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1. INTRODUCTION

We use an old theorem proven over ninety years ago to obtain bimodal and mul-
timodal extensions of the normal distribution and the skew-normal distribution. One
can almost certainly say that the normal distribution constitutes the queen of the com-
prehensive family of the continuous probability distributions. Since the end of the 19th
century, numerous researchers, such as the distinguished F. Y. Edgeworth, and also Chas.
H. Kummel, Arthur L. Bowley, Morgan W. Crofton, among many others derived mod-
ifications of the normal law to discuss situations where the empirical data presented
some asymmetry that the normal distribution could not explain. A review of the normal
distribution and some of its modifications can be found in [27].

Bimodal distributions arise in nature in many different scenarios. Perhaps, one
of the most relevant phenomena that can be explained with distributions is the disease
patterns. For example, the incidence of some types of cancers by age displays a major
mode for young adults and minor mode for older adults see [2]. In addition, the occur-
rence of bimodality has also implications in geoscience see [22]. Finding appropriate
probabilistic models that can explain bivariate datasets is an issue of vital importance. In
this work, we propose an extension of the normal and skew-normal densities that may be
unimodal or bimodal. This new family of distributions that arises from an old Theorem
provided by [33] comprises flexible parametric families of continuous distributions that
are useful in statistical practice.

In the last years, different techniques to extend the normal family have been
deemed in the statistical literature. The skew-normal distribution in [6] see also [7],
the Balakrishnan skew-normal density in [31] more details in [35], the generalization
proposed by [5], the Sinh-arcsinh family introduced by [24], the generalized normal one
in [16], [18] and [19], and the recently proposed models provided by [36] and [34],
among others. Some other works related to the normal and skew normal densities are
[3], [4] and [17]. For a comprehensive review of the skew normal families the reader is
referred to [8].

The density function introduced here resembles some important properties satis-
fied by the normal distribution. The first family is symmetric with positive real support.
The second family is asymmetric and defined on the positive real numbers. In general,
both families show bimodality. An overview of this work that will undoubtedly help
the reader to understand better the elements that are not so essential is illustrated in the
flowchart displayed in Figure 4.

The rest of this paper is structured as follows. In Section 2 we derive the method-
ology based on the use of a result provided in [33] to derive the new family of distribu-
tion. Here, expressions for the mean, variance, and other features for the general model
are also provided. Next, we also examine the special case of considering the classical
normal distribution as the parent distribution. Then, to break the symmetry of the latter
case, we introduce the skew-normal distribution as the baseline model. In Section 3, the
parameter estimation problem is discussed. Some illustrative examples related to envi-
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ronmental issues, in particular in geoscience, are analyzed in Section 4. Finally, closing
comments and modifications of the models proposed are shown in the last Section.

2. The proposed model

This section gives the main results of this paper, from which we derive the two
families of probability density functions that will be described later. The first family is
introduced in the second theorem of this section. Although any distribution with support
on the real line can be used as a candidate of this new distribution, the normal case
is the one we are examining in this section. It can be simply shown after a change
of variable that this model is connected to the generalized inverse Gaussian distribution.
This probabilistic family is symmetric and has two modal values that are equidistant with
respect to the axis of symmetry. The second family presents the advantage of having an
asymmetric density function. We begin with the following Theorem found in [33] that
is required for the main result of this work.

Theorem 2.1 (Slobin, 1927). Let the function ω(x) = x− 1/x, x 6= 0. Then,
if the function m(x) is a function integrable on R = (−∞,∞) and if the function
m(ω(x)) is also integrable in R = (−∞,∞), we have that∫ ∞

−∞
m (ω(x)) dx =

∫ ∞
−∞

m(x) dx.(2.1)

Following the same arguments that the ones provided in the proof of the above
Theorem given in [33], it is simple to observe that (2.1) is also valid for ωα(x) = x −
α/x, being α ≥ 0. The following result provides an alternative and more simple proof
than the one given in [33] for this case. Previously we need the following Lemma, which
is provided in [10].

Lemma 2.1 (Behboodian, 1978). Let X be a symmetric random variable, and
let y = h(x) be an odd real-valued function. Then, the random variable Y = h(X) is
also symmetric.

As a result of this Lemma, if X is a symmetric random variable then the random
variable Y = ωα(X) is also symmetric. In the next result we derive an expression for
the density function of Y = ωα(X).

Theorem 2.2. Let f(x) be a probability density function (pdf hereafter) sym-
metric about 0 and consider the function f(ωα(x)), with ωα(x) = x−α/x, being α ≥ 0.
Then, if df(ωα(x))/(dα) is also a symmetric function we have that

∫∞
−∞ f(ωα(x)) dx =

1.
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Proof: Since f(x) is symmetrical and ωα(x) is an odd function, using Lemma
2.1 we have that f(ωα(x)) is also symmetrical. Now, consider the function ν(α) =∫∞
−∞ f(ωα(x)) dx for which we have that

ν ′(α) =
d

dα
ν(α) = −

∫ ∞
−∞

1

x

d
dα
f(ωα(x)) dx = 0,

because df(ωα(x))/(dα) is symmetrical (by assumption). Therefore, ν(α) is constant
and since ν(0) = 1 we have the result.

Based on the use of Theorem 2.2 we can build a family of pdf’s by taking

(2.2) gα(x) =

{
f(ωα(x)), x 6= 0,
f(0), x = 0,

where α ≥ 0. Note that this is a two piece-wise pdf.

The following proposition displays some essential properties related to this distri-
bution.

Proposition 2.1. The pdf given in (2.2) satisfies the following properties:

(i) gα(x) is symmetric about zero. That is, gα(x) = gα(−x) for all x ∈ R. In fact,
the random variable Z = −X follows the same distribution that X .

(ii) g0(x) = f(x).

(iii) gα(0) = f(0) for all α ≥ 0.

(iv) E(X2κ+1) = 0, κ ∈ {0, 1, . . . }. That is, all odd raw moments are zero.

(v) The random variables Y = ωα(X) and Z = gα(X) are uncorrelated and therefore
cov(Y,Z) = 0, provided that all the first and second moments of Y and Z exist.

Proof: Properties (i) − (iv) are direct. To show (v), observe that ωα(x) is
an odd function, gα(x) is an even real-valued (measurable) function and the random
variable T = Y Z satisfies that T (−x) = ωα(−x)gα(−x) = −ωα(x)gα(x) = −T (x),
therefore is an odd function. Thus, cov(Y,Z) = E(Y Z) − E(Y )E(Z) = 0, because
E(Y ) = 0 (due to Lemma 2.1, Y is symmetrical) and E(Y Z) = 0 (T = Y Z is an odd
function). For more deails see [10].

2.1. The normal case

Natural choices for f(x) to be plugged into (2.2) are the Cauchy distribution, the
Student’s t distribution, and the normal distribution that will be the one considered in
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the rest of this work, i.e. f(x) = φ(x), being φ(x) the pdf of the standard normal
distribution. Then, it is simple to see that

(2.3) gα(x) =

{
φ(ωα(x)), x 6= 0,
φ(0), x = 0

is a genuine pdf for α ≥ 0. Note that the special case α = 0 represents the standard
normal distribution. Simple algebra provides that the distribution is symmetric about
zero and has mean and variance given by 0 and 1 + α, respectively. The distribution is
always bimodal, with two modes in x = −

√
α and x =

√
α. To see this, observe that

g′α(x) = −gα(x)
(
x− α

x

)(
1 +

α

x2

)
= 0

for x = ±
√
α. Now, it is simple to see that g′′α(±

√
α) < 0. The antimode is obvi-

ously x = 0. Henceforward, we will write X ∼ BN(α) when the random variable X
follows the pdf given in (2.3), denoting that is a bimodal generalization of the normal
distribution.

The entropy does not depend on α and is equivalent to the one of the standard
normal distribution. Observe that limx→0+ gα(x) = limx→0− gα(x) = φ(0) and thus
the pdf defined in (2.3) is a continuous function.

Figure 1 displays the graphs of the pdf given in (2.3) for selected values of param-
eter α ≥ 0. The α parameter, the only parameter of the distribution, clearly indicates
two fundamental things: first, if it takes the value zero, we are in the case of the standard
normal distribution; second, a value other than zero provides a distribution with two
modes that are equidistant with respect to the axis of symmetry. The distance between
the modes increases with the value of α.

2.2. Connection with others distributions

The following result connects the proposed distribution with the generalized in-
verse Gaussian distribution. Recall that a continuous variable Z > 0 follows a general-
ized inverse Gaussian distribution see [25] and [23, Chapter 15] with parameters a > 0,
b > 0 and r ∈ R if its pdf is given by

f(z) =
(a/b)r/2

2Kr(
√
ab)

zr−1 exp

[
−1

2

(
az +

b

z

)]
, z > 0,(2.4)

where Kν(s) gives the modified Bessel function of the second kind. Furthermore, if Z
follows a generalized inverse Gaussian distribution, then 1/Z follows a reciprocal gener-
alized inverse Gaussian distribution. Additionally, simple computation provides that the
random variable 1/X2 follows a reciprocal generalized inverse Gaussian distribution.

Proposition 2.2. Let X ∼ BN(α) with the pdf given in (2.3). Then, the ran-
dom variable V = X2 follows a generalized inverse Gaussian distribution with parame-
ters a = 1, b = α2 and r = 1/2.
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Figure 1: Plots of the pdf gα(x) for selected values of the parameter α

Proof: Since dx = 1/(2
√
v)dv we have that

gα(v) =
1

2
√

2vπ
exp

[
−1

2

(√
v − α√

v

)2
]

=
v−1/2 exp(α)

2
√

2π
exp

[
−1

2

(
v +

α2

v

)]
.(2.5)

Now, having into account that K1/2(α) = exp(−α)
√
π/(2α), the result follows

by comparing (2.5) with (2.4).

Proposition 2.3. Let X ∼ BN(α) with the pdf given in (2.3). Then, it is
verified that E(Xκ) = 0 if κ (positive or negative) is odd while the even moments
(positive or negative) are given by

E(X2κ) =

√
2α1+2κ

π
exp(α)Kκ+ 1

2
(α), κ ∈ {0, 1, . . . }.(2.6)

Proof: Since the distribution given in (2.3) is symmetrical, then all odd-order
moments are equal to zero. To see that (2.6) is true, then it is simple to see that the
distribution is symmetrical since we have that

E(Xκ) = 2

∫ ∞
0

φ(ωα(x) dx
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and by making the change of variable u = x2 we get

E(Xκ) =
2 exp(α)√

2π

∫ ∞
0

u(κ−1)/2 exp

[
−1

2

(
u+

α2

u

)]
du(2.7)

from which the result follows immediately by arranging parameters in (2.7) and identi-
fying it with the pdf of the generalized inverse Gaussian distribution given in (2.4).

In particular, if κ = 1 we get the second row moment of the distribution, which
coincides with the variance, given by var(X) = 1+α. Furthermore, if κ = −1 by using
(2.6) we have that

E
(

1

X2

)
=

1

α
, α 6= 0.(2.8)

and

E
[(
X − α

X

)2κ]
= (2κ− 1)!!,(2.9)

where n!! = n(n− 2)(n− 4) · · · 2 · 1 represents the double factorial.

Note that property given in (2.9) is shared with the standard normal distribution.
Using the series representation of the exponential function, we derive the moment gen-
erating function of the distribution, which is given by

MX(t) = E[exp(tX)] =
∞∑
j=0

t2j

(2j)!

√
2α1+2j

π
exp(α)Kj+ 1

2
(α).

Proposition 2.4. The cumulative distribution function (cdf henceforward),Gα(x) =
Pr(X ≤ x), for a continuous random variable following the pdf given in (2.3) is

Gα(x) =
1

2
[Φ(ωα(x)) + Φ(τα(x)) exp(2α)] , x < 0,(2.10)

Gα(x) = 1− 1

2

[
Φ̄(ωα(x)) + Φ̄(τα(x)) exp(2α)

]
, x > 0,(2.11)

andGα(0) = 1/2, where τα(x) = x+α/x and Φ̄(z) = 1−Φ(z) is the survival function
of the standard normal distribution.

Proof: The proof is obtained in the following way. Let Gα(−x) = Pr(X ≤
−x). Thus,

Gα(−x) =

∫ −x
−∞

φ(ωα(t) dt =

∫ ∞
x

φ(ωα(t) dt,
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which can be written, after the change of variable Y = X2, as

Gα(−x) =

∫ ∞
x

exp(α)√
2yπ

exp

[
−1

2

(
y +

α2

y

)]
dy.

Now, by using the cdf of the generalized inverse Gaussian distribution provided
in [26] we get, after simple algebra (2.10). Expression (2.11) is obtained in a similar
way.

A random variate X from the random variable with pdf given by (2.3) is derived
as follows:

• Generate a random number u from the standard uniform distribution, U(0, 1).

• Generate random variate v from the generalized inverse Gaussian distribution with
parameters a = 1, b = α2 and r = 1/2.

• If u < 0.5 then x = −
√
v; otherwise x =

√
v.

2.3. Extensions

The major disadvantage of the family of distributions given in (2.3) lies in its
symmetry and also in the fact that the two modes are equidistant with respect to the axis
of symmetry. Since f(ωα(x) is a symmetric pdf, by using the representation provided
by [6], we can consider the more flexible family of pdf’s given by

(2.12) gα,λ(x) =

{
2Φ(λx)φ(ωα(x)), x 6= 0,

φ(0), x = 0,

where α ≥ 0 and λ ∈ R.

In practice Φ(λx) can be replaced by Φ(λm(x)) for any odd function m(·) in
order to ensure that (2.13) represents a proper density function. In particular, we can
take m(x) = ωβ(x), β ∈ R, to build the family of pdf’s given by

(2.13) gα,β,λ(x) =

{
2Φ(λωβ(x))φ(ωα(x)), x 6= 0,

φ(0), x = 0,

where α ≥ 0, β ∈ R and λ ∈ R. See for instance [8]. Observe that when α = β = 0
the pdf given in (2.13) reduces to the skew normal density provided in [6]. See also, [7]
and [9], among others. [6], [7], [14], [21] and [20], among other papers, provide many
properties of the skew normal density. The standard normal distribution is obtained for
α = λ = 0. A probabilistic representation of this family of distribution can be obtained
in a similar fashion as the one provided in [7] and [21] see also [8].
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To see that (2.13) represents a genuine pdf, we proceed in a similar way as we
did in Theorem 2.2. In this case, we have to add that Φ(·) is a bounded function with
a derivative being a symmetric density function about zero. The family (2.13) contains
the normal, the skew normal density and others for λ 6= 0. Furthermore, density (2.3)
also appears by mixture (see the discussion of M. Cuadras about the work of [5]). To see
this, note that if λ follows a symmetric distribution π(λ), with −∞ < λ <∞, then∫ ∞

−∞
2Φ(λωβ(x))φ(ωα(x))π(λ) dλ = φ(ωα(x)).

Hereafter, we will write X ∼ GSN(α, β, λ) to denote that the pdf of the random
variable X follows the pdf given in (2.13).

Generation of random variates from (2.13) is now easy via the following repre-
sentation of the distribution. Let X ∼ BN(α) and Z = X SX where, conditionally on
X = x 6= 0, we have

SX =

{
+1 with probability Φ(λωβ(x)),
−1 with probability 1− Φ(λωβ(x)).

Therefore, a random variate z from the random variable with density function
given by (2.13) is derived as follows:

• Generate a random number u from the standard uniform distribution, U(0, 1).

• Generate random variate x from the distribution with pdf (2.3).

• Compute Φ(λωβ(x)).

• If u < Φ(λωβ(x)) then z = x; otherwise z = −x.

Then, the random variable Z has the density function given in (2.13). Figure 2
displays some plots of the pdf (2.13) for special values of the parameters.

It is straightforward to verify that properties (2.8) and (2.9) are satisfied also for
the distribution (2.13). Some additional results of (2.13) are given below.

Proposition 2.5. The following results are verified:

(i) If X ∼ gα,β,λ(x) then the random variable Z = −X ∼ gα,β,−λ(z). That is,
gα,β,λ(−x) = gα,β,−λ(x) for all x.

(ii) For all x ∈ R, the cdf Gα,β,λ(x) = Pr(X ≤ x), verifies:

Gα,β,λ(x) = Gα,β,−λ(−x).
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Figure 2: Plots of the pdf (2.13) for selected values of the parameters α, β and
λ

Proof: To see (i), observe that given Z = −X we have that |dz| = |dx|. Now
the result follows having into account that λωβ(−z) = λ(−z+β/z) = −λ(z−β/z) =
−λωβ(z) and φ(ωα(−x)) = φ(ωα(x)). Finally, (ii) follows from (i).

Proposition 2.6. As λ → ∞ and β → 0 the pdf given in (2.13) tends to
gα(x) = 2φ(ωα(x)), i.e. a generalized half-normal density.

Proof: It is derived as a result of writing (2.13) as

gα,β,λ(x) = 2

(∫ λωβ(x)

−∞
φ(t) dt

)
φ(ωα(x)),

and taking λ→∞.

For λ→∞ and α→ 0+ the classical half-normal density is obtained.
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If X ∼ GSN(α, β, λ) then its distribution function

Gα,β,λ(x) = 2

∫ x

−∞

∫ λωβ(s)

−∞
φ(t)φ(ωα(s)) dt ds(2.14)

can be represented as the cdf of a bivariate normal distribution. To see this take δ =
λ/
√

1 + λ2 and consider the change of variable

t =
η + δ ωβ(s)√

1− δ2
.

Then, some algebra provides that (2.14) can be rewritten as

Gα,β,λ(x) =
2√

1− δ2

∫ x

−∞

(∫ 0

−∞
φ

(
η + δ ωβ(s)√

1− δ2

)
dη
)
φ(ωα(s)) ds.

Unfortunately, we have not been able to find either the generating moment func-
tion or the ordinary moments of the distribution given in (2.13). Finally, by taking log-
arithm in (2.13), it is simple to verify that this pdf can have two modes which are the
solutions of the equation

λ

(
1 +

β

x2

)
φ(λωβ(x))−

(
1 +

α

x2

)
Φ(λωβ(x)) ωα(x) = 0.

As most of the multimodal datasets considered in practice are defined on the pos-
itive real values, it is convenient to reparametrized the distribution given by (2.3) via a
linear transformation, i.e. Y = µ + σX , where X ∼ gα(x), where α ≥ 0, µ ∈ R and
σ > 0 given in (2.3) to obtain a more general family of densities. Its pdf is given by

(2.15) gα,µ,σ(x) =

{
φ(ωα

(x−µ
σ )
)
, x 6= µ,

φµ,σ(µ), x = µ.

For the sake of simplicity, we will consider the value µ = 0 when estimating the
parameters of the distribution, in that case the distribution coincides with (2.3). A value
x = 0 is better identifiable in an empirical data source than another value that is unlikely
to be an integer. For the case that µ = 0, the parameter can be estimated by using a
similar procedure as the one used in the composite models, see [13].

2.4. Extensions

A variant of the approach used to derived (2.13) can be simply implemented as
follows

gα1,α2,β1,β2,λ(x) = 2Φ(λωβ1,β2(x))φ(ωα1,α2(x))(2.16)
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for x 6= 0, x 6=
√
βi, x 6=

√
αi, while gα1,α2,β1,β2,λ(0) = φ(0), gα1,α2,β1,β2,λ(

√
αi) =

φ(
√
αi), gα1,α2,β1,β2,λ(

√
βi) = φ(

√
βi), where βi ∈ R, αi ≥ 0 (i = 1, 2) and

ωα1,α2(x) = x− α2 −
α1

x− α2
x

,

ωβ1,β2(x) = x− β2 −
β1

x− β2
x

.

This modified family of distributions would allow us to obtain densities with more
than two modal values. The extension of this distribution to generate multimodality is
immediate. For the particular case (2.16), two graphs of the pdf have been plotted in
Figure 3.
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Figure 3: Plot of the probability density function (2.16) for selected values of
the parameters αi, βi (i = 1, 2) and λ

This new multimodal family of probability distributions can be utilized to explain
the size of the claims in cyber risk. In this regard, some multimodal and asymmetric dis-
tribution can be effortlessly applied to capture the multimodality and extremely skewed
feature of the severity of the cyber breaches.

2.5. Summary of the proposed methodology

Before continuing with the usual elements of distribution theory, such as statis-
tical inference and applications, it is essential to summarize the methodology we have
carried out in this work in a diagram. Figure 4 shows a flowchart outlining the methods
developed in this article. This diagram can help the reader observe the work’s general
perspective and allow, if desired, to ignore those elements that could be of lesser interest.
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Basic model

gα(x) =

{
f(ωα(x)), x 6= 0,
f(0), x = 0.

Normal case: f = φ (standard normal pdf)
Unimodal, bimodal and symmetrical

ωα(x) =
x − α/x, α ≥ 0

Relation with the
inverse Gaussian

distribution

General models
unimodal, bimodal and skew

gα,λ(x) =

{
2Φ(λx)φ(ωα(x)), x 6= 0,

φ(0), x = 0,

gα,β,λ(x) =

{
2Φ(λωβ(x))φ(ωα(x)), x 6= 0,

φ(0), x = 0.

ωα(x) = x− α/x, α ≥ 0,

ωβ(x) = x− β/x, β ≥ 0.

Φ: standard normal cdf

Extended multimodal
model

gα1,α2,β1,β2,λ(x) = 2Φ(λωβ1,β2(x))φ(ωα1,α2(x))

x 6= 0, x 6=
√
βi, x 6=

√
αi.

gα1,α2,β1,β2,λ(0) = φ(0),

gα1,α2,β1,β2,λ(
√
αi) = φ(

√
αi),

gα1,α2,β1,β2,λ(
√
βi) = φ(

√
βi),

βi ∈ R, αi ≥ 0 (i = 1, 2),

ωα1,α2(x) = x− α2 −
α1

x− α2
x

,

ωβ1,β2(x) = x− β2 −
β1

x− β2
x

.

Figure 4: Flowchart showing the methodology proposed in this paper

3. Statistical inference

Let us consider a random sample of n observations xxx = (x1, . . . , xn), in which
there are n0 observations that are zeros and n1 non-zero observations; n0 + n1 = n.
Now by using the pdf (2.3), the log-likelihood function is proportional to `(α;xxx) ∝
−1/2

∑
i∈{1,...,n1}(ωα(xi))

2. By equating the first derivative with respect to α to zero,

we get the maximum likelihood estimator of the parameterα is given by α̂ = n1

{∑
i∈{1....,n1} x

−2
i

}−1
,

xi 6= 0. Now, by computing the second derivative of the log-likelihood function and its
expectation, the corresponding standard error, that can be obtained from the Fisher’s in-
formation entry, is (n/α̂)−1/2. To obtain this result, it is necessary the expectation of
1/X2 with respect to the random variable with pdf (2.3) which is given by 1/α.

Let us now examine the pdf (2.15) with µ = 0. In this case, the log-likelihood
function is proportional to

`(α, σ;xxx) ∝ −n log σ − 1

2

∑
i∈{1,...,n1}

(ωα(xi/σ))2 ,(3.1)
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where n1 is the number of non-zero observations in the sample. From (3.1) we derive
the normal equations given by

n1
σ
− ασ

∑
i∈{1,...,n1}

(
1

xi

)2

= 0,(3.2)

n

σ
− σ

∑
i∈{1,...,n1}

[( xi
σ2

)2
−
(
α

xi

)2
]

= 0.(3.3)

After simple algebra, equations (3.2)-(3.3) provides the maximum likelihood es-
timators of the parameters which are given by

α̂ =
nn1(∑

i∈{1,...,n1} x
−2
i

)(∑
i∈{1,...,n1} x

2
i

)
− n21

,

σ̂ =

 1

n

 ∑
i∈{1,...,n1}

x2i − n21

 ∑
i∈{1,...,n1}

x−2i

−1
1/2

.

The second partial derivatives are provided by

∂`(α, σ;xxx)

∂α2
= −σ2

∑
i∈{1,...,n1}

(
1

xi

)2

,

∂`(α, σ;xxx)

∂α∂σ
= −2ασ

∑
i∈{1,...,n1}

(
1

xi

)2

,

∂`(α, σ;xxx)

∂σ2
=

n

σ2
−

∑
i∈{1,...,n1}

[
3x2i
σ4

+

(
α

xi

)2
]
.

Now, taking into account that E(X2) = σ2(1 + α) and E(1/X2
i ) = 1/(α σ2), it

is a simple exercise to note that the Fisher’s information matrix is

I(α̂, σ̂) =

[
n1/α̂ 2n1/σ̂
2n1/σ̂ (2n(2α̂+ 1)− n1)/σ̂2

]
.

Finally, when the pdf (2.13) is considered, the log-likelihood function is propor-
tional to

`(θθθ;xxx) ∝ −n log σ +
∑

i∈{1,...,n1}

log Φ (λωβ(xi/σ))− 1

2

∑
i∈{1,...,n1}

(ωα(xi/σ))2 ,

(3.4)

where θθθ = (α, β, λ, σ) is the vector of parameters to be estimated.
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In practice, although both normal equations and Fisher’s information matrix can
be obtained after tedious algebra, the estimates and the entries of this matrix can be
achieved by directly maximizing the log-likelihood function given in (3.4). Moreover,
this procedure can be extended, as it is seen in the numerical illustrations, for the case
where a location parameter µ is included. Recall that the Fisher’s information matrix
of the skew-normal distribution proposed by [6] is singular for the skew parameter and,
consequently, the maximum likelihood estimate of this parameter can be infinite with
a positive probability. With respect to the singularity of the Fisher information matrix
of the generalized skew normal (GSN) distribution with pdf (2.13), we could use the
Theorem 3 in [28] to derive a reparametrization of (2.13) and provide a solution to the
singularity problem for (α, β, λ) as in [36]. In order to show the asymptotic behaviour
of the maximum likelihood estimator, we carry out the following simulation experiment
where the algorithm illustrated in the previous section is used, a complete simulation
analysis for the GSN distribution with density function (2.13) is carried out by generating
N := 1000 samples of sizes n := 50, 100, 200 for different values of the parameters α,
β and λ. The value of these parameters have been chosen for the sake of simplicity in
estimation. For each parameter, the analysis computes the following measures:

• Average bias (AB) of the simulated estimates:

AB(Λ∗) =
1

N

∑
j∈{1,...,N}

(Λ∗j − Λ);

• Mean square error (MSE) of the simulated estimates:

MSE(Λ∗) =
1

N

∑
j∈{1,...,N}

(Λ∗j − Λ)2;

where Λ∗j represents the maximum likelihood estimate of each parameter in the jth sam-
ple and Λ is the true value of the parameter. Table 1 shows the average bias and mean
square errors of the parameter estimates for different values of α, β and λ for differ-
ent values of n. In the first row of this table, the case of the skew parameter λ = 0 is
considered, i.e. symmetric case. As expected, the mean square error decreases when
n increases. Also, the average bias is positive and decreases with n. It is also noted
that the MSE increases with the value of the parameter α. However, the mean square
errors for the parameters β and λ seem to be influenced by the value considered for
the parameter α. In general, the MSE’s decrease with the sample size satisfying that
lim
n→∞

MSE(Λ∗) = 0, and therefore, the estimates are consistent in mean square error. It
implies that the estimate gets closer and closer to the parameter’s true value as data ac-
cumulates. Also, for large values of n, the maximum likelihood estimators are normally
distributed with the mean equals to the true value of the parameter and variance equal to
the reciprocal of the information function evaluated at the mean.
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Table 1: Average bias (AB) and mean square error (MSE) of the maximum
likelihood estimates for different values of the parameters of the GSN
distribution for different samples sizes n with simulation size N :=
1000

n α = 0.25 β = 0.5 λ = 0 α = 1 β = 1 λ = 0

50 AB 0.0015 – – 0.0160 – –
MSE 0.0003 – – 0.0224 – –

100 AB 0.0013 – – 0.0138 – –
MSE 0.0002 – – 0.0108 – –

200 AB 0.0000 – – 0.0021 – –
MSE 0.0001 – – 0.0049 – –

n α = 0.25 β = 0.5 λ = 0.5 α = 1 β = 1 λ = 1

50 AB 0.0008 0.0922 0.0552 0.0230 0.0057 0.0606
MSE 0.0003 0.1302 0.1640 0.0211 0.0445 0.0756

100 AB 0.0001 0.1028 0.0472 0.0169 0.0072 0.0386
MSE 0.0002 0.0795 0.1068 0.0105 0.0209 0.0419

200 AB 0.0001 0.0848 0.0336 0.0032 0.0075 0.0212
MSE 0.0001 0.0606 0.0767 0.0054 0.0105 0.0209

n α = 0.5 β = 0.25 λ = 0.25 α = 0.75 β = 1.5 λ = 1.2

50 AB 0.0040 -0.0224 -0.0024 0.0135 0.0322 0.0544
MSE 0.0025 0.0470 0.0725 0.0092 0.0524 0.0890

100 AB 0.0030 -0.0181 0.0122 0.0054 0.0158 0.0320
MSE 0.0012 0.0437 0.0407 0.0046 0.0284 0.0581

200 AB 0.0022 -0.0176 0.0234 -0.0003 0.0078 0.0276
MSE 0.0007 0.0363 0.0219 0.0021 0.0143 0.0391

4. Numerical illustrations

In this section, some numerical applications of the GSN distribution given in
(2.13) are carried out. The results are compared with those ones of the skew-normal
distribution with parameters µ ∈ R, σ > 0 and λ ∈ R, i.e. SN(µ, σ, λ).

The example considered uses the well-known old faithful geyser (Yellowstone
Park, Wyoming, USA) data set. This data set consists of 299 measurements of the
numerical eruption time in minutes and the waiting time to the next eruption (also in
minutes). This popular dataset has been examined extensively in the literature. See, for
example, [32], [9] and [15], among others. It is already known that these two datasets
show bimodality. There are different versions of these datasets in the statistical literature.
The one examined here is taken from the R package MASS available in the website

https://stat.ethz.ch/R-manual/R-devel/library/datasets/
html/faithful.html

Descriptive statistics of these two datasets are shown in Table 2.

 https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/faithful.html
 https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/faithful.html
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Table 2: Descriptive statistics of the two variables considered in the Old Faith-
ful dataset

Time eruption Time waiting
Mean 3.461 72.314
Variance 1.313 192.296
min 0.833 43.000
max 5.450 108.000

The estimated values of the parameters for the two models are shown in Table
3 together with the standard errors (in brackets). This Table also includes the value of
the maximum log-likelihood function (`max), the Akaike’s information criterion (AIC)
see [1] and the consistent Akaike’s information criteria (CAIC), proposed by [11]. The
last measure of model selection was chosen to overcome the tendency of the AIC to
overestimate the complexity of the underlying model since it lacks certain properties
of asymptotic consistency as it does not directly depend on the sample size. Then, to
calculate the CAIC, a correction factor based on the sample size is used to compensate
for the overestimating nature of AIC. The CAIC is defined as twice `max plus k (1 +
log(n)), where k is the number of free parameters and n refers to the sample size. Note
that a model with a lower AIC and CAIC values is preferred to one with a higher value.
It is observable that the GSN distribution has a better performance than the skew normal
(SN).

Table 3: Parameters estimates, standard errors (in brackets), maximum of the
log-likelihood function (`max), AIC and CAIC values for the two vari-
ables considered in the old faithful geyser dataset

Time eruption Time waiting
SN GSN SN GSN

λ̂ 10.310 0.676 –7.975 0.247
(3.851) (0.116) (1.512) (0.078)

α̂ – 0.468 – 0.551
– (0.058) – (0.062)

β̂ – 0.227 – -0.216
– (0.096) – (0.334)

µ̂ 48.454 65.185 4.897 3.135
(0.944) (0.258) (0.049) (0.009)

σ̂ 27.597 13.088 1.837 0.956
(1.393) (0.557) (0.084) (0.038)

`max -1231.57 -1116.427 -425.737 -399.229
AIC 2469.13 2242.85 857.474 808.458

CAIC 2483.24 2266.36 871.575 831.960
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Graphs of the empirical smooth kernel density and theoretical distribution model
(GSN) are shown in Figure 5. This former density function was derived by using the in-
built function SmoothKernelDistribution in Mathematicar v.12.0. We
used an smoothing Gaussian kernel and automatically computed bandwidth parameter.
As it can be seen, the GSN is able to capture the bimodal nature of the empirical data
although there is an underestimation produced by the adjustment of the proposed distri-
butions. Maximization techniques were completed using Mathematicar v.12.0
and corroborated with WinRATS v.7.0 (the codes are available upon request) and the
computer used was a Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz with 16,0 GB RAM
and a processor based on x64 getting acceptable time of processing. Details about these
two software can be found in [30] and [12], among others. The routines employed were
standard, including among others the FindMaximum to compute the maximum likeli-
hood estimates and the Experimental‘CreateNumericalFunction to obtain
the Hessian matrix.
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Figure 5: Smooth kernel density estimate of the empirical data (thick line) and
the GSN (thin line) for the old faithful data set

5. Conclusions, limitations and future research

In this work, we have studied two families of distributions with support on the
real line, the first symmetric and the second not necessarily symmetric. Both families
can present more than one mode and include the normal distribution as a special case. In
addition, the second one includes, as a particular case, the skew normal distribution. The
model has been applied to environmental data, and it can also be used in other scenarios
where bimodality is present.

One of the limitations of the distribution proposed in this work is based on the
fact that the value that the first distribution takes at zero (at µ for the second model) is
fixed, what make these models inflexible. This is an issue that that undoubtedly deserves
to be deeply studied to guarantee a more versatile and flexible proposal than the ones
presented in this work.

It should also be noted that the extension shown in the Subsection 2.4 requires a
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separate analysis outside this work’s scope. This indeed constitutes a promising proba-
bilistic family that allows to model multimodal data.
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