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1. INTRODUCTION

The methodology for survival data is designed to determine variables affecting the

hazard rate function and to obtain estimates of these functions for each individual. Stud-

ies involve following units (individuals) until the occurrence of some event of interest, for

example, the fault (death) of the unit. The model proposed by Cox (1972) is one of the

best known and used in analysis of survival data, however this model assumes that risks are

proportional, an assumption that is often unreasonable. To try to solve this limitation, the

additive hazard rate model was initially proposed by Aalen (1980). In the additive model

the effect of covariates is additive in the hazard rate function and not multiplicative as in the

Cox model.

Another characteristic of survival data is that some events of interest are not terminal.

Existing events sometimes occur more than once for the same individual, producing recurrent

events. Lifetime data where more than one event is observed on each subject arises in areas

such as biomedical studies, criminology, demography, manufacturing and industrial reliability.

For example, an offender may be convicted several times; several tumors may be observed for

an individual; recurrent pneumonia episodes arise in patients with human immunodeficiency

syndrome; a piece of equipment may experience repeated failures or warranty claims.

A reasonable assumption for recurrent event data is that times are dependent and that

risks are not proportional. An alternative to model these data types is the additive hazard

rate model. To measure the dependence between the recurrence times, we will use the frailty

term that can be inserted in an additive or multiplicative way. In this paper, we will use

the frailty term inserted additively. A parametric approach to additive models with frailty

was presented by Tomazella (2003). A Bayesian inference procedure for additive models with

frailty was considered in Tomazella et al. (2006).

Several methodologies have been proposed to analyze the problem of recurrent events.

Lawless and Nadeau (1995) applied the Poisson process to develop models that focus on the

expected number of events occurring in a determined time interval. The development of

statistical models based on counting process data was originally introduced by Aalen (1978).

There is an extensive literature about point process models (see, for example, Cox and Isham

(1980)).

Frailty models are characterized by the inclusion of a random effect representing infor-

mation that has not been observed or cannot be measured such as environmental or genetic

factors. Also, there may be information that, for some reason, was not considered in the plan-

ning process of the study. A way to incorporate this random effect, called frailty variable, is

to include it in the baseline hazard rate for controlling the unobservable heterogeneity of the

units under analysis. The frailty can be included into the model additively or multiplicatively

to assess the heterogeneity among units by means of the hazard rate Tomazella (2003). In

survival analysis, these units can be patients possessing different frailties, patients who are

“frail” or “prone” may have the disease earlier than those who are less frail.

Although early techniques developed for handling recurrent event data suppose in-

dependence among the recurrent event times (“lifetimes”) related to the same subject, an
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assumption of dependence among these lifetimes is reasonable. The dependence can be taken

into account by incorporating a random effect (so-called frailty) in modelling (Clayton, 1978).

The frailty term generates dependence among the lifetimes of each subject, which are assumed

to be conditionally independent given the frailty.

Advances in medical treatments increase researchers’ interest in considering survival

models for cancer data. The occurrence of an event of interest (for example, the patient’s

death) can be due to one or several competing causes. There are also some unobserved

external factors that can affect the onset of a tumor. The interest may be in understanding

and characterizing the event, illustrating the process for the individual subject, or the factors

may focus on time-based treatment comparisons for each distinct event, the number of events,

the type of events, and the interdependence between events. The idea is to explain the nature

of variation between subjects in terms of fixed covariates of treatments or other factors such

as unobservable factors.

This paper is motivated by two real medical data sets. The first is a medical data

set corresponding to animal carcinogenicity described by (Gail et al., 1980). The second

data set refers to readmission times after surgery in patients diagnosed with colorectal cancer

(González et al., 2005).

In this paper, we consider a class of parametric regression models which are extensions

of Aalen’s model with structure of recurrent event data. The research goals of analyzing such

data often include characterizing the rate of different event types, estimating the treatment

effects on each event process, and understanding the correlation structure among different

event types. The proposed model assumes that the intensity given the covariates and a

random frailty has an additive hazard rate form. The frailty in the proposed model is assumed

to follow a gamma distribution. We also include a baseline hazard rate assumed to follow the

exponential distribution or a Weibull distribution. We employ Laplace transform for finding

the survival function unconditional on the individual frailty. We use the maximum likelihood

(ML) method for estimating the corresponding parameters. We evaluate the performance of

the ML estimators via a Monte Carlo simulation method.

This paper is organized as follows. In Section 2, we present the additive frailty model

with a gamma frailty distribution. Inference methods based on the likelihood function are

also presented. In Section 3, we consider a simulation study in different scenarios. We

evaluate numerically the asymptotic properties of the estimators. In Section 4, we apply

these procedures to two real medical data sets. Some final remarks are made in Section 5.

2. METHODOLOGY

2.1. ADDITIVE FRAILTY MODEL FOR RECURRENT EVENT DATA

Rocha (1995) proposed a linear frailty model assuming the intensity function at the

instant ti,j , where individual i’s recurrent failure times are of the form 0 ≤ ti,1 < ti,2 <

· · · < ti,mi ≤ Ti, where Ti is the total lifetime and ti,j is the observed lifetime of individual
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i in the jth failure, where i = 1, 2, 3, . . . , n the index that identifies the individual and

j = 1, 2, 3, . . . ,mi the index representing the recurrent event of individual i (j = 0 is the

initial event).

From Aalen’s linear regression model (Aalen, 1980), we may define the additive intensity

model by

λi (t) = λ0 (t) + g (xi,β) ,(2.1)

where λ0 (·) is the baseline intensity function, β is the vector of regression coefficients, and

xi is covariate vector of the ith individual, i = 1, 2, . . . , n. Note that (2.1) is an alternative

to the established Cox regression model (Cox, 1972) that is defined by an intensity function

given by λi (t) = λ0 (t) g (xi,β).

A simple way of composing the intensity model with a frailty term is to introduce an

additive random effect in (2.1). Hence, following Silva (2001), the additive homogeneous

Poisson process with a frailty term is

λi (t|vi,xi) = λ0 (t) + x′
iβ + vi,(2.2)

where λ0 (t), β and xi are defined in (2.1) and vi is the frailty variable with a known dis-

tribution function. The frailty term in (2.2) represents the information that may not be

observed such as environment and genetics factors or information that, by some reason, was

not considered at the planning. These models are doubly additive, since both the observed

covariates xi and the frailty vi are introduced in (2.2) additively.

The survival function, conditioned to the frailty variable vi and to the effects of the

observed factors, obtained by the relation with the accumulated hazard rate function is

S (t|vi,xi) = exp

{
−
∫ Ti

0
λ (u|vi,xi) du

}
= exp

[
−
∫ Ti

0

{
λ0 (u) + x′

iβ + vi
}
du

]
= exp

{
−x′

iβTi − viTi − Λ (Ti)
}
.

The hazard rate function and the unconditional survival function can be obtained

through the Laplace transform; see Hougaard (1984). When looking for distributions for the

frailty variable, distributions having explicit Laplace transformations are a natural choice.

This facilitates the use of traditional ML methods for parameter estimation.

Since survival times are absolutely continuous random variables here, the unconditional

survival function for the ith individual associated with (2.2) is

S (t) =

∫ ∞

0
S (t|vi,xi) f (vi) dvi.

Hence,

S (t) =

∫ ∞

0
exp

{
−Λ0 (Ti)− x′

iβTi − vTi

}
f(v)dv

=

∫ ∞

0
exp

{
−Λ0 (Ti)− x′

iβTi

}
exp (−vTi) f(v)dv

= exp
{
−Λ0 (Ti)− x′

iβTi

}
L (Ti) ,(2.3)
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where Λ0 (t) is the cumulative baseline hazard rate function and L (t) is the Laplace transform

of v. The unconditional intensity function of (2.2) for the ith individual is

λi (t) = λ0 (t) + x′
iβ − L′ (t)

L (t)
,(2.4)

where L′ (t) is the derivative of the Laplace transform L (t) of the frailty distribution.

For a fully parametric analysis, we assume a gamma distribution for the frailty vari-

able. Our choice was essentially made by mathematical convenience. Interested readers can

refer to Hougaard (2000) for a comprehensive discussion about the choice of the frailty term

distribution.

2.1.1. ADDITIVE MODEL WITH GAMMA FRAILTY DISTRIBUTION

Due to the way the frailty term acts in the hazard rate function, the candidates for

the frailty distribution are supposed to be non-negative, usually continuous and not time-

dependent, such as the gamma, inverse Gaussian or log-normal distributions (Hougaard,

2000). The gamma distribution has been widely applied as a frailty distribution. From

a computational and analytical point of view, the gamma distribution fits very well as a

frailty distribution to failure data. Closed-form expressions for the unconditional survival,

cumulative density, and hazard rate functions are easy to derive for the gamma distribution,

due to the simplicity of its Laplace transform. This is also the reason why the gamma

distribution has been used in most applications published to date.

Thus, we consider the frailty variable v to have the gamma
(
1
α ,

1
α

)
distribution with

the probability density function given by

f(v) =

(
1
α

) 1
α

Γ
(
1
α

)v 1
α
−1 exp

(
− v

α

)
,

where v > 0 and α quantifies the amount of heterogeneity among subjects. The Laplace

transform L(t) for the distribution is

L(t) =

∫ ∞

0
e−tvf(v)dv = (1 + αt)−1/α.(2.5)

The first derivative of the Laplace transform is

L
′
(t) = −(1 + αt)−

1
α
−1.(2.6)

Thus, replacing (2.5) with (2.6), we can rewrite (2.4) as

λi(t) = λ0(t) + x′
iβ + (1 + αt)−1.(2.7)

The unconditional survival function (2.3) can be expressed by

S(t) = exp
{
−x′

iβTi − Λ0 (Ti)
}
(1 + αTi)

−1/α .(2.8)
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Different parametric forms can be taken for the base hazard rate function λ0(t). In

this paper, we consider the Weibull(µ, γ) and exponential(µ) distributions. The probability

density function of the Weibull(µ, γ) distribution is

f(t) = γµtγ−1 exp (−µtγ) ,

where λ(t) = γµtγ−1 and Λ(t) = µtγ . The exponential(µ) distribution is the particular case

for γ = 1 with λ(t) = µ constant and Λ(t) = µt. The unconditional hazard rate and survival

functions for the Weibull gamma additive frailty model are

λi(t) = (1 + αt)−1 + γµtγ−1 + x′
iβ(2.9)

and

S(t) = (1 + αTi)
−1/α exp

(
−µT γ

i − x′
iβTi

)
,(2.10)

respectively.

2.2. NONPARAMETRIC ESTIMATOR FOR MARGINAL SURVIVAL FUNC-

TION

The nonparametric estimator Wang and Chang (1999) for recurrent events is used

to estimate the marginal survival function in the presence of correlation between the times

of occurrence. Consider the censored recurrence times
(
ti,1, ti,2, . . . , t

+
i,mi

)
and define the

observed recurrence times by

yi,j =

{
ti,j , for j = 1, . . . ,mi − 1,
t+i,mi

, for j = mi.

Let (y∗1, y
∗
2, . . . , y

∗
k) be ordered and distinct uncensored times. The estimator for censored

data using risk estimation techniques assumes the expression of limit product defined by

Ŝ(t) =
∏

{y∗i ≤t}

{
1− d∗ (y∗i )

R∗ (y∗i )

}
,

where R∗(t) and d∗(t) are given by

R∗(t) =
n∑

i=1

 ai
m∗

i

m∗
i∑

j=1

I (yi,j ≥ t)


and

d∗(t) =
n∑

i=1

aiI (mi ≥ 2)

m∗
i

m∗
i∑

j=1

I (yi,j = t)

 ,

respectively, where ai = a (Ci) with a(·) representing a positive valued function subject to

the constraint E (ai) < ∞ and times of censorship Ci.
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2.2.1. INFERENCE

We present here the estimation procedures related to the gamma additive frailty model.

The data on the ith individual consists of the total number, mi, of the events observed over the

time period (0, Ti] and the ordered epoch of the mi events, 0 ≤ ti,1 < ti,2 < · · · < ti,mi ≤ Ti.

Additionally, we assume that δi,j = 1 if ti,j ≤ Ti and δi,j = 0 if ti,j > Ti.

Note that the conditional cumulative intensity function Λi (t|vi,xi) =
∫ Ti

0 λi (u|vi,xi) du

for the ith individual is obtained by integrating Equation 2.7 from the initial time to the total

time of the study (Ti).

The unconditional likelihood function for the Weibull gamma additive frailty model,

considering the unconditional intensity (2.9) and the survival function (2.10) for a sample of n

independent individuals with mi events observed by time ti,j , i = 1, 2, . . . , n, j = 1, 2, . . . ,mi,

is given by

L (α, µ, γ,β|Ti,xi; τi) =

n∏
i=1

mi∏
j=1

{
γµtγ−1

i,j + x′
iβ + (αti,j + 1)−1

}δi,j
(2.11)

·
n∏

i=1

exp
(
−µT γ

i − x′
iβTi

)
(1 + αTi)

−1/α .

The corresponding log-likelihood function is given by

l (α, µ, γ,β|Ti,xi; τi) =
n∑

i=1

m∑
j=1

δi,j log
{
γµtγ−1

i,j + x
′
iβ + (1 + αti,j)

−1
}

+
n∑

i=1

(
−µT γ

i − x
′
iβTi

)
− 1

α
log (1 + αTi) .(2.12)

The log-likelihood function (2.12) can be maximized numerically to obtain the ML estimates.

There are various routines available for numerical maximization. Here, we use the function

optim of the R software (R Core Team, 2022) for the numerical maximization. We used the

‘BFGS’ method for maximization, for details see Fletcher and Reeves (1964).

In many cases, construction of confidence intervals is necessary to indicate the preci-

sion or accuracy of point estimates of the parameters. The confidence intervals of model

parameters can be based on the asymptotic normality properties of the ML estimators. If θ̂

denotes the ML estimators of the parameter vector θ, then the distribution of θ̂ − θ can be

approximated by a multivariate normal distribution with mean zero and covariance matrix

I−1
(
θ̂
)
, where I

(
θ̂
)
is referred to as the observed information matrix. Thus, a 100(1−α)%

asymptotic confidence interval for each parameter θi is

CI (θ, 100(1− α)%) =

(
θ̂i − zα/2

√
V̂ar (θi), θ̂i + zα/2

√
V̂ar (θi)

)
,

where V̂ar (θi) is the ith main diagonal element of I−1
(
θ̂
)
and zα/2 is the (1−α)% quantile

of the standard normal distribution.

In addition to parameter estimates, estimates of individual frailties are necessary. Using

the idea developed by Munda et al. (2012), we propose the following estimates for individual
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frailties

v̂i =

∫∞
0 vdi+1

i exp (−viTi) f (vi) dvi∫∞
0 vdii exp (−viTi) f (vi) dvi

=
E
{
V di+1 exp (−V Ti)

}
E {V di exp (−V Ti)}

,

where

di =

mi∑
j=1

δi,j

is the number of recurrent events for individual i and Ti is the total lifetime of the study. By

writing the expected values given in (2.13) in terms of derivatives of the Laplace transform,

we have

E
{
V di+1 exp (−V Ti)

}
= (−1)di+1L(di+1) (Ti)

and

E
{
V di exp (−V Ti)

}
= (−1)diL(di) (Ti) ,

that is,

v̂i =
−L(di+1) (Ti)

L(di) (Ti)
.

Using the result in (Munda et al., 2012), we still have that for V ∼ gamma (1/α, 1/α),

L(di) (Ti) = (−1)di (1 + αTi)
−di

{
di−1∏
k=0

(1 + kα)

}
(1 + αTi)

−1/α

and

L(di+1) (Ti) = (−1)di+1 (1 + αTi)
−(di+1)

{
di∏
k=0

(1 + kα)

}
(1 + αTi)

−1/α .

In this way, we can estimate individual frailty for recurrent event data from the gamma

(1/α, 1/α) additive frailty model as

v̂i = (1 + α̂Ti)
−1 (1 + diα̂) .(2.13)

In this paper, we consider that the truncation time Ti is the same for all individuals.

If the individual i does not have recurrent times then di = 0, that is, we can estimate its

individual frailty for gamma(1/α, 1/α) frailty. It is given by v̂i = (1 + α̂Ti)
−1.

3. SIMULATION STUDY

In this study, times were generated from the additive model with gamma frailty distri-

bution (1/α, 1/α) and an exponential baseline hazard rate. The inversion method was used

with µ = 0.03, β = −0.1, α = 10, 50, sample sizes n = 100, 250, 400 and censoring percent-

ages 0%, 10% and 20%. Each sample was replicated 300 times. The Mean Squared Error
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(MSE), the standard deviation (SD) of the estimates, the mean of the asymptotic standard

errors (SE) and bias were computed for α, µ and β of (2.7). To assess the covariate effects on

the hazard function and time effect, we divided the sample into two groups. Subjects in the

control and treatment groups were assigned covariate values of 0 and 1, respectively. Censors

were obtained as follows: we randomly generated the recurrence number of each individual in

the sample in such a way to obtain 0%, 10% and 20% censorships in each generated sample.

Figure 1 shows the MSE of the estimates for α considering the generated scenario.

100 150 200 250 300 350 400

5
10

15
20

25
30

n

M
S

E
 (α

=
10

)

 

 PC = 0%
  PC = 10%
  PC = 20%

100 150 200 250 300 350 400

20
25

30
35

40
45

n

M
S

E
 (α

=
50

)
 

 PC = 0%
  PC = 10%
  PC = 20%

Figure 1: MSE of the estimates of α.

According to Table 2, we observe in general the MSE and the bias of the estimates for

α decrease when the sample size increases. When the percentage of censorship increases, the

MSE and the bias of the estimates for α and β tend to increase. For the estimates of β the

MSE and the bias do not change much when the value of n is higher. However, the MSE

values and the bias of the estimates for µ grow for most censored scenarios.

Table 1: MSE, SD, SE and bias of the estimators of the gamma
(1/α, 1/α) additive model and an exponential baseline hazard
rate with µ = 0.03, β = −0.1 for different values of α and n
with percentage of censorship (PC) ranging from 0% to 20%.

PC n α
α̂ µ̂ β̂

MSE SD SE bias MSE SD SE bias MSE SD SE bias

0%

100
10 14.4572 3.0686 0.6302 3.7497 0.0000 0.0049 0.0028 0.0007 0.0171 0.0131 0.0036 0.0589

50 38.3403 2.7262 4.0151 4.7138 0.0001 0.0034 0.0029 0.0087 0.0192 0.0050 0.0042 0.0929

250
10 11.6319 3.1830 0.3859 3.3887 0.0000 0.0046 0.0017 -0.0001 0.0169 0.0159 0.0022 0.0573

50 29.6807 2.5224 2.5478 4.8155 0.0001 0.0025 0.0019 0.0087 0.0192 0.0033 0.0026 0.0930

400
10 10.7890 2.9957 0.2995 3.2710 0.0000 0.0043 0.0014 0.0004 0.0170 0.0146 0.0018 0.0567

50 27.6321 2.6287 2.0169 4.8543 0.0001 0.0019 0.0015 0.0089 0.0193 0.0029 0.0021 0.0925

10%

100
10 26.7829 2.7468 0.7001 4.3890 0.0004 0.0028 0.0017 -0.0196 0.0122 0.0108 0.0016 0.0573

50 43.6808 2.4574 4.4230 4.9109 0.0002 0.0022 0.0019 -0.0148 0.0133 0.0034 0.0026 0.0908

250
10 20.6736 2.5618 0.4482 4.5247 0.0004 0.0023 0.0011 -0.0194 0.0122 0.0092 0.0010 0.0579

50 33.9930 2.6538 2.8054 5.1110 0.0002 0.0017 0.0012 -0.0148 0.0133 0.0027 0.0016 0.0906

400
10 19.8484 2.9093 0.3511 4.4413 0.0004 0.0024 0.0009 -0.0192 0.0123 0.0212 0.0008 0.0559

50 28.1127 2.4725 2.2008 4.8238 0.0002 0.0016 0.0009 -0.0149 0.0133 0.0022 0.0013 0.0906

20%

100
10 28.1979 2.8348 0.7300 4.4932 0.0006 0.0021 0.0014 -0.0236 0.0113 0.0106 0.0010 0.0558

50 43.5955 2.4197 4.5589 4.7762 0.0004 0.0020 0.0015 -0.0204 0.0120 0.0029 0.0020 0.0899

250
10 27.2608 2.5052 0.4605 4.5832 0.0006 0.0020 0.0009 -0.0238 0.0113 0.0088 0.0006 0.0566

50 34.7141 2.5276 2.9088 5.1237 0.0004 0.0015 0.0010 -0.0204 0.0120 0.0022 0.0013 0.0900

400
10 21.5413 2.5324 0.3632 4.6270 0.0006 0.0018 0.0007 -0.0238 0.0113 0.0088 0.0004 0.0565

50 30.2201 2.5337 2.2967 4.9945 0.0004 0.0014 0.0008 -0.0203 0.0120 0.0020 0.0010 0.0899

In general, the estimates for β coincided with the sign of the parameter, even with values
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close to zero. Thus, there are indications that the classical method is robust to estimate the

model (2.7).

3.1. MISSPECIFICATION

Model misspecification simulation studies are often conducted to evaluate the perfor-

mance of statistical models under misspecification. In the context of model misspecification

simulation studies, AIC can be used to assess the impact of misspecification on model selec-

tion and to evaluate the reliability of these criteria in identifying the true underlying model.

The motivation behind these model misspecification simulation studies is to understand how

proposed models behave when they are applied to data that violate their underlying assump-

tions. The AIC criterion provides quantitative measures of the tradeoff between model fit

and complexity. It penalizes models with excessive complexity, discouraging overfitting, while

favoring models that provide a good fit to the data.

For the misspecification study, data were generated from the additive model with

gamma frailty and base hazard of an exponential distribution(µ), in a similar way to that

described in section 3. The same scenarios as the simulation study were used. We compared

the data generating model for different values of α and n, with the additive model assuming

the inverse Gaussian distribution for the frailty variable with density given by

f(v) =
(α
π

)1/2
exp{2α}v−3/2exp {−αv − α/v} , α > 0,(3.1)

where E(v) = 1 and V ar(v) = 1/2α. The moment generating function isMv(t) = exp
{
2α− 2

√
α
√
α− t

}
,

the Laplace transform is L(t) = Mv(−t) = exp
{
2α− 2

√
α
√
α+ t

}
. So, the unconditional

survival function, considering the effect of observed factors, is

S (t|xi) = exp {− ∧0 (t)} exp
{
−x

′
βt
}
exp

{
2α− 2

√
α
√
α+ t

}
(3.2)

and as the derivative of L(t) with respect to t is L
′
(t) = exp

{
2α− 2

√
α
√
α+ t

}(
−

√
α√

α+t

)
,

by 2.4, the unconditional hazard function is

λ (t|xi) = λ0(t) + x
′
iβ +

√
α√

α+ t
.(3.3)

The results are presented in Table 2 in which different scenarios were generated and

the percentages of cases in which the model with the lowest AIC was correctly selected were

analyzed.
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Table 2: Proportion of cases with the lowest AIC for the well-specified
model for different values of α, n, and censoring percentages
(CP), ranging from 0% to 20%.

CP α β µ
n

100 250 400

0%
10 −0.1 0.03 0.9967 1.0000 1.0000
50 −0.1 0.03 0.9633 0.9833 0.9800

10%
10 −0.1 0.03 0.9870 0.9810 0.9850
50 −0.1 0.03 0.9970 1.0000 1.0000

20%
10 −0.1 0.03 0.9867 0.9567 0.9767
50 −0.1 0.03 0.9967 0.9900 1.0000

The results consistently show that the model selection method with the smallest AIC is

effective in correctly selecting the appropriate model when compared to the models. Further-

more, as the sample size increases, the ability to correctly select the model with the smallest

AIC also increases. This suggests that a larger sample size provides better discrimination

between models and increases the probability of selecting the correct model based on AIC.

In general, in all tested scenarios the model with gamma frailty distribution was better than

the model with inverse Gaussian frailty distribution in terms of AIC.

4. APPLICATION

In this section, the methodology is illustrated using two sets of data. The first is a med-

ical data set corresponding to animal carcinogenicity described by Gail et al. (1980). The

experiment used 48 mammary tumors from rats. There were 23 rats in group 1 (treatment)

and 25 rats in group 2 (control), and the data are the days when new tumors occurred for

each animal; a given animal may have multiple tumors. The main objective of the analysis

is to assess the difference between treatment groups 1 and 2 with regard to tumor develop-

ment. The second data set refers to readmission times after surgery in patients diagnosed

with colorectal cancer (González et al., 2005), available in the package fragiltypack (Ron-

deau et al., 2012) of the R software (R Core Team, 2022). The study took place in Hospital

de Bellvitge, a 960 bed public university hospital in the metropolitan area of Barcelona,

Spain. Between January of 1996 and December of 1998, a total of 523 patients with incident

colorectal cancer were identified. This study was based on 403 patients who had an opera-

tion. The outcome variable was readmission. It can be considered as a potential recurrent

event (colorectal cancer patients may have several readmissions after discharge). The date of

surgery was taken at the beginning of the study period. Patients were actively followed up

until June 2002. Consequently, the length of follow up can differ for each patient, depending

on the surgery date. Survival curves, by groups, were estimated by the nonparametric esti-

mator for recurrent event data proposed by Wang and Chang (1999) and using the package

newTestSurvRec.
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4.1. DATA FROM ANIMALS WITH CARCINOGENESIS

The rats received a carcinogenic compound and after 60 days they were randomly

divided into two groups (control group and treatment group). A follow-up period of 122

days began after randomization, during which they were examined twice weekly to assess for

new tumor development (failure). The rats were divided into a group of 23 that received

the treatment and another of 25 rats that formed the control group. In this study, the only

covariate was treatment (yes = 1, no = −1). Figure 2 shows recurrent cancerous tumor

detection times considering both treatment and control groups.
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36
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44
45
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48
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Figure 2: Recurrent cancer detection times.

Figure 2 shows that the rats in the treatment group have few tumor recurrences, while

the rats in the control group have many recurrences of the event of interest during the study

period, suggesting that the treatment contributed to the decrease in the number of tumors

in the study.
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S
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)
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Figure 3: Survival curves estimated for treatment and control groups.

Figure 3 represents the estimate of the survival function by group. We see that the

treated group seems to have a longer survival, which seems to be related to the amount of

tumors detected in each group.
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Suppose that the ith individual rat has tumors occurring according to an additive

frailty model with intensity (2.2), where xi is a covariate indicating whether an individual is

in treatment group (xi = 1) or control roup (xi = −1). Time ti,j is defined to be number of

days from the start, so that the observation intervals (0, Ti) are (0, 122) for all animals. The

interest is to find characteristics for the parameters of the frailty model.

Table 3: ML estimates, standard errors (SEs) and 95 percent confidence
intervals (CIs) for the parameters of the gamma additive frailty
model with exponential and Weibull base risk functions.

Exponential Weibull

Parameters MLE SE CI(95%) MLE SE CI(95%)

β −0.014 0.0024 (−0.0180;−0.0099) −0.014 0.0025 (−0.0179;−0.0098)
α 68.79 31.91 (16.14; 121.4) 82.19 43.32 (10.71; 153.67)
µ 0.035 0.0025 (0.0311; 0.0392) 0.028 0.0091 (0.0125; 0.0427)
γ - - - 1.051 0.0673 (0.9397; 1.1617)

Applying the Likelihood Ratio (TRV) test to compare gamma additive frailty models

with Weibull(µ, γ) (larger model) and exponential(µ) (smaller model) base risks, we obtained

the value LRT = 1.5134 and p − value = 0.2186. Therefore, we do not reject the null

hypothesis that the smaller model is more suitable at a 5% level of significance.

For both models, according to Table 3, we can conclude that the treatment covariate

is significant because the confidence intervals for β̂ do not contain zero, that is, the risk of

developing new tumors decreases for mice that are in the treated group. In addition, the

estimated variance for the frailty variable of both models with exponential baseline hazard

rate (α̂ = 68.79) and Weibull baseline hazard rate (α̂ = 82.19) indicate the existence of

heterogeneity among mice and a dependence between tumor recurrences in each mouse.

0 20 40 60 80 100 120

0.
0

0.
4

0.
8

Time

S
(t

)

Treatment W−C
Control W−C
Treatment AFM
Control AFM

0 20 40 60 80 100 120

0.
0

0.
4

0.
8

Time

S
(t

) 

Treatment W−C
Control W−C
Treatment AFM
Control AFM

Figure 4: Wang and Chang (WC) and Additive Frailty Model (AFM) es-
timated curves with exponential and Weibull base risks.

In Figure 4, we can see that the survival curves estimated by the gamma additive

frailty model with an exponential base risk are very close to the curves estimated by the WC

estimator.
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When fitting the Aelen additive model without frailty, the AIC and BIC values were,

respectively, 1804.316 and 1808.059, which compared to the values for the gamma exponential

additive frailty model were lower. However, the Aelen additive model with gamma frailty

and exponential base risk is preferable due to the possibility of finding individual frailties.

It is observed that the estimated variance for the gamma exponential additive frailty model

was α̂ = 68.79, providing a high heterogeneity in the data due to factors not considered in

the model.

Considering the gamma-exponential additive frailty model, Table 4 shows the individual

frailties estimated from Equation 2.13. Comparing the estimated frailties in Table 4 with

the number of recurrences per rats, we can see that the greater the number of recurrences

(presence of tumors) the greater the frailty of the rat. This is expected due to the nature of

the event under study.

Also through Table 4, we notice that untreated individuals (control group) are generally

more fragile than individuals in the group that received treatment, which was also expected

due to the negative value of the estimate of the parameter β. The rat that showed more

tumor recurrences (rat 34) was the one with the greatest frailty among all the rats in the

study. The least fragile rats were rats 2 and 22.

Table 4: Individual frailties of the 48 rats divided by group.
i Times (treatment group) v̂i i Times (control group) v̂i
1 122 0.0083 24 3, 42, 59, 61,61,112,119,122+ 0.0575
2 122+ 0.0001 25 28,31,35,45,52,59,59,77,85,107,112,122+ 0.0903
3 3,88,122+ 0.0165 26 31,38,48,52,74,77,101,101,119,122+ 0.0739
4 92,122+ 0.0083 27 11,114,122+ 0.0165
5 70,74,85,92,122+ 0.0329 28 35,45,74,74,77,80,85,90,90,122+ 0.0739
6 38,92,122 0.0247 29 8,8,70,77,122+ 0.0329
7 28,35,45,70,77,107,122+ 0.0493 30 17,35,52,77,101,114,122+ 0.0493
8 92,122+ 0.0083 31 61,24,66,74,101,101,114,122+ 0.0575
9 21,122+ 0.0083 32 8,17,38,42,42,42,122+ 0.0493
10 11,24,66,74,92,122+ 0.0411 33 52,122+ 0.0083
11 56,70,122+ 0.0165 34 28,28, 31,38,52,74,74,77,77,80,80,92,92,122+ 0.1067
12 31,122+ 0.0083 35 17,119,122+ 0.0165
13 3,8,24,35,92,122+ 0.0411 36 52,122+ 0.0083
14 45,92,122+ 0.0165 37 11,11,14,17,52,56,56,80,80,107,122+ 0.0821
15 3,42,92,122+ 0.0247 38 17,35,66,90,122+ 0.0329
16 3,17,52,80,122+ 0.0329 39 28,66,70,70,74,122+ 0.0411
17 17,59,92,101,107,122+ 0.0411 40 3,14,24,24,28,31,35,48,74,77,119,122+ 0.0903
18 45,52,85,101,122 0.0411 41 21,28,45,56,63,80,85,92,101,101,119,122+ 0.0903
19 92,122+ 0.0083 42 28,35,52,59,66,66,90,97,119,122+ 0.0739
20 21,35,122+ 0.0165 43 8,8,24,42,45,59,63,63,77,101,119,122 0.0985
21 24,31,42,48,70,74,122+ 0.0493 44 80,122+ 0.0083
22 122+ 0.0001 45 92,122,122 0.0247
23 31,122+ 0.0083 46 21, 122+ 0.0083
- - - 47 3,28,74,122+ 0.0247
- - - 48 24,74,122 0.0247

A second modelling of the data from the carcinogenic animals was performed using the

additive model with inverse Gaussian frailty and with a base risk of exponential distribution

(µ). Table 5 shows the results of the parameter estimates (MLE), standard errors (SE) and
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95% confidence intervals obtained by fitting the inverse Gaussian additive fragility model

with an exponential base hazard function.

Table 5: Maximum likelihood estimates (MLE), standard error (SE),
confidence interval - CI (95%) for the inverse Gaussian addi-
tive fragility model with exponential base hazard function.

Parameters MLE SE CI(95%)

β −0.020 0.0029 (−0.026;−0.015)
α 0.0057 0.0027 (0.0003; 0.0111)
µ 0.0309 0.0013 (0.0283; 0.0336)

From Table 5 we can see that the additive frailty model with gamma frailty and expo-

nential base risk is better in terms of AIC and BIC, with AIC and BIC values of 1811.188

and 1816.801, respectively, for the gamma exponential MFA and 1835.768 and 1841.381 for

the GI exponential MFA. Furthermore, we can see that for the data of this application, the

choice of the inverse Gaussian fragility did not provide a good fit.

4.2. REHOSPITALIZATION DATA

This data set includes 403 patients who have been followed for approximately 6 years.

Observed times are the days of hospitalization after surgery. The first readmission time was

considered as the time between the date of the surgical procedure and the first readmis-

sion after hospital discharge. The other readmission times were defined as the difference

between the last admission date and the previous discharge date. For this application, we

only use the variable that indicates whether the patient has received chemotherapy (x = 1:

No chemotherapy, x = 2: Chemotherapy treatment received).

Of the 403 patients in the study, 217 (53.85%) were treated with chemotherapy and the

other 186 (46.15%) did not receive chemotherapy treatment. Patients treated with chemother-

apy had an average of 0.81 readmissions, while an individual in the group that did not receive

this treatment was readmitted an average of 1.52 times, that is, almost twice as much as the

first group. Patient 350, who belongs to the group that did not receive chemotherapy, had

the maximum number of readmissions for a study subject reaching 22 readmissions during

the follow-up period.

Figure 5 shows the survival curves obtained by the non-parametric estimator for data

on recurrent events for each group of patients. The treated group seems to have a longer

survival, which may be related to the treatment used in each group.
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Figure 5: Survival curves estimated for treated and untreated patient
groups.

Table 6 shows the ML estimates, standard errors and confidence intervals for the pa-

rameters of the gamma-exponential additive frailty model.

Table 6: ML estimates, SEs and 95 percent CIs for the parameters of
the gamma additive frailty model with exponential base risk
function.

Parameters MLE SE CI(95%)

β −0.0003 4.8 ×10−5 (−0.0004; −0.0002)
α 30.16 0.3406 (29.49; 30.83)
µ 0.0009 8.5 ×10−5 (0.0007; 0.0010)

From the results in Table 6, we see that the covariate indicates the chemotherapy

treatment is significant because the confidence interval [−0.0004;−0.0002] for the parameter

β does not contain zero, that is, the risk of readmission decreases for patients who are in

the treated group (β̂ = −0.0003). Through the value of α̂ = 30.16, we observe that there

is heterogeneity among patients, that is, there are unobserved factors (for example, genetic

or environmental), which can influence the lifespan of patients and there is still dependence

between the rehospitalization times of patients, that is, as new hospitalizations happen, the

patient becomes more fragile.
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Figure 6: Comparison of the survival curves estimated by the
gamma(1/α, 1/α) additive frailty model and exponential(µ)
base risk with the curves estimated by the nonparametric es-
timator.
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Figure 7: Individual frailties estimated by the gamma-exponential addi-
tive model for the 403 patients divided by group (treated and
untreated).

In Figure 6, we see that the survival curves estimated by the gamma-exponential ad-

ditive frailty model are very close to the curves estimated by the nonparametric estimator,

which indicates a good fit of the model. Individual frailty can be estimated from Equation 2.13

with estimates in Table 6.

For the readmission data, we notice that the greater the number of recurrences (re-

hospitalizations), the greater the patient’s frailty. This is expected due to the nature of the

event under study. From Figure 7, we note that individuals not treated with chemotherapy

are generally more fragile than individuals in the group that received the treatment, which

was also expected due to the negative value of the estimate of β. The patient with the most

readmissions (patient 350) was the one with the greatest frailty among all the patients in the
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study. The least frail were the patients who did not have readmissions.

5. CONCLUDING REMARKS

The additive models initially proposed by Aalen (1980) are interesting alternatives

when there is no guarantee of proportionality of risks, as in the case of recurrent events when

the assumption of proportional risks is not reasonable. However, this additive modeling has

the disadvantage of providing negative values for the risk function.

For the recurrent event data studied in this paper, we adjusted a gamma frailty model

with exponential base risk, that is, we used a simple model and achieved a relatively close

adjustment to the survival curves estimated by the nonparametric estimator. By additive

modeling with additive frailty, we conclude that the treatment applied to mice decreases the

risk of them presenting cancerous tumors, that is, decreases the risk of death of the treated

mice. Still through the model used, we conclude that there are factors not observed in the

study that influence rats’ lifetime and that recurrent times are dependent. In the second

application, we notice that in a larger data set and for a not too big α the estimates are

more accurate in the sense that they have smaller standard errors, which is expected due to

asymptotic properties of the ML estimators.

We observed in the simulated study that as the percentage of censorship increases, the

ML estimates for the additive model parameters with additive brittleness worsen, in terms of

both MSE and bias. We also noted that the classical estimation method has a limitation to

estimate the parameters of the additive model studied in scenarios of great variability among

individuals.

As in every parametric approach, several models can be fitted to the same data. De-

pending on the choice of distribution for frailty and for the base risk of the additive model,

other adjustments can be found, including better ones, however we still do not know of a

more objective method for a better choice, other than adjusting several models and compar-

ing them through some selection criteria. The model presented, even with some limitations,

is a useful model for recurrent event data and can be used with some reservations.

For the model studied in this paper, the estimator proposed to calculate the individual

frailties of patients proved to be very intuitive, in the sense that it attributes greater frailty

to individuals who presented greater recurrence of the event of interest.
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