles when ∥∆η∥ is less than 1.0 × 10−6. Table 3
presents the summary of AIC and BIC in the selection of six competing models.
It can be seen that the values of AIC and BIC under the normal mixture model
with K = 10 are the minimum among competing models. Hence such a model
is chosen as the posited model. Further examinations show that large values of
K are not necessarily to favor the improvement of model fits. As an illustration,
Figure 5 gives the posterior density estimates of f(ϵ) under the parametric and
semiparametric fittings with K = 10 based on 400 grids on the interval [0, 20]. It
can be seen clearly that semiparametric fitting captures the left skewness of data
successfully while parametric fitting fails.

Table 4 presents the estimates of unknown parameters and their standard
deviations obtained under the parametric model and semiparametric mdoel with
K = 10, in which the variables being selected via hard threshold method (e.g.,
[12]) (denoted by HT) and confidence interval method (3.5) (denoted by CI) are
reported in the columns four, five, eight and nine. Due to the same reason in the
simulation study, the estimates of unknown parameters involved in Part one are
not reported to save spaces. Based on Table 4, it can be found that: (i) by the
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Table 3: Summary of the model selection in analyzing China household
finance data: ‘norm’ denotes the parametric fitting while ‘Semi.’
refers to the semiparametric fitting.

Norm. Semi.
K = 2 K = 5 K = 10 K = 20 K = 100

AIC 3212.565 3003.3928 5186.536 2837.479 2897.661 3378.497
BIC 3326.499 3132.1887 5359.915 3085.163 3293.955 4963.676
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Figure 5: Plot of the posterior density estimates f̂ϵ(ϵ) in Part two: blue
doted linear corresponds to the parametric fitting while red solid
line corresponds to the semiparametric fitting with K = 10.

measures of HT and CI, the gender, the marital status and the health condition
are all excluded from Part one, while the age, the employment, the number of
adults and the household income are included as the exogenous factors to inter-
pret the variability of ui. This indicates that the proportion of households in
holding financial debts depends less on the gender, the martial status and the
health condition of the households. Instead, they rely on the ages, the employ-
ment of the head of the household and the household income. However, for the
educational degree, there is a conflict between TH and CI: the former favors it
while the latter discards it. Recall that in China, most household financial debts
are consisted of the secured debts such as mortgage, care loans, liabilities for pro-
duction and operation and so on, hence, these selected variables in some extent
reflect the basic situations of the household finance in China. (ii) for Part two,
there exists obvious difference in selecting relevant variables under the parametric
and semi-parametric fittings. For the parametric fitting, only household income
is included to explain the amount of household financial debts, while under the
semiparametric fitting, besides it, health condition is also included. That is, the
actual level of household financial debts is affected by the member’s health con-
dition of a household. Such a difference indicates that the skewness of data has
an important impact on the choice of relevant variables.
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Table 4: Summary of the estimates of unknown parameters and the vari-
able selection in the analysis of household financial survey data:
0 corresponding to the variables being included and 1 corre-
sponding to the variables being excluded.

Norm. Semi.
Para. Est. SD HT CI Est. SD HT CI

α -1.104 0.066 – – – – – –
β1 -0.056 0.056 1 1 – – – –
β2 0.354 0.078 0 0 – – – –
β3 0.648 0.082 0 0 – – – –
β4 0.475 0.083 0 0 – – – –
β5 0.029 0.056 1 1 – – – –
β6 0.030 0.052 1 1 – – – –
β7 0.108 0.065 0 1 – – – –
β8 0.154 0.062 0 0 – – – –
β9 0.167 0.067 0 0 – – – –
β10 0.173 0.068 0 0 – – – –
ψ1 -0.016 0.064 1 1 -0.010 0.047 1 1
ψ2 -0.028 0.068 1 1 -0.007 0.05 1 1
ψ3 0.018 0.065 1 1 -0.003 0.048 1 1
ψ4 0.025 0.071 1 1 -0.008 0.052 1 1
ψ5 0.096 0.091 1 1 0.025 0.056 1 1
ψ6 0.084 0.076 1 1 0.142 0.059 0 0
ψ7 0.003 0.061 1 1 0.064 0.053 1 1
ψ8 0.068 0.067 1 1 0.029 0.044 1 1
ψ9 -0.008 0.067 1 1 -0.042 0.055 1 1
ψ10 0.404 0.090 0 0 0.453 0.061 0 0

6. DISCUSSION

In analyzing semi-continuous data, TPM is surely a popular method to
identify the pattern of how the exogenous factors work on two parts of data.
Semiparametric fitting for TPM is a natural extension of the ordinary TPM to
the situation where the robust issue is to take into account to downweight the
influence of distributional deviations on the continuous part. To relax the cru-
cial assumption on the normal distribution of the idiosyncratic part, we propose
a normal mixture model in which the mixing distribution is treated to be arbi-
trary and random, and selected from the space of distribution functions according
to DP prior. By taking advantage of discreteness of DP, the proposed method
induces a normal mixture model with at most finite atoms. Such modeling strat-
egy is very appreciated in the Bayesian density estimation. It allows us to select
the posited model via data-driven technique. However, with the increase of the



Robust model fitting for Two-Part Model 21

model complexity, the computation becomes more challenging. We develop a vari-
ational Bayesian procedure. Compared with the MCMC sampling method, the
variational Bayes inference enjoys high computational efficiency and determinis-
tic solution. Within the mean-field family framework, the variational density as
well as the update scheme of variational parameters are obtained via coordinate
ascent algorithm. Posterior inferences including parameter estimation, posterior
density estimates, variable selection and model evaluation are carried out based
on the variational distribution.

The closed form approximation to the posterior distribution of the param-
eters in our proposal benefits from the Pólya-Gamma stochastic representation
of the logistic function in Part one, in which the nonlinear function of parame-
ters is decomposed into the pattern as that in the normal setting. It leads to a
conjugate posterior with Gaussian prior over the regression coefficients. In the
case of Bayesian logistic regression analysis, Jaakkola and Jordan [24] proposed a
nice approximation to the logistic function. By taking advantage of ξ- transfor-
mation, they obtained a normal style low bound for the observed-data likelihood.
Within the mean-field family, the variational density is achieved based on the
approximated likelihood. The main difference between our proposal and [24] un-
derlies that Jaakkola and Jordan’s formulation is grounded on the approximated
likelihood while we utilize the data-augmentation technique.

The further research includes the robust model fitting for the TPM with
latent variable analysis, and/or with missing data. These extensions surely raise
theoretical and computational challenges and therefore require further study.
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