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1. INTRODUCTION

Lifetime data can often be two dimensional. For example, Jung and Bai [9]
analysed field data under two-dimensional warranty, using bivariate data on age
and mileage of cars. Bivariate life data pertaining to trucks working in the mines
were analysed by Fuqing et al. [6]. In such applications, one of the main goals of
analyses is to capture the dependence between components of the two-dimensional
lifetimes. In some cases, the dependence is captured by using an approach based
on copulas; see, for example Fuqing et al. [6]. In some other cases, particular
bivariate distributions are used; for example, see Yuan [16], among others.

In this article, we present and discuss a bivariate Weibull distribution that
can be conveniently used for modelling two-dimensional lifetime data. The distri-
bution presented here is flexible, computationally convenient, and has desirable
properties that can be exploited for modelling purposes.

A bivariate exponential distribution, known as the Downton’s bivariate
exponential (DBE) distribution [5], is as follows. If a random vector (Y1, Y2)
follows the DBE distribution, the corresponding joint probability density function
(PDF) is given by
(1.1)

fY1,Y2(y1, y2) =
1

θ1θ2(1− ρ)
exp

{
− 1

1− ρ

(
y1
θ1

+
y2
θ2

)}
I0

(
2(ρy1y2)

1/2

(1− ρ)
√
θ1θ2

)
, y1, y2 > 0,

with θ1, θ2 > 0 and 0 ≤ ρ < 1. We express this as (Y1, Y2) ∼ DBE(θ1, θ2, ρ).
Here, I0(·) is the modified Bessel function of the first kind of order zero. Down-
ton [5] explained this model from the perspective of a failure model in the relia-
bility context; see also Kotz et al. [10] for a comprehensive description.

The DBE distribution has some excellent mathematical properties. For
example, the DBE distribution originates from a shock model where two compo-
nents of a system are subject to independent streams of shocks with exponentially
distributed interarrival times. Also, the number of such shocks to cause failure
is a random variable distributed according to the geometric distribution. For
the DBE distribution, the marginal distributions of Y1 and Y2 are exponential,
with scale parameters θ1 and θ2, respectively. The dependence between Y1 and
Y2 is captured through the correlation parameter ρ; when ρ = 0, Y1 and Y2
are independent. The model is quite convenient to be used in reliability mod-
elling due to its tractable mathematical nature. Especially, as the corresponding
marginal distributions of Y1 and Y2 are univariate exponential distributions, the
DBE distribution is particularly useful in situations where the hazard rates of
the marginal distributions can be assumed (or verified) to be constants.

However, for bivariate lifetime data with non-constant marginal hazard
rates, the DBE distribution is clearly not suitable. In such scenarios, it is more
appropriate to model the bivariate life data by using a bivariate distribution
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that has univariate Weibull marginals, which can accommodate the non-constant
marginal hazard rates. The motivation of this work is to develop a model that can
accommodate non-constant hazard rates of the marginal lifetimes corresponding
to the two components of a system, within the same context of arrival of in-
dependent streams of shocks to the two components. To achieve this, we have
consider a non-linear transformation of the marginal lifetimes as described below.
The resulting model is more appropriate for real datasets having non-constant
marginal hazard rates.

Therefore, in this article, we discuss a generalization of the DBE distri-
bution to a bivariate Weibull distribution which we call the Downton’s bivari-
ate Weibull (DBW) distribution. The DBW distribution partially retains the
mathematical advantages of the DBE distribution with respect to its analytical
tractability. In fact, the DBW distribution loses some of the interpretations of
the DBE distribution, such as exponential interarrival times of the independent
shock. However, as the DBW distribution has Weibull marginals, it is very flex-
ible for modelling purposes; for example, it can accommodate bivariate lifetime
data with non-constant marginal hazard rates.

In this article, we discuss the DBW distribution, its statistical properties,
and its applications in detail. First, after constructing the DBW distribution,
we explore some of its important properties which will be helpful in applying
the distribution to real data. Then, we discuss likelihood inference for the DBW
distribution, based on complete as well as right-censored lifetime data. Moment-
based estimators for the distribution based on complete data are also discussed.
The inferential methods are examined through extensive Monte Carlo simulation
studies. Then, as an application, a two-dimensional warranty model is discussed.
Analyses of two real datasets for illustrative purposes are presented. Based on
our exploration, we conclude that the DBW distribution has desirable statistical
properties, is computationally convenient, and is quite flexible for modelling pur-
poses. We recommend its extensive use in modelling bivariate data, especially
arising from lifetime experiments.

The paper is organized as follows. In Section 2, the DBW distribution with
its statistical properties, and data generation algorithm are presented. Likelihood
inference based on complete data from the DBW distribution, and a Monte Carlo
simulation study to evaluate the point and interval estimates are presented in
Section 3. This section also contains discussion of a procedure for obtaining
moment-based estimators. In Section 4, inferences for the DBW distribution
based on bivariate right-censored data are discussed, and a simulation study
examining the performance of the estimates are presented. An application in the
form of a two-dimensional warranty model is presented in Section 5. Two case
studies based on real datasets are provided in Section 6 for illustrative purposes.
Finally, the paper is concluded with some remarks in Section 7.
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2. DOWNTON’S BIVARIATE WEIBULL DISTRIBUTION

Suppose (Y1, Y2) ∼ DBE(θ1, θ2, ρ). Consider the transformations X1 =
Y α1
1 and X2 = Y α2

2 , with α1, α2 > 0. The joint density of the transformed
random variables X1 and X2 is then given by
(2.1)

fX1,X2(x1, x2) =
η1η2x

η1−1
1 xη2−1

2

θ1θ2(1− ρ)
exp

{
− 1

1− ρ

(
xη11
θ1

+
xη22
θ2

)}
I0

(
2(ρxη11 x

η2
2 )1/2

(1− ρ)
√
θ1θ2

)
, x1, x2 > 0,

with θ1, θ2, η1, η2 > 0 and 0 ≤ ρ < 1, where η1 = 1/α1 and η2 = 1/α2. Thus,
through this power transformation of the variables Y1 and Y2, we obtain a bivari-
ate distribution which we call the Downton’s bivariate Weibull (DBW) distribu-
tion. We write this as (X1, X2) ∼ DBW (η1, θ1, η2, θ2, ρ). A similar distribution,
called the Nakagami-m distribution, was discussed by Sagias and Karagianni-
dis [15] in the context of modelling fading channels relating to digital communi-
cation systems. However, Sagias and Karagiannidis [15] derived this distribution
starting from a bivariate Rayleigh distribution.

Using an infinite series representation of the Bessel function provided in
Gradshteyn and Ryzhik [7] as

I0(z) =
∞∑
k=0

1

(k!)2
(z
2

)2k
,

we can obtain another representation of the PDF of the DBW distribution as

fX1,X2(x1, x2) = η1η2 exp

{
− 1

1− ρ

(
xη11
θ1

+
xη22
θ2

)}
×

∞∑
k=0

ρk

(k!)2(1− ρ)2k+1

x
−1+(k+1)η1
1 x

−1+(k+1)η2
2

(θ1θ2)k+1
, x1, x2 > 0.(2.2)

The corresponding joint cumulative density function (CDF) of X1 and X2 can be
obtained as

FX1,X2(x1, x2) = 1− exp

(
− xη11

θ1

)
Q1

(√
2

1− ρ

x
η2/2
2√
θ2
,

√
2ρ

1− ρ

x
η1/2
1√
θ1

)
− exp

(
− xη22

θ2

)[
1−Q1

(√
2ρ

1− ρ

x
η2/2
2√
θ2
,

√
2

1− ρ

x
η1/2
1√
θ1

)]
,(2.3)

where Q1(·, ·) is the first order Marcum’s Q-function [11]. The bivariate survival
function of X1 and X2 is given by

SX1,X2(x1, x2) = 1− FX1(x1)− FX2(x2) + FX1,X2(x1, x2)

= exp

(
− xη11

θ1

)[
1−Q1

(√
2

1− ρ

x
η2/2
2√
θ2
,

√
2ρ

1− ρ

x
η1/2
1√
θ1

)]
+exp

(
− xη22

θ2

)
Q1

(√
2ρ

1− ρ

x
η2/2
2√
θ2
,

√
2

1− ρ

x
η1/2
1√
θ1

)
,(2.4)
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where FX1 and FX2 are the marginal CDFs of X1 and X2, respectively. In
Figures 1 and 2, the joint density function is plotted for different values of the
parameters.

Figure 1: Plot of joint density: left: η1 = η2 = 1.5, θ1 = θ2 = 1, ρ = 0,
right: η1 = η2 = 1.5, θ1 = θ2 = 1, ρ = 0.25

2.1. Some properties

If (X1, X2) ∼ DBW(η1, θ1, η2, θ2, ρ), the marginal distributions of X1 and
X2 are univariate Weibull with parameters (η1, θ1) and (η2, θ2), respectively, with
PDF

(2.5) fXi(xi) =
ηi
θi
xηi−1
i exp

{
−
xηii
θi

}
, xi > 0,

and CDF

(2.6) FXi(xi) = 1− exp

{
−
xηii
θi

}
, xi > 0

for i = 1, 2.

The conditional distributions can be obtained by using the joint density
and the marginal densities. If (X1, X2) ∼ DBW(η1, θ1, η2, θ2, ρ), then the PDFs
of the conditional distributions of X1 given X2 = x2, and X2 given X1 = x1 are
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Figure 2: Plot of joint density: left: η1 = η2 = 1.5, θ1 = θ2 = 1, ρ = 0.5,
right: η1 = η2 = 1.5, θ1 = θ2 = 1, ρ = 0.75

given by
(2.7)

fX1|X2=x2
(x1) =

η1x
η1−1
1

θ1(1− ρ)
exp{−(A1+A2)}

∞∑
k=0

1

(k!)2
ρk

(1− ρ)2k

(
xη11 x

η2
2

θ1θ2

)k

, x1 > 0

and
(2.8)

fX2|X1=x1
(x2) =

η2x
η2−1
2

θ2(1− ρ)
exp{−(B1+B2)}

∞∑
k=0

1

(k!)2
ρk

(1− ρ)2k

(
xη11 x

η2
2

θ1θ2

)k

, x2 > 0,

respectively. The CDFs of the conditional distributions of X1 given X2 =
x2, and X2 given X1 = x1 are given by

(2.9) FX1|X2=x2
(x1) = exp{−A2} ×

∞∑
k=0

1

(k!)2
Ak

2γ(k + 1, A1), x1 > 0,

and

(2.10) FX2|X1=x1
(x2) = exp{−B2} ×

∞∑
k=0

1

(k!)2
Bk

2γ(k + 1, B1), x2 > 0,

respectively, where γ(s, t) =
∫ t
0 u

s−1e−udu is the lower incomplete gamma func-
tion, and

A1 =
1

1− ρ

xη11
θ1
, A2 =

ρ

1− ρ

xη22
θ2
, B1 =

1

1− ρ

xη22
θ2
, B2 =

ρ

1− ρ

xη11
θ1
.
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Alternative expressions involving the modified Bessel function for the con-
ditional PDFs and CDFs can be obtained. If (X1, X2) ∼ DBW(η1, θ1, η2, θ2, ρ),
then alternative expressions for the PDFs of the conditional distributions of X1

given X2 = x2, and X2 given X1 = x1, respectively, are given by

(2.11) fX1|X2=x2
(x1) =

η1x
η1−1
1

θ1(1− ρ)
exp{−(A1+A2)}I0

(
2(ρxη11 x

η2
2 )1/2

(1− ρ)
√
θ1θ2

)
, x1 > 0

and
(2.12)

fX2|X1=x1
(x2) =

η2x
η2−1
2

θ2(1− ρ)
exp{−(B1 +B2)}I0

(
2(ρxη11 x

η2
2 )1/2

(1− ρ)
√
θ1θ2

)
, x2 > 0.

Similarly, alternative expressions for the CDFs of the conditional distributions of
X1 given X2 = x2, and X2 given X1 = x1 are given by

FX1|X2=x2
(x1) = A1 exp(−A2)

∫ 1

0
e−A1tI0(2

√
A1A2t)dt,

FX2|X1=x1
(x2) = B1 exp(−B2)

∫ 1

0
e−B1tI0(2

√
B1B2t)dt,

respectively, which can be shown as follows. Note that we can write

FX1|X2=x2
(x1) = exp{−A2}

∞∑
k=0

1

(k!)2
Ak

2γ(k + 1, A1)

= exp{−A2}
∞∑
k=0

1

(k!)2
Ak

2

[
k! exp{−A1}Ak+1

1

∞∑
l=0

Al
1

(l + k + 1)!

]

= A1 exp{−(A1 +A2)}
∞∑
k=0

∞∑
l=0

(1)l
(2)l+k

(A1A2)
k

k!

Al
1

l!

= A1 exp{−(A1 +A2)}Φ3(b = 1, c = 2, w = A1, z = A1A2)

= A1 exp{−(A1 +A2)}
[
exp{A1}

∫ 1

0
e−A1tI0(2

√
A1A2t)dt

]
= A1 exp{−A2}

∫ 1

0
e−A1tI0(2

√
A1A2t)dt

where

Φ3(b, c, w, z) =
∞∑
k=0

∞∑
l=0

(b)k
(c)k+l

wkzl

k!l!

is the Humbert function or the confluent Appell function [4].

The correlation parameter ρ captures the dependence between X1 and X2.
If (X1, X2) ∼ DBW(η1, θ1, η2, θ2, ρ), X1 and X2 are independent if and only if ρ
= 0. When 0 < ρ < 1, X1 and X2 are correlated. However, note that ρ is not the
Pearson’s correlation coefficient between X1 and X2 for the DBW distribution.

Following [15], an expression for the product moments of the DBW distri-
bution, in terms of the generalized hypergeometric function, can be obtained to
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Figure 3: Plot of ρ and ρPMC ; the values of the shape parameters for
different sets are the following - Set 1: η1 = η2 = 0.1, Set 2: η1
= η2 = 0.5, Set 3: η1 = η2 = 2.4, Set 4: η1 = η2 = 4.5. The
y = x line is in black.

be

E(Xm1
1 Xm2

2 ) = (1−ρ)1+
m1
η1

+
m2
η2 θ

m1
η1
1 θ

m2
η2
2 Γ(1+

m1

η1
)Γ(1+

m2

η2
)×2F1

(
1 +

m1

η1
, 1 +

m2

η2
; 1; ρ

)
,

where 2F1 (·; ·; ·) is the generalized hypergeometric function. Therefore, the prod-
uct moment correlation coefficient of X1 and X2 is given by

ρPMC =
Γ(1 + 1

η1
)Γ(1 + 1

η2
)[(1− ρ)

1+ 1
η1

+ 1
η2 × 2F1

(
1 + 1

η1
, 1 + 1

η2
; 1; ρ

)
− 1]√

Γ(1 + 2
η1
)− {Γ(1 + 1

η1
)}2

√
Γ(1 + 2

η2
)− {Γ(1 + 1

η2
)}2

.

The expression for the product moment correlation ρPMC clearly shows that ρ is
not the correlation coefficient between X1 and X2 for the DBW distribution and
in fact only takes values in [0,1). Note that ρPMC depends only on η1, η2, and
ρ; the scale parameters θ1 and θ2 have no impact on the correlation coefficient.
Figure 3 gives a plot of different values of ρ and ρPMC , for different values of η1
and η2.

2.2. Data generation algorithm

Realisations from the DBW distribution can be generated using the marginal
and conditional distributions. To generate an observation (x1, x2) from the
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DBW (η1, θ1, η2, θ2, ρ) distribution, the simplest route would be to generate
x1 from the marginal Weibull distribution, and then for the given value x1, to
generate x2 from its conditional distribution. The conditional distribution in
Eq.(2.10) is computationally efficient in this regard. The process of generating
random variables from the DBW distribution is as follows:

Algorithm:
Step 1: Generate x1 from Weibull(η1, θ1).

Step 2: Transform x1 into z1, where z1 =
ρ

1−ρ
x
η1
1
θ1

.
Step 3: Generate z2 from the distribution with CDF

FZ2|Z1=z1(z2) = z2 exp(−z1)
∫ 1

0
e−z2tI0(2

√
z1z2t)dt.

Step 4: Obtain x2, using the transformation x2 = (θ2(1− ρ)z2)
1/η2 .

Note, however, that the above algorithm should only be used when 0 < ρ < 1.
For ρ = 0, x1 and x2 can be generated directly from their respective marginal
distributions.

3. INFERENCE BASED ON COMPLETE BIVARIATE DATA

3.1. Likelihood inference

Based on observed bivariate data, maximum likelihood estimates (MLEs)
for the parameters of the DBW distribution may be obtained. Let (x1i, x2i), i =
1, ..., n, denote the observed bivariate data. The likelihood function is given by

L(ω) =
n∏

i=1

fX1,X2(x1i, x2i),

where ω = (η1, θ1, η2, θ2, ρ) is the vector of model parameters. Using the joint
PDF of X1 and X2 given in Eq.(2.1), the log-likelihood function is

logL(ω) = n(log η1 + log η2 − log θ1 − log θ2 − log(1− ρ))

+(η1 − 1)
n∑

i=1

log x1i + (η2 − 1)
n∑

i=1

log x2i −
1

1− ρ

n∑
i=1

(
xη11i
θ1

+
xη22i
θ2

)

+
n∑

i=1

log I0

(
2(ρxη11ix

η2
2i )

1/2

(1− ρ)
√
θ1θ2

)
.(3.1)

The log-likelihood equations with respect to η1, θ1, η2, θ2, and ρ are as
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follows:
(3.2)

∂ logL

∂η1
=

n

η1
+

n∑
i=1

log x1i−
1

1− ρ

n∑
i=1

x1i log x1i
θ1

+
n∑

i=1

I ′0

(
2(ρx

η1
1i x

η2
2i )

1/2

(1−ρ)
√
θ1θ2

)(
(ρx

η1
1i x

η2
2i )

1/2

(1−ρ)
√
θ1θ2

)
log x1i

I0

(
2(ρx

η1
1i x

η2
2i )

1/2

(1−ρ)
√
θ1θ2

) ,

(3.3)
∂ logL

∂θ1
= − n

θ1
+

1

1− ρ

n∑
i=1

xη11i
θ21

−
n∑

i=1

I ′0

(
2(ρx

η1
1i x

η2
2i )

1/2

(1−ρ)
√
θ1θ2

)(
(ρx

η1
1i x

η2
2i )

1/2

(1−ρ)
√

θ31θ2

)
I0

(
2(ρx

η1
1i x

η2
2i )

1/2

(1−ρ)
√
θ1θ2

) ,

(3.4)

∂ logL

∂η2
=

n

η2
+

n∑
i=1

log x2i−
1

1− ρ

n∑
i=1

x2i log x2i
θ2

+
n∑

i=1

I ′0

(
2(ρx

η1
1i x

η2
2i )

1/2

(1−ρ)
√
θ1θ2

)(
(ρx

η1
1i x

η2
2i )

1/2

(1−ρ)
√
θ1θ2

)
log x2i

I0

(
2(ρx

η1
1i x

η2
2i )

1/2

(1−ρ)
√
θ1θ2

) ,

(3.5)
∂ logL

∂θ2
= − n

θ2
+

1

1− ρ

n∑
i=1

xη22i
θ22

−
n∑

i=1

I ′0

(
2(ρx

η1
1i x

η2
2i )

1/2

(1−ρ)
√
θ1θ2

)(
(ρx

η1
1i x

η2
2i )

1/2

(1−ρ)
√

θ1θ32

)
I0

(
2(ρx

η1
1i x

η2
2i )

1/2

(1−ρ)
√
θ1θ2

) ,

(3.6)

∂ logL

∂ρ
=

n

1− ρ
− 1

(1− ρ)2

n∑
i=1

(
xη11i
θ1

+
xη22i
θ2

)
−

n∑
i=1

I ′0

(
2(ρx

η1
1i x

η2
2i )

1/2

(1−ρ)
√
θ1θ2

)(
(x

η1
1i x

η2
2i )

1/2

√
ρθ1θ2

)
1+ρ

(1−ρ)2

I0

(
2(ρx

η1
1i x

η2
2i )

1/2

(1−ρ)
√
θ1θ2

) ,

where I ′0(z) =
∂
∂z I0(z). Using the relation

∂

∂z
Iν(z) =

ν

z
Iν(z) + Iν+1(z),

we readily obtain I ′0(z) = I1(z), where I1(z), the modified Bessel function of the
first kind of order one, is given by the power series expansion

I1(z) =
∞∑
k=0

(z/2)1+2k

k!Γ(k + 2)
.

It may be observed that it is not possible to obtain explicit solutions to these
log-likelihood equations, and one has to rely on numerical methods for obtaining
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the MLE ω̂ = (η̂1, θ̂1, η̂2, θ̂2, ρ̂). Numerical methods such as the Newton-Raphson
technique, or its modified versions can be employed to obtain ω̂.

Asymptotic confidence intervals for the model parameters may be obtained
by using the observed Fisher information matrix, and asymptotic normality of
the MLEs. The observed Fisher information matrix, denoted by I(ω), is defined
as the negative of the hessian of log-likelihood function in Eq.(3.1); that is,

I(ω) = −∇2(logL(ω)).

Now, under general regularity conditions, we know that the asymptotic distribu-
tion of the MLE ω̂ is a multivariate normal distribution, i.e.,

√
n(ω̂ − ω) → N5(0, I

−1(ω)|ω=ω̂).

Using the above, asymptotic confidence intervals for the model parameters can be
constructed. For example, for η1, an asymptotic 100(1-β)% confidence interval is
given by

(η̂1 − τβ/2

√
I−1
1,1 , η̂1 + τβ/2

√
I−1
1,1)

where I−1
i,j is the (i, j)-th element of I−1(ω)|ω=ω̂, and τδ is the upper δ-percentile

point of the standard normal distribution. Asymptotic confidence intervals for
the parameters θ1, η2, θ2, and ρ can be constructed in a similar fashion.

3.1.1. Choice of initial values

The numerical method for obtaining MLEs requires initial choices for the
values of the parameters. Here, we develop a method for choosing initial param-
eter values. Note that the marginal distribution of X1 (or X2) does not depend
on η2 and θ2 (or η1 and θ1). Based on this observation, we propose a method for
computing closed form initial values.

When X follows a Weibull distribution with the PDF as given in Eq.(2.5),
then Z = logX has an extreme-value distribution with PDF

fZ(z) =
1

σ
exp

[(
z − µ

σ

)
−exp

(
z − µ

σ

)]
, −∞ < z <∞,−∞ < µ <∞, σ > 0,

where µ and σ are location and scale parameters, respectively, with

µ =
1

η
log θ, σ =

1

η
.

It can be shown that

E(Z) = µ− γσ, V ar(Z) =
π2

6
σ2,
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where γ = 0.5722 (approximately) is the Euler’s constant. Using these results
and relations, by equating the population moments with corresponding sample
quantites and then by transforming back, we can easily work out approximate
estimates for θ1, θ2, η1, and η2, as follows:

θi = exp

(
z̄i

(√
6

π
si

)−1

+ γ

)
, ηi =

(√
6

π
si

)−1

, i = 1, 2,

where zi = log(xi), z̄i =
1
n

∑n
i=1 zi, and si =

√
1

n−1

∑n
i=1(zi − z̄)2.

For the dependence parameter ρ, we choose the initial value by equating it
to the sample Pearson’s correlation coefficient estimated from the data, though
it should be recalled here that ρ is not the Pearson’s correlation coefficient for
the DBW distribution. We have observed in our Monte Carlo simulation studies
that the initial choices of parameter values obtained in this manner work quite
efficiently for the numerical optimization technique to calculate the MLEs.

3.2. Estimators based on moments

Moment-based estimates of the parameters of the DBW distribution can be
obtained by using results from the marginal and joint distributions. Note that,
from the marginal distributions of X1 and X2, we have

(3.7) E(Xi) = θ
1/ηi
i Γ

(
1 +

1

ηi

)
, E(X2

i ) = θ
2/ηi
i Γ

(
1 +

2

ηi

)
, i = 1, 2.

Suppose we have observed data as n pairs (x1j , x2j), j = 1, ..., n. Using Eq.(3.7),
based on the observed data, we form the following equations, for i = 1, 2:

1
n

∑n
j=1 xij = θ

1/ηi
i Γ

(
1 +

1

ηi

)
(3.8)

1
n

∑n
j=1 x

2
ij = θ

2/ηi
i Γ

(
1 +

2

ηi

)
(3.9)

which readily give

(3.10)
Γ(1 + 2

ηi
)

{Γ(1 + 1
ηi
)}2

=
1
n

∑n
j=1 x

2
ij

x2i
,

where xi =
1
n

∑n
j=1 xij . A moment-based estimator of ηi, say η̃i, can be obtained

by numerically solving (3.10). Then, from (3.8), a moment-based estimator of θi,
say θ̃i, can be obtained as

(3.11) θ̃i =

[
xi

Γ(1 + 1
η̃i
)

]η̃i
, i = 1, 2.
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Now, note that when (X1, X2) ∼ DBW (η1, θ1, η2, θ2, ρ), we have (Y1, Y2) ∼
DBE(θ1, θ2, ρ), where Yi = Xηi

i , for i = 1, 2. A closed form expression for
the moment µ′r1,r2 = E(Xr1

1 X
r2
2 ) of the (r1, r2)-th order of the DBE(θ1, θ2, ρ)

distribution can be obtained from Al-Saadi et al. [1] as

µ′r1,r2 = r1!r2!θ
r1
1 θ

r2
2

r2∑
j=0

(
r2
j

)(
r1 + r2 − j

r1

)
ρr2−j(1− ρ)j ,

from which it follows that

(3.12) µ′1,1 = (1 + ρ)θ1θ2.

Al-Saadi and Young [2] proposed moment-estimators for the parameters of the
Downton’s bivariate exponential (DBE) distribution based on this result. Bal-
akrishnan and Ng [3] proposed methods for improving estimates of ρ for the
DBE distribution through resampling schemes. For the DBW (η1, θ1, η2, θ2, ρ)
distribution, using the data (x1j , x2j), j = 1, ..., n, and using (3.12), we define

(3.13) R =

∑n
j=1 y1jy2j

nθ̃1θ̃2
− 1,

where Yi = Xηi
i , i = 1, 2, and θ̃1 and θ̃2 are as given in (3.11). Finally, a moment-

based estimator for ρ can be proposed as

ρ̃ =


0, if R < 0

R, if 0 ≤ R < 1

1, if R ≥ 1.

(3.14)

The process described above can be organized in the form of an algorithm to com-
pute the moment-based estimators θ̃1, θ̃2, η̃1, η̃2, and ρ̃, using the data (x1j , x2j),
j = 1, ..., n as follows:
Algorithm 2:

Step 1: Obtain η̃i, i = 1, 2, by numerically solving (3.10).
Step 2: Obtain θ̃i, i = 1, 2, from (3.11).

Step 3: Transform the data into (y1j , y2j), where yij = xη̃iij , i = 1, 2,
j = 1, ..., n.

Step 4: Based on the transformed data (y1j , y2j), obtain ρ̃ from (3.14).

Note that the moment-based estimates of parameters may be used as initial
values for numerical computation of the MLEs.

3.3. Numerical Experiments: Monte Carlo simulations

To examine performance of the MLEs η̂1, θ̂1, η̂2, θ̂2, and ρ̂, and the asymp-
totic confidence intervals, extensive Monte Carlo simulations are carried out by
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using the R software [14]. For generating observations from the DBW distribu-
tion, the Algorithm 1 in Section 2.2 is followed.

The scale parameters θ1 and θ2 are fixed at unity, without any loss of gen-
erality. Different values of the shape parameters η1 and η2, and the dependence
parameter ρ are used. The values of η1 and η2 are set at 0.50, 0.75, 1.00, and
1.25; ρ is taken as 0.25 (small), 0.5 (moderate), and 0.75 (high). Finally, all these
settings are repeated for three different sample sizes: 20, 40, and 100. The de-
tailed results of this detailed Monte Carlo simulation study are presented in the
online supplementary materials of this paper in which we report bias and mean
squared error (MSE) of the MLEs. Coverage probability of the asymptotic 95%
confidence intervals are also reported.

It may be noted that the bias and MSE of the MLEs of all the parameters
are quite reasonable. Clearly, as one would expect, the bias and MSE decrease
with increasing sample size. The coverage probability of the confidence intervals
for all parameters are reasonably close to the nominal level of 95%, and as ex-
pected, they improve with increasing sample size. The coverage probability of
the confidence interval for ρ when ρ = 0.25 in smaller samples (n = 20, 40) is
somewhat less than the nominal level, but for larger samples (n = 75, 100) it
improves, and gets closer to the nominal level. Overall, the simulation results
reflect that the MLEs are reasonably close to the true parameter values for a
very wide range of simulation settings.

For the accuracy of the asymptotic confidence intervals, an important factor
of the asymptotic normality of the MLEs. Here, we present histograms of the
MLEs corresponding to one of the simulation settings in Figure 4. As pointed out
by one of the reviewers, the asymptotic normality of the MLE of the parameter
ρ can be questionable, especially when the true value of ρ is close to 0 and 1. To
address this issue, suitable transformations of the MLEs may be considered. We
optimized the likelihood function on a different scale transforming the parameters,
to avoid any such problem. Natural logarithm transformation was considered for
θ1, θ2, η1, and η2, and logit transformation was considered for ρ. The histograms
of the transformed estimates are given in Figure 5. Similar results are obtained
for all simulation settings considered.

4. INFERENCE BASED ON RIGHT-CENSORED DATA

4.1. Maximum likelihood estimation

In reliability experiments, right-censoring, and by that we mean Type-I
right censoring, is perhaps the most common among different censoring mech-
anisms. For the univariate case, it may be described as follows. In the right-
censoring scheme, units under study are followed up to a pre-fixed time-point,
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Figure 4: Histogram of the MLEs based on complete data when η1 = η2
= 1, θ1 = θ2 = 1, ρ = 0.5.
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Figure 5: Histogram of the transformed MLEs based on complete data
when η1 = η2 = 1, θ1 = θ2 = 1, ρ = 0.5.

often called the right-censoring point. The units which are still in working con-
dition at this point, are called the right-censored units. The data on lifetimes
obtained from such a study are then a mixture of observed failures and right
censored lifetimes. Inferential procedures based on univariate data with right-
censoring have been developed by several authors; see for example Meeker and
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Escobar [13].

For bivariate lifetime data, naturally the right-censoring model needs to
consider censoring on both components of the lifetime vector. We consider the
following model for right-censoring in the bivariate case. First, assume that all
the n units under study are followed starting from a common time point, say τ ,
and are followed until a pre-fixed time point, say T ; the endpoint T is assumed
to be common to both components of the lifetime vector (X1, X2) for each unit
(though this assumption can be relaxed without complications). At the end of
the study, there are four possibilities for each unit: (a) failure with respect to
both components X1 and X2, (b) failure with respect to X1, but X2 is right
censored at T , (c) failure with respect to X2, but X1 is right censored at T , (d)
both components are right-censored at T . We assume non-informative censoring,
i.e., the censoring mechanism is assumed to be independent of the lifetimes.

We can now construct the likelihood function for right-censored data. Let
∆1 and ∆2 denote indicators of censoring of a unit with corresponding to X1 and
X2, respectively, i.e., for i = 1, 2,

∆i =

{
0, if Xi > T − τ

1, otherwise.

Let Sobs, S1, and S2, and Scen denote index sets such that

Sobs = {j : ∆1j = 1,∆2j = 1}, S1 = {j : ∆1j = 1,∆2j = 0}

S2 = {i : ∆1j = 0,∆2j = 1}, Scen = {i : ∆1j = 0,∆2j = 0}.

Then the observed likelihood function for bivariate right-censored lifetime data
is given by

L(ω) =
∏

j∈Sobs

fX1,X2(x1j , x2j)×
∏
j∈S1

fX1(x1j)[1− FX2|X1=x1j
(T − τ)]

×
∏
j∈S2

fX2(x2j)[1− FX1|X2=x2j
(T − τ)]×

∏
j∈Scen

SX1,X2(T − τ, T − τ).(4.1)

To further generalize the right-censoring model, consider the case where
different units may start from different time points. For the j-th unit that starts
from τj , the right-censoring time Cj is defined as the length of its life up to the
fixed right censoring point T , and in that case, its observed lifetime corresponding
to the two components X1 and X2 may be defined as

Z1j = Min(X1j , Cj), Z2j = Min(X2j , Cj).

The likelihood function can then be generalized as

L(ω) =

n∏
j=1

{fX1,X2(z1j , z2j)}∆1j∆2j{fX1(z1j)[1− FX2|X1=z1j (Cj)]}∆1j(1−∆2j)

×{fX2(z2j)[1− FX1|X2=z2j (Cj)]}(1−∆1j)∆2j{SX1,X2(Cj , Cj)}(1−∆1j)(1−∆2j).(4.2)
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It is quite clear that explicit, closed-formMLE of the parameters ω̂ = (η̂1, θ̂1, η̂2, θ̂2, ρ̂)
cannot be obtained by optimizing Eq.(4.1) or Eq.(4.2); numerical techniques must
be employed to compute the MLEs. Asymptotic confidence intervals for the pa-
rameters may be constructed by using asymptotic variance-covariance matrix
which is possible to obtain through the observed Fisher information matrix, in
a similar fashon as discussed in Section 3. It is of importance to mention here
that when all the observations are right-censored, i.e., ∆1i = 0 and ∆2i = 0 for
all i, the likelihood estimates do not converge. In statistical analysis of reliability
data, this is a quite common issue that occurs due to insufficiency of the available
information regarding the underlying lifetime distribution in case of no observed
failures.

4.2. Numerical experiments: Monte Carlo simulations

Detailed Monte Carlo simulations by using the R software are performed
to assess the performance of the MLEs of the DBW disribution based on right-
censored data. The bias and mean squared error (MSE) of the point estimates,
and coverage probability of the asymptotic confidence intervals are estimated
through simulations.

Three different sample sizes are used: n = 20 (small), 40 (moderate), and
100 (large). The scale parameters θ1 and θ2 are taken to be unity, without
loss of generality. Three different values, namely, 0.75, 1.00, and 1.25 are used
for the shape parameters η1 and η2. The dependence parameter ρ is fixed at
0.25 (moderate) and 0.75 (high). These settings are used along with different
right-censoring rates. The detailed simulation results are provided in the online
supplementary materials of this paper.

It is observed that bias and MSE of the MLEs in case of right-censored data
are quite reasonable throughout, demonstrating expected trend of reducing with
increasing sample size. The coverage probability of the confidence intervals for
all parameters η1, θ1, η2, and θ2 are very close to the nominal level of 95%. The
coverage probability of the confidence intervals for ρ is occasionally (e.g., when
true value of ρ is 0.25) away from the nominal level of 95% for smaller sample sizes
(n = 20), but it gradually improves with increase in sample size, and gets very
close to the nominal level of 95% for larger sample size (n = 100). In summary, it
may be concluded that the MLEs of parameters of the DBW distribution based
on right-censored data are quite efficient in estimating the true parameters for a
wide range of simulation settings.

In this case of time-censored data also, like the case with complete data,
we optimized the likelihood function on transformed scale of the parameters. We
provide histograms of the MLEs based on time-censored data, on the original
scale as well as transformed scale, for one of the simulation settings in Figures 6
and 7. This demonstrates asymptotic normality of the MLEs.
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Figure 6: Histogram of the MLEs based on censored data when η1 = η2
= 1, θ1 = θ2 = 1, ρ = 0.5.
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Figure 7: Histogram of the transformed MLEs based on censored data
when η1 = η2 = 1, θ1 = θ2 = 1, ρ = 0.5.
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5. APPLICATION TO A TWO-DIMENSIONAL WARRANTY MODEL

Several products such as automobiles, industry equipments, and heavy duty
machines are sold under a two-dimensional warranty. For such products, their
age as well as usage information are used to evaluate a warranty claim [9]. For
example, a manufacturer may sell a car under a warranty of 5 years or 50,000
kilometers.

Naturally, a bivariate distributional model will be suitable for analysing
reliability data with a two-dimensional warranty. Jung and Bai [9] proposed
a model for analysing two-dimensional warranty data. Motivated by the work
of Jung and Bai [9], here we propose a methodology to model two-dimensional
warranty data by using a bivariate distribution. Our methodology generalizes the
method proposed by Jung and Bai [9] by using more information while estimating
the underlying bivariate distribution in terms of different status of failures of units
sold under two-dimensional warranty.

Consider a product with two measurable quantities with respect to a two-
dimensional warranty; let the random variables U and V denote these measurable
quantities (for example, age and mileage of a car, respectively). Suppose the
product is sold under a two-dimensional warranty (ψ, ξ); that is, a failure is
considered to be within warranty when (U, V ) ∈ ψ ⊛ ξ, where

ψ ⊛ ξ = {(u, v) : 0 ≤ u ≤ ψ, 0 ≤ v ≤ ξ}.

Suppose U and V follow a bivariate distribution with CDF FU,V (u, v;ω)
with corresponding PDF fU,V (u, v;ω), where ω is the vector of relevant model
parameters. Our aim is to estimate the distribution FU,V (u, v;ω) based on field-
failure data of the product, so that relevant probabilities for the two-dimensional
warranty can be estimated from F̂U,V (u, v; ω̂).

Consider n units of the concerned product that are sold at a common time
(Ustart, Vstart) = (0, 0), under a two-dimensional warranty (ψ, ξ). Further assume
that the manufacturer observes the status of the units at (Uend, Vend) = (ψ, ξ).
For each unit, there are four possibilities at this stage:
(a) failure within the warranty region, i.e., (u, v) ∈ ψ ⊛ ξ; in this case its contri-
bution to the likelihood function would be fU,V (u, v),
(b) warranty expired with respect to U , but not with respect to V , i.e., U > ψ
and 0 ≤ V ≤ ξ; in this case, its contribution to the likelihood function would be
fU (u)[1− FV |U=u(ξ)],
(c) warranty expired with respect to V , but not with respect to U , i.e., 0 ≤ U ≤ ψ
and V > ξ; in this case its contribution to the likelihood function would be
fV (v)[1− FU |V=v(ψ)]
(d) warranty expired with respect to both U and V , i.e., U > ψ and V > ξ; in
this case its contribution to the likelihood function would be SU,V (ψ, ξ), where
S(U,V )(·, ·) is the joint survival function of (U, V ).
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Clearly, in cases (b), (c), and (d) above, at least one of the random variables
is right-censored. Analysing product field-failure data under two-dimensional
warranty is particularly challenging due to the right censored observations. Con-
sidering contributions of the n units under study according to their status with
respect to (a), (b), (c), and (d), the likelihood function for field-failure data under
two-dimensional warranty is given by

L(ω) =
n∏

i=1

{fU,V (ui, vi)}∆1i∆2i{fU (ui)[1− FV |U=ui
(ξ)]}∆1i(1−∆2i)

×{fV (vi)[1− FU |V=vi(ψ)]}
(1−∆1i)∆2i{SU,V (ψ, ξ)}(1−∆1i)(1−∆2i),(5.1)

where

∆1 =

{
0, if U > ψ

1, otherwise,

and

∆2 =

{
0, if V > ξ

1, otherwise.

It can be seen immediately that the likelihood in Eq.(5.1) follows from the general
right-censored likelihood in Eq.(4.2). The likelihood in Eq.(5.1) can be maximized
using numerical approach to obtain the MLE ω̂. Then, using ω̂, it is straight-
forward to estimate probabilities such as F̂U,V (ψ, ξ; ω̂), i.e., the probability of a
unit failing within the warranty region.

As the DBW distribution is a flexible model with Weibull marginals, it can
accommodate a wide range of lifetime data, successfully capturing non-constant
marginal hazard rates as well the dependence between the components. There-
fore, we propose to model the joint distribution of U and V by the DBW distri-
bution. When

(U, V ) ∼ DBW (η1, θ1, η2, θ2, ρ),

plugging-in the joint PDF, conditional CDFs, and joint survival function of
the distribution in Eq.(5.1), we can estimate the parameters by the MLE ω̂ =
(η̂1, θ̂1, η̂2, θ̂2, ρ̂). Then, the probability of a unit failing within the warranty region
is given by

F̂U,V (ψ, ξ; ω̂) = 1− exp

(
− ψη̂1

θ̂1

)
Q1

(√
2

1− ρ̂

ξη̂2/2√
θ̂2

,

√
2ρ̂

1− ρ̂

ψη̂1/2√
θ̂1

)

− exp

(
− ξη̂2

θ̂2

)[
1−Q1

(√
2ρ̂

1− ρ̂

ξη̂2/2√
θ̂2

,

√
2

1− ρ̂

ψη̂1/2√
θ̂1

)]
.(5.2)

An illustrative example of this warranty model is given in Section 6.1.



A bivariate Weibull distribution 21

Figure 8: Scatterplot of Age (X1) and Mileage (X2) of cars for the car
warranty data.

6. Case studies

In this section, we provide analyses of two real datasets. The first example
is based on the car warranty data of Jung and Bai [9]. The second example is
based on a general bivariate data on bone mineral density, originally from John-
son and Wichern [8]. The car warranty data demonstrates the use of the DBW
distribution for reliability data, including its application in the two-dimensional
warranty model discussed above. The the bone mineral density data is not a life-
time data as such, we present analysis of this data to demonstrate the versatility
of the DBW distribution in modelling different types of data.

6.1. Real Data 1: Car warranty data

The car warranty dataset, analysed by Jung and Bai [9], and Yuan [16],
contains data on age and mileage of 40 cars. Age and mileage of a car are two
measurable quantities to assess its lifetime. Yuan [16] analysed this data to obtain
generalized moment estimates of a bivariate Weibull distribution, while Jung and
Bai [9] considered a two-dimensional warranty model.

Suppose U and V are the age and mileage of a car, respectively. In Figure
8, a scatterplot of U and V is given. It is clear from this scatterplot that age
and mileage are highly correlated, which suggests that a bivariate distribution
that captures the dependence between them will be suitable to model the car
warranty data.
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Figure 9: Plot of hazard functions for the marginal distributions for the
car warranty data: car age (left), and car mileage (right).

Right-censoring Parameter MLE Asymptotic F̂U,V (ψ, ξ)
Point 95% CI

(0.5,0.5) θ1 3.909 (2.218, 6.891) F̂U,V (0.5, 0.5) = 0.250
θ2 2.679 (1.573, 4.562)
η1 0.428 (0.258, 0.710)
η2 0.379 (0.232, 0.620)
ρ 0.993 (0.983, 0.998)

(1,1) θ1 2.537 (1.597, 4.032) F̂U,V (1, 1) = 0.469
θ2 1.579 (1.049, 2.376)
η1 0.404 (0.254, 0.642)
η2 0.414 (0.271, 0.632)
ρ 0.991 (0.977, 0.996)

(2,2) θ1 1.778 (1.213, 2.609) F̂U,V (2, 2; ω̂) = 0.763
θ2 0.952 (0.695, 1.304)
η1 0.719 (0.550, 0.941)
η2 0.716 (0.546, 0.940)
ρ 0.985 (0.973, 0.992)

Table 1: MLEs and asymptotic confidence intervals of parameters of
the DBW model based on Warranty Data for different right-
censoring points

An option is to use the DBE distribution for this data. However, to observe
that the marginal distibutions of age and mileage have non-constant hazard rates,
see Figure 9. From this plot, it is clear that the DBE distribution will not be
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suitable for the car warranty data, as the marginal distributions of U and V
cannot be modelled by exponential distributions. Therefore, to accommodate
the non-constant marginal hazards rates, we model the car warranty data by the
DBW distribution, where the marginals are Weibull distributions. It may be
noted here that Jung and Bai [9] also provided justification for using the Weibull
distribution as the marginal models for age and mileage in the car warranty data;
though their bivariate model for age and mileage was not the DBW distribution.

The warranty data contains complete observations on U and V . However,
for illustrative purposes, here we artificially impose right censoring to analyse the
data; see the results presented in Table 1. Note that for greater amount of right-
censored units, the confidence intervals of the parameters are wider, implying
larger standard errors. Naturally, this implies that the estimates are relatively
more reliable for smaller right censoring percentages, as expected. The MLEs
can be used further to compute suitable porbabilities from the estimated model.
Table 1 also gives the estimated probabilities for units to fail within the warranty
region, for different two-dimensional warranty schemes: (ψ, ξ) = (0.5, 0.5), (1,1),
(2,2). It is, of course, possible to use different values for ψ and ξ, for example,
(ψ, ξ) = (1,2) etc. for real life applications.

6.2. Real Data 2: Bone mineral density data

The bone mineral density data from Johnson and Wichern [8] consists of
measurements on bone mineral density (BMD) in the unit g/cm2 for 24 adults.
Within each observation, the first value (X1) represents the BMD of the bone
dominant radius before the start of the study, and the second value (X2) repre-
sents the BMD of the bone after the study. A scatterplot of the observed data
indicates that the two variables are highly correlated.

Assuming DBW distribution for (X1, X2), we obtain the MLEs of the model
parameters based on the given BMD data; Table 2 gives the results. We also
calculate asymptotic 95% confidence intervals for the parameters.

Parameter Estimate 95% CI

θ1 0.407 (0.265, 0.623)
θ2 0.372 (0.236, 0.586)
η1 7.026 (5.427, 9.096)
η2 8.100 (5.846, 11.222)
ρ 0.935 (0.860, 0.972)

Table 2: Estimates of parameters of the DBW model based on the BMD
data

To check if the model fit is reasonable, in Figure 11 we plot the estimated
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Figure 10: Plot of BMD before and after study

Figure 11: Plot of empirical survival function and Weibull survival function
for the marginal distributions at the ordered observations with
estimates parameters for X1 (left) and X2 (right)

Weibull survival function Ŝ(t) = exp
{
−

(
tη̂

θ̂

)}
against the empirical survival

function, evaluated at the ordered observed values, separately for X1 and X2.
Noting that the plotted points roughly form a straight line which indicates that
the estimated values of the survival function are in agreement, we conclude that
the model fit is reasonable.
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Finally, we can compare the suitability of the DBW model with other bi-
variate models available in the literature. For this purpose, here we consider the
Marshall-Olkin bivariate Weibull (MOBW) distribution which was proposed by
Marshall and Olkin as an extension of a bivariate exponential distribution that
is now known as Marshall-Olkin bivariate exponential (MOBE) distribution [12].
For the DBW and MOBW models, we calculate the Akaike’s Information Crite-
rion (AIC), and compare the values; the model with the lower AIC value would
be more suitable for a given data. For the bone mineral density data, we obtain
AICDBW = -103.297, and AICMOBW = -55.457. This suggests that the DBW
distribution is a more suitable model for the bone mineral density data.

7. Conclusion

In this article, a bivariate Weibull distribution, which we call the Downton’s
bivariate Weibull (DBW) distribution, is considered. Important statistical prop-
erties of the DBW distribution are studied. Then, inferences based on complete,
and right-censored bivariate data are discussed for this distribution. Through
extensive Monte Carlo simulation studies, it is observed that the point and inter-
val estimates of the parameters of this distribution perform quite well - for both
complete as well as right-censored data. A two-dimensional warranty model is
discussed, and the application of the DBW distribution in the warranty model is
considered. For illustrative purposes, two case studies based on real datasets are
provided.

The DBW distribution has desirable statistical properties. It is quite flex-
ible for modelling purposes, and it computationally convenient. It successfully
captures the dependence between the components of a lifetime vector. In par-
ticular, the DBW distribution is very useful in modelling bivariate lifetime data
when the marginal distributions indicate non-constant hazard rates. Based on
our explorations presented in this paper, we strongly recommend its use in real
life, particularly to model bivariate reliability data.
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