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1. INTRODUCTION

One of the main objectives of survival analysis is to compare the distributions of the
lifetimes of two populations. This is best illustrated by clinical trials when evaluating the effi-
cacy of two treatments Su and Zhu (2018). In the context of right-censored data, the scientific
community uses the log-rank test to test the equality between two distribution curves. Origi-
nally proposed by Mantel and Haenszel (1959), the log-rank test has been further studied by
different authors, e.g., Schoenfeld (1981); Fleming and Harrington (2011). Importantly, the
log-rank test is known to be the most powerful test when the hazard functions are propor-
tional to each other Schoenfeld (1981). However, when this hypothesis is violated, the test
suffers a significant loss of power Fleming et al. (1980); Lachin and Foulkes (1986); Lakatos
(1988); Schoenfeld (1981).

An important area of statistical research is searching for new tests that guarantee high
statistical power in real use cases where the log-rank test does not perform well. We refer
the reader to Su and Zhu (2018), where the authors thoroughly discuss the lack of statistical
power of the log-rank test found in numerous case studies. Recent cancer immunotherapy
trials also provide a relevant example. These trials consist of situations where survival curves
cross Melero et al. (2014); Xu et al. (2017, 2018); Su and Zhu (2018); Alexander et al. (2018).

We distinguish two types of tests in the right-censoring survival setting: directional
and omnibus. Loosely speaking, the former seeks to obtain maximum power in specific
scenarios, while the latter is consistent against all alternatives. Examples of directional tests
are the log-rank test family, see e.g., Gehan (1965); Tarone and Ware (1977); Peto and Peto
(1972); Fleming and Harrington (1981), where statistics are assigned a weight function that
determines the optimality in specific directions. Other approaches include combinations of
tests, such as those in Bathke et al. (2009) and Yang and Prentice (2010).

From a theoretical point of view, omnibus tests are often preferred over directional due
to their ability to detect any alternative asymptotically. However, in practice, these tests
have the disadvantage of having low local power versus a wide variety of alternatives. In
addition, it is known that any test with finite samples can have high power only in a limited
number of scenarios. In particular, Janssen (2000) proves that there exists no test with high
power, except in a finite-dimensional space.

In the era of precision medicine, see Kosorok and Laber (2019) for a review, drugs
are designed to be personalized. This makes the statistical analysis of treatment differences
particularly challenging. For example, comparing two treatments in a group of individuals
may present highly heterogeneous survival curves due to significant individual variability in
response to the treatment. A particular instance of this can be seen in immunotherapy studies
Ferris et al. (2016) (Figure 1, Image B), where the survival curves intersect several times.
In this context, new statistical distances between random samples that support censoring
can be significant to perform hypothesis testing in new clinical decisions or stratify patients’
survival into different groups with cluster analysis.

In order to help in this challenge, this paper proposes a novel approach for the two-
sample testing problem under right censoring. Our approach relies on energy distance Székely
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(2003); Székely and Rizzo (2013) and maximum mean discrepancy estimation Gretton et al.
(2012). We summarize our specific contributions next.

1.1. Summary of results

Formally, we consider the classical traditional framework of two-sample survival com-
parisons where we are given lifetimes T, ~ P; (j = 0,1;4 = 1,...,n;) and censoring times
Ciji ~Q; (j =0,1;i =1,...,n;), with distributions P; and Q; (j = 0,1), defined in a
subset of R™. Here, the index j represents a population, and the index i a particular sam-
ple within a population. Moreover, the random variables To1,...,T0ng,---sT1,15- -+ L1013
Cois---3Congs---,C115--.,C1n, are assumed to be independent of each other. In practice,
only the random variables Xjﬂ' = min(Tj7,~,Cj7i) and 5]'72' = 1{Xj7i = j,i} (j = 0,1;i =
1,...,n;) are observed.

On the basis of the observed data {(Xj;,d;i)}j=0,1;i=1,..n,, the two-sample testing
problem that we study can be formulated as

(1.1) Hy : Po(t) = Pi(t), Vt >0, versus Hy : Py(t) # Pi(t), for some t > 0.
Our main contributions are the following:

e  We propose novel tests based on energy distance and maximum mean discrepancy. The
resulting tests require minimum assumptions, involving only conditions on the moments
of random variables. Specifically, we assume E(Tfl) < oo and E (032@) < 00, and, for
simplicity, that the variables X ;,Tj4,Cj; (j =0,1;4=1,...,n;) are continuous.

e Importantly, we show that the proposed tests are consistent against all alternatives. In
addition, we present a permutation-based procedure to approximate the distribution of
our test statistics under the null hypothesis.

e  We provide guidance on how to tune parameters of our proposed tests in clinical situa-
tions of interest. Furthermore, we show that Gaussian and Laplacian kernels outperform
energy distance with Euclidean distance and other tests of the logrank family in set-
tings where there is a delay effect, a commonly found situation in contemporary clinical
trials.

Finally, we extend the proposed method to the multivariate case (Appendix C) that
can be very interesting for clustering analysis and demonstrate the theoretical properties of
the proposed statistics (Appendix B). In particular, we show that these statistics behave as
true distances between random samples.

1.2. Outline

The structure of the paper is as follows. Section 2 provides an introduction to energy
distance-based methods. Next, in Section 3 the statistics for our tests are derived, estab-
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lishing their connections with previous work on two-sample testing based on kernel methods.
Subsequently, we propose a permutation method and provide recommendations on how to
choose the test parameters. In Section 4, we show that our tests are consistent against all
alternatives. Section 5 then provides a simulation study to compare the behavior of the
proposed tests against state-of-the-art methods. To this end, we compare the type I error
using known distributions. In addition, we consider real scenarios from clinical practice and
evaluate performance based on the power of the tests. Finally, the validity of our methods is
verified in practice using the previously collected data Stablein et al. (1981).

In order to increase readability of the present document, we place the proofs of the
main theoretical contributions and complementary results in the appendices.

2. Background on energy distance

The energy distance is a statistical distance between two distribution functions proposed
in 1984 by Gabor J. Székely Székely and Rizzo (2017); Székely and Rizzo (2013). This distance
is inspired by the concept of gravitational energy between two bodies and has experienced a
rise in appeal for modern statistical applications due to its applicability to data of a complex
nature, such as functions, graphs, or objects that live in negative type space. In parallel, A.
A. Zinger, A. V. Kakosyan, and L. B. Klebanov developed a similar notion of distance called
N-distances Klebanov et al. (2005); Rachev et al. (2013) and applied it to some biological
problems Klebanov et al. (2007).

Here, we extended the notion of energy distance for right-censored data for the first
time. To arrive at our family of tests, we first recall some background on energy distance.
To that end, let X, X’ ~id P and V,Y’ ~"d Q where P and @ are probability distri-
bution functions in R?. Denoting by || - || the Euclidean distance in R? and assuming that
max{E(||X]]), E(]|[Y|])} < oo, the energy distance between the distributions P and @ is
defined, as in Székely (2003) and Székely and Rizzo (2013), by:

(2.1) «(P,Q) =2E[[X —Y|| - E[[X - X'|| - E[[Y = Y[|.

It is fairly easy to see that €(-,-) is invariant to rotations, non-negative, and ¢(P,Q) = 0 if
and only if P = @. In addition, (2.1) can be extended for a family of parameters « € (0, 2]
assuming in each case the existence of the moment of order « (see Székely and Rizzo (2013)).
The corresponding a-energy distance is then given as

(2.2) €a(P,Q) = 2E||X - Y||* - B|IX = X'||* - B|ly = Y||*.

It can be proved that e, (P, Q) > 0. Furthermore, ¢,(P, Q) = 0 if and only if P = Q.
In the case of a = 2, e2(P,Q) = 2||E(X) — E(Y)||?>. Therefore, non-negativity is verified
trivially, although e(P, Q) = 0 implies equality in means and not that P = Q.

For a characteristic kernel K : R¢ x R — R using properties of kernel mean embed-
dings Muandet et al. (2017), as in Gretton et al. (2012), we define the measure of maximum
mean discrepancy (MMD) as

(2.3) Vi (P.Q) = E(K(X,X') + E(K(Y.Y")) = 2B(K(X,Y)),



Using the “revstat-v4.sty” package 5

Table 1: L. .
Characteristic kernels. T'(-) denotes the Gamma function
and K, is the modified Bessel function of the second order v
(see explicit definitions in Appendix F)
Kernel Function K(z
Gaussian < Hx y” > o>0
Laplacian ( ”w yH) o>0
Rational quadratic (HZE —yl>+¢)7P,B,c>0
Matérn i (\/%\(\:: yll) g (\/ﬁllax yH)

where X, X' ~d P and Y, Y’ ~Hd Q. Intuitively, (2.3) can be thought of as a non-linear
generalization of the energy distance (2.1) in an appropriate reproducing kernel Hilbert space
(RKHS). The latter depends on the selected parameters/distances.

Following this line, if we consider the energy distance in metric spaces Lyons (2013)
(with an arbitrary semi-metric of negative type instead of the Euclidean distance), we find it
equivalent to the kernel methods just defined. This equivalence was established in Sejdinovic
et al. (2013) and Shen and Vogelstein (2018), at both the population and sample level.

Finally, some typical examples of characteristic kernels Sriperumbudur et al. (2010) are
provided in Table 1.

3. Methodology

In this section, we present a new family of tests which are the focus of this paper. We
begin by providing constructions of the statistics that are the pillars of our tests. Then, we
present a procedure for determining the distribution of the statistics under the null hypothesis.

3.1. Construction of statistics

In the context of right censoring with independent data, the maximum non-parametric
likelihood approach is the Kaplan-Meier estimator originally introduced in Kaplan and Meier
(1958). Notably, the Kaplan-Meier estimator is consistent Wang et al. (1987) and its asymp-
totic properties were studied in Cai (1998). However, Stute (1994a) showed that the Kaplan-
Meier estimator suffered from negative bias, which can be large under high censoring.

To proceed with our construction, we exploit the Kaplan-Meier estimator, combining
it with a kernel type of estimator based on energy distance. To this end, for each group
j € {0,1}, we consider its ordered sample

Xjamy) < Xj2my) < < Xjnymy)

and the corresponding censored indicators d; (1.n,), 05 (2:m;)s - - - » 05, (n;mm;)- 10 addition, we refer
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to the maximum possible lifetimes for each group as 7y and 71, respectively.

With the above notation in hand, we motivate the definition of our statistics. First,
if we knew the distributions Py and P, then we could calculate the metrics defined in (2.2)
or (2.3) to measure the distance between the two populations. Since these distributions are
not available, it is then natural to estimate them with the Kaplan-Meier estimator and use
a sample version of the distances (2.2) or (2.3). This leads to an energy distance statistic
under right censoring:

no ni

(3.1) a(Po, P) =2 > W Wha 1 X0 (ing) — X1,Gienn) ||
=1 j=1
ng no

(32) - Z Z Wzono Wjon() | |X0,(i:n0) - XO,(j:no) | |oz
i=1 j=1
ny np

- ZZ Wzlnl j n1 HXl (im1) — Xl,(j:nl)Haa

i=1 j=1

and a kernel statistic under right censoring:

ng mno
(33) (P07P1 ZZ W/zonoW]Ono (XO,(i:no)vXO,(j:no))
=1 j=1
niy ni
(34) D2 D Wik Wi K (X i1y X1, ()
=1 j=1
ng mi
—2 Z Z Wzonovvz an(XO,(i:no)a Xl,(j:ru))»
=1 j=1
where
3.5 wo 50,(1’:710) T no—J 0.(3m0) 1
( ) PR n0_2+131;[1|:n0_.]+1:| =1, >n0)7
and
01, (i) T om—j e
36 Wl = AT — 1
(3. m_mg[m_ﬁl] i=1o.m)

are the Kaplan-Meier weights from Stute (2003). While the statistics &, (FPo, P1) and 7% (P, P1)
seem to capture the differences between two populations, it is possible to prove that, almost
surely, €,(Po, P1) and 77 (Po, P1) converge to quantities v.(x)(Po, P1) and €y (Po, P1), re-
spectively. However, they do not behave like distances between probability distributions.
Specifically, there exist two different probability distributions Py and P; in R satisfying
€c(a)(Po, P1) < 0. We can also find two different probability distributions Py and Py in R
with €.(q)(Po, P1) = 0. We refer the reader to Appendix C for specific constructions of these
examples.

The reason behind the odd behavior of the statistic 3% (Py, P1) (€a(Po, P1)) has to do
with the fact that P, is not completely supported in [0, Tl] for [ € {0,1}. We alleviate this
problem by defining the conditional distributions Pj(x) x)/ f dPy(x)dx Yz € [0, 9],
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and P{(z) = Py(z)/ [y dPy(z)dx Vo € [0,71]. With P} and P| at hand, we construct con-
ditional versions of the Welghts w} - (1 =0,1;i = 1,...,n;). Specifically, we consider the

U-statistics under right censoring suggested in Bose and Sen (1999) and apply the aforemen-
tioned standardization, following Stute and Wang (1993). The resulting statistics are:

22 Z zno janXO (i:no) Xl,(j:nl)Ha

3.7 €a(Po, P1) = n
37 o (0, 1) b L Wi Wi

n 0 o
(38) _ Z i ];ﬁz Wz mg j’I’LOHXO (ino) — XO,(]'ZTL())”

no 0 0
2221 2352 WinoWiing

an ];éz Wzlnl j:anXl,(iinl) - le(jfnl)Ha
Z?:ll ;lyléz W’Lln1 len1

(U-statistic a-energy distance under right censoring),

Zno ?;z Wzong Wjono ( 0,(i:m0) > XO,(j:no))

(3.9) F#(Po, Pr) =
Z Z];ﬁz zno jono
(3 10) an ];éz M/zlnle an(Xl (3 nl)aXl,(j:nl))

an j;éz Wl Wl

imy 'Y jing

Z an Wzonovvjlnl (XO (i: no)le,(j:nl))

-2
1
i 2 Wi Wi,

(U-statistic kernel method under right censoring).

Analogously, we can define V-statistics in the following manner:

22 an Wzono ]n1HX0 (ino) — le(jml)Ha

3.11 éa(Po, P1) = L L
( ) ‘ ( ’ 1) Z OIZ ! Wzonowjlnl
(312) z Zno Wlono J: noHXO zno) - XO,(j:no)Ha

Z Zno Wzono 7mo
_ >in Z zn1 J mHXl ”11) - Xl,(]’inl)Ha
Z L Wi W

(V-statistic a-energy distance under right censoring),

S > W W K (X0 (im0)s Xo,(jing))
225721 22521 Wiing Wiing

+Z Dy Wzlnlean(Xl (im1)s X1,(jin1))
Z Z ”llelm

2 it 2 WzononK( 0,(i:n0)s X1,Gjin1))
Z Z ”lovvjlm

(3.13) 33(Po, P1) =

(3.14)

-2
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(V-statistic kernel method under right censoring).

Finally, to establish consistency more easily, our final statistics are given as:

noni .
(315) Tga == mEQ(PQ,P]_) and T:)/%{ =

noni .o
——A% (P, P1).
no + n1 Vi )
In Appendix C, we can find, in some instances, an interpretation of the limits of these
statistics. In particular, we show that the statistics behave as distances between distribution
functions and the characteristic functions in a weighted Hilbert space L?(I).

3.2. Permutation tests

As in the case of the usual energy two-sample test from Székely (2003) and Székely
and Rizzo (2013), the null distribution of our proposed statistics is approximated with a
permutation method. If the censorship mechanism of the two groups is the same, the standard
permutation method from Neuhaus et al. (1993) and Wang et al. (2010) is valid. However,
when the censoring distributions differ, the standard permutation method does not perform
well in small-sample settings or when the amount of censoring is large, see Heimann and
Neuhaus (1998). In this case, one alternative is to use the re-sampling strategy proposed in
Wang et al. (2010). Below we describe the steps of the classical permutation procedure.

/_gL /_Llla . . .

We denote by Z = (0,---,0,1,---,1) a vector of size n = ng + ny that indicates the
observed group membership. Thus, z; = 1 (z; = 0) indicates that the i-th subject belongs to
group 1 (0). We then order the observed times and censorship indicators. Thus we construct
vectors U = (X()J, oy X0ngs X1,150 ,lel) and 0 = (5071, e ,50,710, 5171, o ,(517,11). Next,
if we are interested in calculating the distribution of the statistic (Z,U,d) under the null
distribution (Py = P), then we can proceed to construct permutations of the data. Specifi-
cally, let S be a collection of sets of size ng whose elements belong to {1,...,n9 + n1}. For
every I € S, we construct a vector Z! € R™ satisfying Zl-l =0if ¢ € I and ZiI =1ifi¢ 1.
Next, we compare 0(Z,U,§) against (Z!,U, ) for all I € S. The p-value is calculated as

Yres HO(Z',U,6) > 6(Z,U,6)}

(o)

(3.16) p-value =

In practice, we can reduce the number of operations in (3.16) by using a random subset
S’ of S to obtain

S res HO(Z1,U,6) > 6(2,U,6)}
S| '

p-value =

3.3. Selection of tuning parameters/distances

Although the proposed methods are consistent against all alternatives from an asymp-
totic point of view (see Theorem 1), one of the main practical difficulties with finite samples
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is the selection of parameters/distances so that high statistical power is guaranteed. In fact,
this problem is very common in kernel methods both in prediction models and hypothesis
testing. Filippi et al. (2016) state that there exist few theoretical approaches to tackle this
problem.

In this work, we only use the energy distance with the Fuclidean distance and the
Gaussian and Laplacian kernels (see Table 1). The main reason for this is that there is
a corpus of previous work on how the selection of parameters influences the performance of
different methods. There are also some heuristics that include theoretical results, see Ramdas
et al. (2015) and Garreau et al. (2017).

Despite the fact that energy distance is more sensitive to the choice of the o parameter
than to the choice of the kernel (see, for example, Sejdinovic et al. (2013)), there is no known
formal criterion for selecting an optimal value of a.

In regard to the Gaussian and Laplacian kernels, there is a known ad-hoc rule called
the Median heuristic that consists in selecting the median between the distance pairs of the
aggregate sample. This procedure is explained in detail below.

Let X = (X].7 oo 7XTLO)X7LO+].’ e 7Xn0+n1) = (XO,]J e )XU,’nQ)Xl,l) T 7X].,n1) be the
aggregate sample vector. Consider D € R(m0+nm1)x(no+n1) defined as D = |X; — Xj|(i =
1,...,(n0—|—n1),j: 1,...,(7104—77,1)).

As in Garreau et al. (2017), we define

o=+/H,/2 , where H, = median{DiZj 1<i<j<(no+mni)}

In the literature, the resulting o is known as kernel bandwidth. An intuitive explanation
of how this works is given below:

e Given X;,X; i =1,...,(no+n1),j =1,...,(no+mn1)),if 0 = 0 or ¢ — oo, then
K(Xi, X;) — 1or K(X;, X;) — 0 (see Table 1). Therefore, 7% (P, P1) is almost always
constant, and the statistical power of the test is low.

e It is reasonable to impose that the median of D;; (i =1,...,(no+n1),j=1,...,(no+
n1)) and o are of the same order so that K (X;, X;) (i =1,...,(no+n1),j =1,..., (no+
n1)) does not take unnecessarily small or large values, so as not to suffer from the
limitations mentioned above.

e  Hence, a reasonable choice for o is in the "middle range” of D;; (1 = 1,...,(no+n1),j =
1,...,(ng + n1)). In this way, o is of the same order as the median of D;; (i =
L,...,(np+mn1),7=1,...,(no +n1)). The global dispersion between terms K (X;, X;)
(it=1,...,(np+mn1),j =1,...,(ng + n1)) is maximized, and therefore, the test has

greater discrimination capacity.

Alternatively, o is sometimes set to / H,.

The influence of the suboptimal specification of the kernel bandwidth has mainly been
studied in situations of high dimensionality. In this context, it has been shown to lead to
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important differences in the power of tests. For instance, Ramdas et al. (2015) noticed, using
a simulation study and theoretical analysis, that the median heuristic & maximized power
with Gaussian kernel in several cases. However, power can be suboptimal with the Laplacian
kernel, showing better results with some values of 0 = HY for a € (0,2] with a # 1/2. In
any case, we should be cautious in interpreting these results. As we do not consider the
multidimensional case, the effects of a suboptimal kernel bandwidth specification may not be
so dramatic in our setting.

In the case of censorship, in addition to the vector X, we also have to consider the
vector 0 = (80,1, ,00,n9501,15° - ,01,n, ) With censorship indicators. Now, we define the set
of indices I = {i € {1,2,...,(no +mn1)} : 0; = 1}. A reasonable estimator for ¢ is given by

o= +/H} or 0 =+/H} /2 where

Hy =median{D}; : 1 <i < j < (ng + n1) with 4,5 € I'}.

The previous definition is justified because in equations (3.1)—(3.13), only the elements
whose indices belong to I influence the corresponding expressions.

4. Theory

Next, we show that, under very mild conditions, our proposed tests are consistent
against all alternatives. This is formally stated below and the proof can be found in Appendix

A.

Theorem 1. Let Xjﬂ‘ = min(Tj,i,Cj,i) ~Ad Pc(j) and (5]'7%‘ = 1{Xj7i = jﬂ‘} (] =
0,1;i =1,...,n;) with P.¢;) (j = 0,1). Suppose also that the conditions stated in Section 1.1
hold for the random variables T ; ~Add: P;, Cj; ~tdd: Q; (j=0,1;i=1,...,n;). Further
assume that 79 = 7 or the support of the distribution functions P, and P; is contained
in the intervals [0,7p] and [0, 7], respectively. Then, for testing the null Hy : Py(t) =
Pi(t) Vt € [0,71], the statistics Tz, and Tﬁ( determine tests that are consistent against all
fixed alternatives with continuous random variables.

The Kolmogorov-Smirnov and Cramer Von-Mises tests under censorship have been
proposed in the context of absolutely continuous random variables Schumacher (1984). How-
ever, unlike those tests, our results are also valid for discrete distributions provided that the
second-order moments of the random variables exist. This can be very important in practice
since many of the lifetimes collected in databases for simplification are truncated and dis-
crete (see for example Cai et al. (2019) and http://lce.biohpc.swmed.edu/lungcancer/
dataset.php).
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5. Simulation study

The simulation study is divided into two phases. In the first part, we consider scenarios
where the null hypothesis is true. Then, the performance of the proposed tests is compared
with the log-rank family tests with different censorship rates and different sample sizes. In
particular, the tests used are the energy distance (« = 1), Gaussian kernel (o = 1), Laplacian
kernel (o = 1), log-rank (Mantel and Haenszel (1959)), Gehan generalized Wilcoxon test
(Gehan (1965)), Tarone-Ware (Tarone and Ware (1977)), Peto-Peto (Peto and Peto (1972)),
Fleming & Harrington (Fleming and Harrington (1981)) (with p =« = 1). For this purpose,
parametric distributions such as normal exponential or lognormal are used.

In the second phase, the same tests are compared in scenarios where the null hypothesis
is false. As in Guyot et al. (2012), we use the Digitizeit software (https://wuw.digitizeit.
de/) to extract several survival curves from different clinical trials in which there was a delay
effect, or there was no clear violation of the hypothesis that the hazard functions were not
maintained. Survival curves were extracted from the studies analyzed in the following two
papers: Su and Zhu (2018) and Alexander et al. (2018). We also consider simulations under
the hypothesis that the hazard functions are proportional. This is to assess the power loss of
our tests compared to the log-rank tests. In all comparisons, the o parameter of the Gaussian
and Laplacian kernels (see Table 1) is selected with the methodology defined in Section 3.3.

When the null hypothesis is true, the sample size n € {20,50}. Otherwise, n €
{20, 50, 100,200}. The censorship mechanism was the same within each simulation performed.

All the tests are executed with the statistical software R. For the family of the log-rank
test, the coin package Hothorn et al. (2008) is used while the new tests were implemented in
C++ and integrated in R with the “Repp” Eddelbuettel et al. (2011) and “Repp Armadillo”
libraries. In all cases, the tests were calibrated by the permutation method, with 1000
permutations executed.

5.1. Null hypothesis

We perform 500 Monte Carlo simulations in which the null hypothesis is correct. The
censoring rates are 10 and 30 percent and the sample size of 20 and 50 individuals. Since
p-values are distributed uniformly (Uniform(0,1)) under the null hypothesis, the mean of
the observed p-values obtained should be close to 0.5, and the standard deviation close to
\/1/12 = 0.2886751. Similarly, approximately 5 percent of the observations should have a
value less than 0.05. In the Appendix E Tables (1-3), we can see the results of calculations
of the mean and standard deviation for each test. In Tables (4-6), the proportion of p-values
is shown to be approximately less than or equal to 0.05 for the same cases.

The results of the proposed tests under the null hypothesis are consistent and similar
to those of the log-rank test family. Certain discrepancies with the theoretical values are
acceptable when doing the comparison with 500 Monte Carlo simulations in 8 different tests.
In turn, the Kaplan-Meier estimator used in our models as well as in some of the log-rank


https://www.digitizeit.de/
https://www.digitizeit.de/

12 A. Abcdefg and A. Hijklmn

family models presents a certain bias that is dependent on the censoring ratio, which produces
small deviations under what is expected in a theoretical framework under the null hypothesis.

5.2. Alternative hypothesis

We perform 500 Monte Carlo simulations in different situations where the null hypoth-
esis does not hold. In all cases, we simulated data from survival curves extracted from clinical
trials by means of Digitizeit.

5.2.1. Survival curves from clinical trials

The curves extracted in this article for comparison are as follows: Figure 1-A from
Borghaei et al. (2015), Figure 2-A from Rodriguez et al. (2016), Figure 2-B from Motzer
et al. (2015), Figure 1-B from Ferris et al. (2016), Figure 1-B from Bellmunt et al. (2017),
and Figure 1-C' in Borghaei et al. (2015).

These articles were compiled from Su and Zhu (2018) and Alexander et al. (2018)
who assessed the limitations of log-rank in many clinical situations or the problem of using
summary measures to describe a survival curve. In addition, Alexander et al. (2018) focused
on the field of immunotherapy where there was often a long-term delay effect on survival or
the survival curves are crossed, which motivated the recent development of new tests for this
situation, e.g., Xu et al. (2017) and Xu et al. (2018).

We use the presence of the survival curves are crossed with respect to the other as cri-
teria for selecting the survival curves. Additionally, a curve was selected in which hypothesis
that the function is hazard are proportional is not violated with experimental data, Figure
1-A in Rodriguez et al. (2016). In most of the selected curves, the tests used in the original
papers did not show statistically significant differences.

The process of reconstructing each pair of curves is as follows:

1.  Extraction of the numerical values of the curves through the software Digitizeit.
2. Reconstruction of the curves from the numerical values in the statistical software R.

3. Truncation of the support of the curves to the minimum right end of both curves, that
is 7 = min{ry, 71}, where 79 is the right end of the first curve, and, analogously, 71 for
the second curve.

4. Smoothing curves with cubic smoothing spline, as in Hastie and Tibshirani (1990).

5.  Applying piecewise anti-isotonic linear regression so that the generated curves decrease,
see Robertson et al. (1988). Subsequently, data from the estimated curves are simulated.
The censorship variable is C' ~ Uniform(0, 7) where 7 is the maximal value of support
common to both curves by 3.
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In Figures 1-3, we can see the Kaplan-Meier curves after simulating data from the gen-
erated curves (with sample sizes of 10000 individuals per population) along with an evaluation
of power.

Survival curves Survival curves
Based on Kaplan—Meier estimates Based on Kaplan—Meier estimates
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Figure 1: Statistical power of survival curves extracted Borghaei et al.
(2015) Figure 1-A (left) and Rodriguez et al. (2016) Figure 2-A
(right).
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(5.2)
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Figure 2: Statistical power of survival curves extracted Motzer et al.
(2015) Figure 2-B (left) and Ferris et al. (2016) Figure 1-B
(right).
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(5.3)
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Figure 3: Statistical power of survival curves extracted Bellmunt et al.
(2017) Figure 1-B (left) and Borghaei et al. (2015) Figure 1-C
(right).

The results are discussed below:

e In Figures 2 and 3, all the images reflect a delay between the two treatments. In
addition, almost all the patients die in the interval of time studied. In this situation,
all our methods outperform the log-rank family test studied, especially those based on
the Laplacian and Gaussian kernels.

e In Figure 1 (left), there is a small delay much smoother than those discussed above.
In addition, there is a significant fraction of patients who survive. In this situation, all
the tests have low power, even when the sample size is equal to 200. The Fleming &
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Harrington test works better than our proposals.

e In Figure 1 (right), the situation where the hypothesis that hazard functions do not
seem violated, our tests have low power. As expected, the best method, in this case,
is the log-rank, although it does not present high power either. Graphically, it can be
seen that the degree of discrepancy between both curves is low.

6. Example

To illustrate the potential of the newly proposed tests in real clinical cases, we use the
database from a gastrointestinal tumor study by Stablein et al. (1981). This can be found
in the R package “coin”. The aim of this study is to test whether there are statistically
significant differences in the survival curves of two treatments. In Figure 4, we present the
survival curves between the two treatments, observing clear differences between the curves.
At first glance, there appears to be a tendency that the first treatment increases the long-
term survival compared to the second. The hypothesis of proportional hazards is strongly
violated.
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Survival curves real case
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Table 2: p-values of the different methods used in the real case
p-value p-value p-value
Energy distance a =1 0.018 Kernel Gaussian  0.004 Kernel Laplacian 0.002
Logrank 0.262 Gehan 0.024 Tarone 0.075
Peto 0.030 Flemming 0.753
7. Discussion

In this article, we have proposed a family of consistent tests against all alternatives to
compare the distribution equality between two samples based on energy distance and kernel
mean embeddings. Additionally, several theoretical properties of the statistics have been
established, along with a set of recommendations on how to select parameters and when to
use our tests in clinical situations of interest.

Much work has been done in survival analysis in the context of hazard functions pro-
portionality and for situations where alternatives do not differ much from this scenario. In
such cases, the log-rank tests are known to be optimal Schoenfeld (1981), and tests such as
Fleming & Harrington Fleming and Harrington (1981) offer a good alternative by choosing
a suitable weight function in case of deviations.

If there is evidence that the above situation holds, we do not suggest implementing our
tests with the distances/kernels used in this work because the performance difference with
competitors is considerable.

In scenarios where there is a delay effect on survival in one treatment over another or
where survival curves cross, our tests with the recommended parameters outperform classical
tests. In cases where survival curves cross in a weak manner (as displayed in Figure 1
(left)), the performance of our tests is suboptimal. However, the situation where our tests
perform excellently is quite common in clinical trials of immunotherapy Alexander et al.
(2018), and therefore our tests can be considered an excellent alternative. Overall, we can
say that in situations with crossed survival curves, the results show that the statistical power
of using the Laplacian or Gaussian kernel hardly varies; however, it considerably improves
the performance compared to using classical tests of the log-rank family.

The proposed estimators are based on the Kaplan-Meier estimator weights Stute (2003).
If there is a high percentage of censored observations along with a small sample size, these
methods may not work well (which is very common in all survival analysis methods). In this
case, smoothing the weights may help increase the power. Alternatively, if there are apparent
differences at the end of the survival curves, we recommend considering the last observation
uncensored Efron (1967). In either case, this may increase the power of the tests and reduce
the bias.

The overall cost of one evaluation of the test statistics is of the order O(n?) because
it involves a V-statistic that depends on the weights of the Kaplan-Meier estimator (which
has a linear estimation cost O(n)). Although this may be a concern, in epidemiological
studies and clinical trials, the sample size is usually less than 500 subjects in each group.
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A step forward might be to use incomplete U/V statistics to increase the computational
efficiency of the method. However, this estimator for right-censored data is not available
in the literature. Importantly, a recent calibration strategy that avoids using permutation
methods has appeared in the context of distance correlation and complete information Shen
et al. (2022). Unfortunately, in our setting, there is a bias in the estimators due to the
censoring mechanism Fernandez and Rivera (2020); Stute (1994b), which limits the direct
application of the proposed bound in that paper.

The extension of the proposed tests to k-samples is analogous to non-censored methods.
A large body of research exists in this field, such as Disco analysis Rizzo et al. (2010) or more
recently proposed kernel methods Balogoun et al. (2018).

Our modeling strategy that modifies the sampling weights with Kaplan-survey weights
can be adapted to handle other situations in survival analysis, such as truncated interval-
censored data or even other types of incomplete information, such as missing data (see for
example Matabuena et al. (2023)) . Therefore, our modeling strategy is general and can be
used in other settings.
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