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Abstract:

• The skew-normal distribution and some of its extensions have been considered in the
last two decades in view of distribution theory and the associated properties. However,
less attention has been paid to other aspects of this family of distributions. In this
paper, we focus on the information properties of this distribution and the distributions
of order statistics of a simple random sample from the skew-normal distribution. The
Shannon’s entropy as well as Kullback-Leibler divergence between the order statistics
of two independent skew-normal distributions are studied. Some interesting properties
of the information measures of different order statistics are presented.

Keywords:

• Kullback-Leibler information; Order statistic; Shannon’s entropy.

AMS Subject Classification:

• 62B10, 62F10, 62G30.

� Corresponding author

https://doi.org/00.00000/revstat.v00i0.000
mailto:p.hasanalipour116919@gmail.com
https://orcid.org/0000-0002-6661-2822
mailto:razmkhah_m@um.ac.ir
https://orcid.org/0000-0002-8841-1386
mailto:grmohtashami@um.ac.ir


2 P. Hasanalipour and M. Razmkhah and G. R. Mohtashami Borzadaran

1. Introduction and Preliminaries

The celebrated normal distribution has been known in all fields of data
analysis for centuries. Its popularity has been derived from its analytical simplic-
ity and the associated Central Limit Theorem. There are numerous situations
in which the assumption of normality is not validated by the data. So, some
families of near-normal distributions have played a crucial role in data analysis.
Azzalini [7] introduced the skew-normal (SN) distribution and studied some of
its properties. This class of distributions includes the normal distribution and
possesses several properties which coincide or are close to the properties of the
normal family. The random variable X is said to have skew-normal distribution,
denoted by X ∼ SN(λ), if it has the following probability density function (pdf)

φ(x;λ) = 2φ(x)Φ(λx), x ∈ (−∞,∞),(1.1)

where φ(·) and Φ(·) are the pdf and cumulative distribution function (cdf) of
standard normal distribution, respectively. The skewness parameter λ varies on
the real line and controls the skewness of the distribution. From (1.1), the cdf of
the SN(λ) distribution can be expressed as

Φ(x;λ) =

∫ x

−∞
2φ(t)Φ(λt)dt = Φ(x)− 2

∫ ∞
x

∫ λt

0
φ(u)φ(t)dudt.(1.2)

The standard normal distribution is a special case of the SN distribution, such
that SN(0) coincide with the normal distribution. Moreover, as λ tends to in-
finity, φ(x;λ) tends to the half-normal density. Also, the pdf of SN distribution
is a log-concave function. Many extensions of skew-normal distribution have
been proposed by different authors, and some inferential aspects of them have
been investigated; see, for example, Arellano-Valle et al. [3], Gómez et al. [13],
Hasanalipour and Sharafi [16], Azzalini and Capitanio [8], Hasanalipour et al.
[17], Hasanalipour and Razmkhah [14, 15] and Arnold et al. [6].

Let X1, . . . , Xn be a random sample of SN(λ) distribution; moreover, let
X1:n ≤ · · · ≤ Xn:n denote the corresponding order statistics. Then, for 1 < i < n,
the pdf of Xi:n is given by,

φi:n(x;λ) = ci,nφ(x;λ)Φi−1(x;λ)[1− Φ(x;λ)]n−i,(1.3)

where ci,n = i
(
n
i

)
, also, φ(x;λ) and Φ(x;λ) are as defined in (1.1) and (1.2),

respectively. For more details about order statistics and their applications, one
may refer to David and Nagaraja [9] and Arnold et al. [5].
The mathematical theory of communication introduced by Shannon [20] describes
logarithmic measures of information and has stimulated a tremendous amount of
study in engineering fields. It is a branch of applied probability and statistics
relevant to statistical inference and therefore, it should be of essential interest to
statisticians. The Shannon’s Entropy (SE) of a random variable X with pdf f(·)
is given by:

H(X) = −
∫ ∞
−∞

f(x) log f(x)dx.(1.4)
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Entropy is a measure of average uncertainty in a random variable, and also it is
considered as a measure of the randomness of a probabilistic system.

The KL divergence measuring the degree of divergence between two prob-
ability distributions, is another information index considered in this paper. By
assuming X and Y have pdfs f(·) and g(·), respectively, the KL divergence of
f(·) with respect to g(·) is defined as

K(X | Y ) =

∫ ∞
−∞

f(x) log
(f(x)

g(x)

)
dx.(1.5)

Note that K(X | Y ) becomes zero when f(x) = g(x), almost everywhere. Sev-
eral authors have studied the properties of the information measures of ordered
data in the fields of estimation, reliability analysis, quality control, goodness of
fit tests, characterization of probability distributions, and many other problems.
See, for example, Ebrahimi et al. [10, 11, 12], Zarezadeh and Asadi [21], Arellano-
Valle et al. [2, 4], Kayal and Kumar [19], Ardakani et al. [1], and Jose and Abdul
Sathar [18].
In this paper, we study some information properties of the order statistics of
simple random samples from the SN distribution. First, Shannon’s entropy of
the SN distribution is studied. It is proved that this measure is symmetric to the
skewness parameter, such that the maximum entropy occurs when the skewness
parameter is zero or equivalently when the distribution is normal. The results are
extended to the distributions of order statistics of a simple random sample from
the SN distribution. The relation between the entropies of lower and upper order
statistics from different SN distributions with opposite signs skewness parameters
is stated. The average entropy of distributions of order statistics and data dis-
tribution is also compared. Then, the Kullback-Leibler (KL) divergence between
the distribution of different order statistics is investigated, and some interesting
results are obtained, theoretically or numerically.

The rest of this paper is organized as follows. The Shannon’s entropy of SN
distribution and the distribution of order statistics are investigated in Section 2.
The KL divergence and some results are studied in Section 3. Eventually, some
conclusions are stated in Section 4.

2. The entropy of the skew-normal distribution

Let X have SN(λ) distribution. Then, using (1.4), the Shannon’s entropy
of X is given by

H(X;λ) = −
∫ ∞
−∞

φ(x;λ) log(φ(x;λ))dx.(2.1)

Theorem 2.1. The maximum entropy model in the skewed normal fam-
ily is the normal distribution.
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Proof: Assuming X ∼ SN(λ), the proof includes three parts:
(i) H(X;λ) = H(X;−λ);
(ii) limλ→±∞H(X;λ) = 1

2 + log
√

π
2 ;

(iii) H(X;λ) is increasing for λ < 0 and it is decreasing for λ > 0.

A well-known property of SN distribution is that if X ∼ φ(x;λ), then
−X = Y ∼ φ(y;−λ), hence, H(X;λ) = H(X;−λ) and the proof of part (i) is
complete. That is, the entropy of SN distribution does not depend on the sign of
the skewness parameter.

To prove part (ii), note that equation (6) of Arellano-Valle et al. [4] with
Φ(λx) gives the following relationship between the entropies of φ(x;λ) and φ(x):

H(X;λ)−H(X;λ = 0) = − log 2− E[log Φ(λX)],

where H(X;λ = 0) = 1
2 log(2πe) is the Shannon entropy of standard normal

distribution. Hence,

H(X;λ) =
1

2
+ log

√
π

2
− E[log Φ(λX)].(2.2)

On the other hand,

E[log Φ(λX)] =

∫ 0

−∞
φ(x;λ) log Φ(λx)dx+

∫ ∞
0

φ(x;λ) log Φ(λx)dx.(2.3)

Note that for x > 0 as λ→∞, we get Φ(λx)→ 1, hence, the second term in (2.3)
tends to zero when λ→∞. Moreover, for x < 0 as λ→∞, we have Φ(λx)→ 0
and by using L’Hopital’s rule Φ(λx) log Φ(λx)→ 0, hence, the first term in (2.3)
also tends to zero. Therefore, E[log Φ(λX)] → 0 as λ → ∞. Further, according
to part (i), it is deduced that limλ→−∞H(X;λ) = limλ→∞H(X;λ); hence, part
(ii) is also proved.

Finally, to prove part (iii), using (2.2), we get

∂

∂λ
H(X;λ) = −

∫ ∞
−∞

2xφ(x)φ(λx) log Φ(λx)dx−
∫ ∞
−∞

2xφ(x)φ(λx)dx

= −
√

2

π

1√
1 + λ2

E
(
Y log Φ(λY )

)
,

where Y ∼ N(0, 1
1+λ2

). By Stein’s lemma, if Y ∼ N(0, σ2), then E[Y g(Y )] =

σ2E[g′(Y )], provided that g(·) is a function for which both expectations E[Y g(Y )]
and E[g′(Y )] exist. Therefore,

∂

∂λ
H(X;λ) = −

√
2

π

λ

(1 + λ2)
3
2

E[
φ(λY )

Φ(λY )
].

On the other hand, E[ φ(λY )
Φ(λY ) ] > 0 for all λ. Hence, ∂

∂λH(X;λ) is negative (posi-

tive) for λ > (<)0. Therefore, the entropy of SN(λ) distribution is a unimodal
symmetric function of λ that maximizes at λ = 0. This completes the proof.
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Corollary 2.1. The skewness parameter orders the entropy and vari-
ance in the skewed normal family similarly, in that they both increase for λ < 0
and decrease for λ > 0. Such ordering behavior which holds for parts of supports
of parameter was studied by Ebrahimi et al. [11] for the beta family.

Remark 2.1. It is clear that when λ → ∞ (or λ → −∞), the φ(x;λ)
tends to the positive (or negative) half-normal distribution with pdf 2φ(x), for
x > 0 (or x < 0) (Azzalini [7]). It is not difficult to show that H(X+) = H(X−) =
1
2 +log

√
π
2 , where X+ and X− stand for positive and negative half-normal distri-

butions, respectively. Comparing to part (ii) of the proof of Theorem 2.1, it can
be concluded that limit of entropy is equal to the entropy of a limiting distribu-
tion; precisely, limλ→∞H(X;λ) = H(X+) and limλ→−∞H(X;λ) = H(X−). On
the other hand, from part (iii) of the proof of Theorem 2.1, it is concluded that
the entropy of SN(λ) distribution decreases to entropy of the limiting positive
(or negative) half-normal case for λ > 0 (or λ < 0). Such information properties
were investigated in details by Ardakani et al. [1] for symmetric families that
include the normal distribution as special cases.

Using (2.1) and employing the numerical computations, the behavior of
H(X;λ) with respect to λ is shown in Figure 1. This figure confirms that the
maximum entropy occurs for the case of λ = 0, which coincides with the case of
standard normal distribution.

H
(X

;λ
)

λ

Figure 1: Plot of H(X;λ) with respect to λ.

Now, we focus on entropy of order statistics of SN distribution. Using (1.1)
and (1.3) and doing some algebraic calculations, one can show that the entropy
of the ith order statistic of the SN distribution is

H(Xi:n;λ) = − log ci,n − log
2√
2π

−E
(

log Φ
(
λΦ−1(W ;λ)

))
+

1

2
E
(
(Φ−1(W ;λ))2

)
−i(i− 1)

(
ψ(i)− ψ(n+ 1)

)
− i(n− i)

(
ψ(n− i+ 1)− ψ(n+ 1)

)
,(2.4)
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where the random variable W has the beta distribution with parameters i and
(n− i+ 1), denoted by W ∼ Beta(i, n− i+ 1).

Remark 2.2. Similar to part (i) of the proof of Theorem 2.1, it is easy
to deduce that entropy of the ith order statistic from a SN distribution equals
the entropy of the (n − i + 1)th order statistic from a different SN distribution
with opposite sign skewness parameter. That is, for given i and λ, we have

(2.5) H(Xi:n;λ) = H(Xn−i+1:n;−λ).

From (2.4) and by using numerical computations, the behavior ofH(Xi:n;λ)
with respect to λ is shown in Figure 2 for n = 5 and i = 1, . . . , 5; for other values
of n and i, similar figures are obtained which are omitted due to similarity. From
this figure and similar ones, the following results are deduced:

• For given n and a fixed i, the entropy H(Xi:n;λ) is a symmetric increasing-
decreasing function of λ, such that the maximizer decreases when i goes
from 1 up to n. For example, the order statistics X1:5, X2:5, X3:5, X4:5, X5:5

get their maximum entropy at λ = 1.4, 0.6, 0,−0.6,−1.4, respectively.

• For given n, the entropies H(Xi:n;λ) and H(Xn−i+1:n;λ) have the same
maximum entropy that confirms the relation (2.5).

• For given n, the maximum entropy of Xi:n (or equivalently Xn−i+1:n) is
decreasing in i for i ≤ n

2 .

Figure 2: Plot of H(Xi:5;λ) with respect to λ for i = 1, . . . , 5.
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For more investigation about the entropy of order statistics of a simple
random sample of size n from the SN(λ) distribution, let us define the average
uncertainty of these statistics as follows:

(2.6) H̄n(X;λ) =
1

n

n∑
i=1

H(Xi:n;λ).

This measure can be used to compare the average entropy of distributions of
order statistics of a simple random sample of size n with the entropy of a single
observation or data distribution.

Using (2.6), the values of H̄n(X;λ) are calculated for some positive values of
λ and some choices of n. To compare them with entropy of the SN distribution,
numerical values of H(X;λ) are also computed. The results are presented in
Table 1. From this table, it is deduced that,

• Since, according to Remark 2.2, we get H̄n(X;λ) = H̄n(X;−λ), it is con-
cluded that both H̄n(X;λ) andH(X;λ) are symmetric increasing-decreasing
functions in λ for −∞ < λ <∞, such that maxλ H̄n(X;λ) = H̄n(X; 0) and
maxλH(X;λ) = H(X; 0).

• H(X;λ) > H̄n(X;λ), for all values of n and λ.

Table 1. Values of H̄n(X;λ) for some choices of λ and n.

λ
n 0.5 1 2 3 4 5 6 7 7.5
2 1.1576 1.0326 0.9391 0.8462 0.7570 0.6128 0.2274 0.0718 0.0265
3 1.0211 0.9961 0.8036 0.7208 0.6705 0.5446 0.2189 0.0636 0.0241
5 0.8384 0.8034 0.7123 0.6395 0.5774 0.4483 0.1941 0.0537 0.0211
10 0.5486 0.5136 0.4243 0.4114 0.4087 0.3033 0.1397 0.0411 0.0171

H(X;λ) 1.3507 1.2257 1.0456 0.9528 0.9001 0.7094 0.3461 0.0862 0.0307

3. Kullback–Leibler divergence

This section discusses some information between distributions of the ith
and the jth order statistics from SN distributions with different skewness param-
eters. Ebrahimi et al. [10] showed that the discrimination information between a
given order statistic and data distribution of the same population is distribution
free. They also proved that the discrimination information among different order
statistics of the same distribution is distribution free. The question arises here is
that what relationship exists between the order statistics of two different distribu-
tions. To study this important subject, suppose that X1, . . . , Xn and Y1, . . . , Ym
are simple random samples from different SN distributions with parameters λ1

and λ2, respectively. Also, let Xi:n be the ith order statistic from X, and Yj:m
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be the jth order statistic from Y . Using (1.5), the discrimination information
between the distribution of Xi:n and Yj:m is obtained as

Kλ1,λ2(Xi:n | Yj:m) =

∫ ∞
−∞

φi:n(x;λ1) log
φi:n(x;λ1)

φj:m(x;λ2)
dx

= −H(Xi:n;λ1)− log cj,m − E
(

log φ
(
Φ−1(W,λ1);λ2

))
−(j − 1)E

(
log Φ

(
Φ−1(W,λ1);λ2

))
−(m− j)E

(
log
(
1− Φ

(
Φ−1(W,λ1);λ2

)))
,(3.1)

where W ∼ Beta(i, n − i + 1) and Φ−1(·, λ) stands for the inverse function of
Φ(·;λ).

Remark 3.1. When λ1 = λ2, that is, in the situation in which both
samples come from the same distribution, it is trivial that in the spacial case
of n = m, the discrimination information between the distribution of Xi:n and
Yi:n is zero, i.e., Kλ1,λ1(Xi:n, Yi:n) = 0, for 1 ≤ i ≤ n. But, when λ1 6= λ2,
the KL information between the distribution of the order statistics of different
distributions is positive.

Using (3.1), the KL information between the distribution of sample maxima
may be obtained as

Kλ1,λ2(Xn:n | Yn:n) = (n− 1)E(logW ) + E

(
log φ(Φ−1(W,λ1);λ1)

)
−E
(

log φ(Φ−1(W,λ1);λ2)

)
− (n− 1)E

(
log Φ(Φ−1(W,λ1);λ2)

)
.

Similarly, the KL information between the distribution of sample minima is given
by

Kλ1,λ2(X1:n | Y1:n) = (n− 1)E(log(1−W )) + E

(
log φ(Φ−1(W,λ1);λ1)

)
−E
(

log φ(Φ−1(W,λ1);λ2)

)
− (n− 1)E

(
log

(
1− Φ(Φ−1(W,λ1);λ2)

))
.

Remark 3.2. Let X1, . . . , Xn and Y1, . . . , Ym be two independent ran-
dom samples from SN(λ1) and SN(λ2) distributions, respectively. Then, using
the fact that if X ∼ φ(x;λ), then −X = Y ∼ φ(y;−λ), it can be simply shown
that the KL divergence between two lower sample quantiles from the SN distri-
bution with given skewness parameter equals that of upper sample quantiles from
the SN distribution with opposite sign skewness parameter. More precisely, for
each 1 ≤ i ≤ n and 1 ≤ j ≤ m, we get

Kλ1,λ2(Xi:n | Yj:m) = K−λ1,−λ2(Xn−i+1:n | Ym−j+1:m),

Kλ1,−λ2(Xi:n | Yj:m) = K−λ1,λ2(Xn−i+1:n | Ym−j+1:m).
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The values of Kλ1,λ2(Xi:n | Yj:m) may be numerically obtained using (3.1).
Figure 3 shows the behavior of Kλ1,λ2(Xi:n | Yj:m) to λ2 when λ1 = 1, n = 6 and
m = 3. In fact, the KL between the pdfs of X1:6 (or X6:6) and Yj:3 for j = 1, 2, 3
are plotted in the left (right) hand side of this figure. Analogous results may be
obtained for other values of n and m.

Figure 3: Plots of K1,λ2
(Xi:6 | Yj:3) with respect to λ2 for i = 1 (the left plot) and

i = 6 (the right plot).

From Figure 3, the following results are deduced:

• For given λ1, the KL divergence is a decreasing-increasing function of λ2.

• From the left plot, it is observed that for given λ1, the KL divergence
between the minimum of X sample and the minimum of Y sample tends
to zero when λ2 tends to λ1. Though, the KL of X1:n and Yj:m, for j > 1,
becomes zero for smaller λ2.

• From the right plot, it is observed that for given λ1, the KL between Xn:n

and Ym:m becomes zero when λ2 tends to λ1, however, the KL of Xn:n and
Yj:m, for j < m, is zero for larger λ2.

• The above results mean that for given λ1, there exists a value such λj2 that
the pdf of a sample quantile Xi:n of SN(λ1) distribution closes to the pdf
of the sample quantile Yj:m of SN(λj2) distribution, such that λj2 decreases
with respect to j.

4. Conclusions

In this paper, some information properties of SN distribution and its order
statistics were studied. Shannon entropy and KL criteria were investigated, and
some theoretical and numerical results were obtained. The behavior of entropy
of the SN(λ) distribution to λ was studied, and it was shown that the maximum
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entropy model in the skewed normal family is the normal distribution. Moreover,
it was deduced that limit entropy equals the entropy of the limiting distribution
when λ tends to infinity. It was also shown that for fixed sample size, the entropy
of a given order statistic is symmetric an increasing-decreasing function of λ in
which the maximizer of entropy of Xi:n decreases when i goes from 1 up to n;
further, the maximum entropy of sample quantiles are decreasing to the maximum
entropy of sample median. The maximum entropy plays an important role in
choosing the best order statistics in specifying the outliers or determining the
control limits in statistical quality control. Also, it is possible to compare the
uncertainty of the distribution of k-out-of-n systems for different values of k or n.
Some relations were also obtained for the KL divergence between distributions
of the order statistics of two independent SN(λ1) and SN(λ2) distributions with
respect to the variations of skewness parameters and the ranks of order statistics
for given sample sizes. It was shown that for given λ1, the KL divergence is a
decreasing-increasing function of λ2; moreover, for any given λ1, there exists a
value λj2 such that the pdf of the sample quantile Xi:n of SN(λ1) distribution

closes to the pdf of the sample quantile Yj:m of SN(λj2) distribution, such that

λj2 decreases for j.
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ate Birnbaum-Saunders type distribution based on the skew generalized normal
model, REVSTAT-Statistical Journal, 21, 1–20.

[7] Azzalini, A. (1985). A class of distributions which includes the normal ones,
Scandinavian Journal of Statistics, 12, 171–178.

[8] Azzalini, A. and Capitanio, A. (2014). The skew-normal and related families,
Cambridge University Press.

[9] David, H. A. and Nagaraja, H. N. (2003). Order Statistics, John Wiley, New
York.

[10] Ebrahimi, N.; Soofi, E. S. and Zahedi, H. (2004). Information properties
of order statistics and spacing, IEEE Transactions on Information Theory, 50,
177–183.

[11] Ebrahimi, N.; Maasoumi, E. and Soofi, E.S. (1999). Ordering univariate
distributions by entropy and variance, Journal of Econometrics, 90, 317–336.

[12] Ebrahimi, N.; Soofi, E.S. and Soyer, R. (2010). Information measures in
perspective, International Statistical Review, 78, 383–412.
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