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1. INTRODUCTION

Knowledge on the nature and extent of the joint behaviour of random
quantities is a topic of considerable interest in all fields of scientific activity, In
this context the joint distribution of random variables is an indispensable tool
in analysing various aspects of interrelationship among the constituent variables,
Among various measures developed for understanding the amount of uncertainty
prevailing in the outcomes generated by the distribution, entropy has established
itself as an efficient mechanism in a variety of fields. The basic measure of un-
certainty empoloyed in the bivariate case is the Shannon entropy defined as

(1.1) h(X,Y ) = hX,Y = −
∫
S

∫
f(x, y) log f(x, y)dxdy,

where f(x, y) is the probability density function of the random vector (X,Y ) with
support S. Since the introduction of (1.1), several modifications were introduced
by way of additional parameters to impart more flexibility, measures with struc-
tural changes, replacing joint density by conditional ones etc., to provide a wide
range of new measures. The structural modification to obtain a new measure by
replacing the density by the survival function is due to [15] in the univariate case,
motivated researchers to apply the same logic in the bivaraite case resulting in
the bivariate version of cumulative residual entropy

(1.2) H(X,Y ) = HX,Y = −
∫
S

∫
F̄ (x, y) log F̄ (x, y)dxdy,

where F̄ (x, y) = P (X > x, Y > y) is the survival function of (X,Y ). The
expression (1.2) is implied as a particular case in the definition of bivariate cu-
mulative residual entropy in [14]. A critical aspect to be considered in using
bivariate distribution for modelling is the dependence relation existing between
X and Y . In this respect copulas are found to be more general and flexible as
they provide means of obtaining the joint distribution through the marginals con-
nected by known dependence relationships. There are three approaches to study
the nature and extent of dependence in copulas. The first is through global
measures that specify the association like the Pearson’s correlation coefficient,
Spearman’s rho, Kendall’s tau, Blomquist’s beta, etc. A second alternative is to
use dependence concepts like total positivity, quadratic dependence and stochas-
tic increase. Finally, we have time dependent measures of association which are
used when analysing data on duration variables where the time elapsed since the
commencement of observation is vital. See [11] for a review of materials in this
connection. Any one of these methods, depending on the appropriateness of the
techniques chosen in the problem at hand, will enable us to know whether de-
pendence is positive or negative and also to compare the degree of association.
In view of the flexibility of the copula over distribution functions, [7] proposed
the copula entropy

(1.3) i(X,Y ) = iX,Y = −
∫ 1

0

∫ 1

0
c(u, v) log c(u, v)dudv,
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as a measure of uncertainty in the copula density c(u, v) associated with (X,Y ).
It provides a tool to connect copulas and information theory. Since its inception
the measure (1.3) was used to ascertain structural learning, dependence aspects,
variable selection, casual discovery, etc in various disciplines such as hydrology
[2], biology [1], neuroscience [3] and medicine ([5, 6, 9]) etc. The generality and
range of application the copula entropy motivate the investigation of more refined
measures of uncertainty for copulas. Further as an index of information, the neg-
ative values of (1.3) are difficult to interpret and it is more prefereable to have a
measure that assumes positive values only, and that too in a finite interval. The
form of copula density in many standard cases is analytically and computation-
ally more complicated to work with, when compared to the usual copula or the
survival copula. To study various aspects of dependence, most concepts in that
area are expressed in terms of the copula than its density. Moreover inference
procedures available in literature for copulas can be made use of in estimating
and testing copula-based entropies. These facts suggest proposing an uncertainty
measure based on copulas and investigating its properties. The objective of the
present work is thus to make a preliminary study of a new measure of uncertainty
in terms of the survival copulas, in the same manner as the development of (1.2)
from (1.1).

A summary of the present work is as follows. In Section 2, we define
the survival copula entropy and obtain some relationships between cumulative
residual entropy, copula entropy and survival copula entropy. Following this, in
Section 3 the properties of the new entropy especially its role as a measure of
dependence is discussed. In Section 4, application of survival copula entropy to
some real situations is demonstrated. The paper ends with a brief conclusion in
Section 5.

2. SURVIVAL COPULA ENTROPY

As mentioned in the introduction, let (X,Y ) be a random vector with
distribution function F (x, y) and survival function F̄ (x, y). Recall that a copula
is a funcion C : I2 → I, where I is the unit interval [0, 1], such that

C(0, v) = C(u, 0) = 0; C(u, 1) = C(1, u) = u,

for all u, v in I and C is 2-increasing so that the C-volume of the rectangle
[a, b] × [k, d], VC ([a, b]× [k, d]) ≥ 0 for all rectangles in I2. The function C
induces a probability measure on I2 via VC ([a, b]× [k, d]) = C(u, v). When C

is absolutely continuous we have the copula density c(u, v) = ∂2C
∂u∂v . A survival

copula C̄ : I2 → I satisfies

C̄(u, 1) = 0 = C̄(1, u) and C̄(u, 0) = u = C̄(0, u),

for all u in I and volume VC̄ ([a, b]× [k, d]) ≥ 0. Further,

C̄(u, v) = u+ v − 1 + C(1− u, 1− v).
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Table 1: Survival copula entropy of the Gumbel-Barnett copula

θ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

IC̄ 0.24404 0.23859 0.23357 0.22570 0.22455 0.22048 0.21664 0.21302 0.20960

With these basic notions we define the measures of uncertainty with reference to
C and C̄.

Definition 2.1. The survival copula entropy (SCE) associated with the
survival copula C̄ of (X,Y ) is defined as

(2.1) IC̄(X,Y ) = −
∫ 1

0

∫ 1

0
C̄(u, v) log C̄(u, v)dudv.

Example 2.1. Consider the Gumbel-Barnett family

C̄(u, v) = u v exp[−θ log u log v], 0 ≤ θ ≤ 1.

IC̄(X,Y ) = −
∫ 1

0

∫ 1

0
uve−θ log u log v[log u+ log v − θ log u log v]dudv

= −e
4
θEI

(
−4

θ

)
,

where EI(z) = −
∫∞
−z

e−t

t dt. The value of IC̄ for selected values of θ are given in
Table 1.

The quantity in (2.1) is obviously a measure of uncertainty since C̄(u, v) is a
bivariate survival function with uniform marginals and (2.1) is thus a cumulative
entropy, by definition (1.2). As a measure of uncertainity in bivariate distribu-
tions, it is of interest to examine its structure in relation to the existing similar
measures like cumulative entropy (1.2) and the copula entropy (1.3). For this pur-
pose we assume that the marginal survival functions F̄X and F̄Y of X and Y are
continuous, strictly decreasing over the half-line [0,∞) with F̄X(0) = 1 = F̄Y (0).
Then the bivariate cumulative entropy of (X,Y ) can be written as

H(X,Y ) = −
∫ ∞

0

∫ ∞

0
F̄ (x, y) log F̄ (x, y)dxdy

= −
∫ 1

0

∫ 1

0
F̄
(
F̄−1
X (u), F̄−1

Y (v)
)
log F̄

(
F̄−1
X (u), F̄−1

Y (v)
)
dF̄−1

X (u)dF̄−1
Y (v)

= −
∫ 1

0

∫ 1

0
C̄(u, v) log C̄(u, v)dF̄−1

X (u)dF̄−1
Y (v),(2.2)

by Sklar’s theorem. It is evident that the copula version of (1.2) is not in general
the same as SCE. However for bivariate uniform distributions like

F̄ (x, y) = (1− x)(1− y) [1 + θxy] , 0 ≤ x, y ≤ 1,
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the quantities HXY (x, y) and IC̄(X,Y ) remain the same. Some similar calcula-
tions reveal that

(2.3) IC̄(X,Y ) = −
∫ ∞

0

∫ ∞

0

[
F̄ (x, y) log F̄ (x, y)

]
dF̄XdF̄Y ,

showing that the distribution function counterpart of SCE is not identical with
(1.2). Thus survival copula entropy is a different measure than the other compa-
rable measures of uncertainity of bivariate distributions as can be seen from this
and the following discussions.

We now examine the relationships between the two copula-based entropies

i(X,Y ) and I(X,Y ). Although there exists nice relationship c(u, v) = ∂2C(u,v)
∂u∂v

between c and C, a simple equation connecting their entropies appears to be
elusive and the same is true even for specific copulas. However, if we consider
the random vector (XE , YE) associated with (X,Y ) through

(2.4) fXE ,YE
(x, y) =

F̄ (x, y)

E(XY )
,

where fXE ,YE
stands for the density function of (XE , YE), some relationships

useful in different contexts can be derived. Note that (2.4) is often called the
equilibrium distribution of (X,Y ). For a detailed discussion of the properties
and applications of such distributions, we refer to [10] and [12]. Using (2.4) and
(1.1) we can write the Shannon entropy of (XE , YE) as

hXE ,YE
= −

∫ ∞

0

∫ ∞

0

F̄ (x, y)

E(XY )

[
log F̄ (x, y)− E(XY )

]
dxdy,

=
HX,Y

E(XY )
+ logE(XY ),(2.5)

showing HX,Y as a change of origin and scale in hXE ,YE
.

From [8], the mutual information among (X,Y )

M(X,Y ) = −
∫ ∞

0

∫ ∞

0
f(x, y) log

f(x, y)

fX(x)fY (y)
dxdy,

= hX + hY − hX,Y ,

is the negative of the copula entropy iX,Y where hX and hY respectively denote
the Shannon entropy of X and Y and so,

−iX,Y = hX + hY − hX,Y

giving

(2.6) iXE ,YE
= hXE ,YE

− hXE
− hYE

.
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From the definition of the univariate equilibrium distribution fXE
= F̄X(x)

E(X) , we
get

(2.7) hXE
=

HX

E(X)
+ logE(X),

and similarly,

(2.8) hYE
=

HY

E(Y )
+ logE(Y ),

where HX = −
∫∞
0 F̄X(x) log F̄X(x)dx is the cumulative residual entropy of X

and HY is similarly defined (see [15]). From equations (2.5) through (2.8) the
expression for copula entropy is obtained in terms of cumulative entropies as

(2.9) iXE ,YE
=

HX,Y

E(XY )
− HX

E(X)
− HY

E(Y )
+ log

E(XY )

E(X)E(Y )
.

Finally from (2.3),

IC̄(X,Y ) = −
∫ ∞

0

∫ ∞

0
E(XY )fE(x, y) [logE(XY )fE(x, y)] fX(x)fY (y)dxdy,

= −
∫ 1

0

∫ 1

0
E(XY )fE

(
F̄−1
X , F̄−1

Y

) [
logE(XY )fE

(
F̄−1
X , F̄−1

Y

)]
dudv.(2.10)

From

f(x, y) =
∂2F̄ (x, y)

∂x∂y
,

we have

f
(
F̄−1
X , F̄−1

Y

)
=

∂2F̄
(
F̄−1
X , F̄−1

Y

)
∂F̄−1

X ∂F̄−1
Y

=
∂2C(u, v)

∂u∂v

∂u∂v

∂F̄−1
X ∂F̄−1

Y

= c(u, v)
∂u∂v

∂F̄−1
X ∂F̄−1

Y

.

Thus from (2.10), the survival copula entropy is related to the copula entropy as

IC̄(X,Y ) = −
∫ 1

0

∫ 1

0
E(XY )fX

(
F̄−1
X

)
fY
(
F̄−1
Y

)
c(u, v)

log
[
E(XY )fX

(
F̄−1
X

)
fY
(
F̄−1
Y

)
c(u, v)

]
dudv.

(2.11)

In the next example we demonstrate how the above results work out in a specific
distribution.

Example 2.2. Let (X,Y ) follows bivariate Pareto distribution

F̄ (x, y) = (1 + x+ y)−θ, θ > 0; x, y > 0.
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Then we have
F̄X(x) = (1 + x)−θ; F̄Y (y) = (1 + y)−θ,

(2.12) E(XY ) =

∫ ∞

0

∫ ∞

0
(1 + x+ y)−θdxdy = [(θ − 1)(θ − 2)]−1 , θ > 2

and
fXE ,YE

(x, y) = (θ − 1)(θ − 2)(1 + x+ y)−θ,

HXY = −
∫ ∞

0

∫ ∞

0
(1 + x+ y)−θ (−θ log(1 + x+ y)) dxdy

=
(2θ − 3)θ

(θ − 1)(θ − 2)
(2.13)

and

hXE ,YE
= −

∫ ∞

0

∫ ∞

0
(θ − 1)(θ − 2)(1 + x+ y)−θ

[
log(θ − 1)(θ − 2) + log(1 + x+ y)−θ

]
dxdy

= (2θ − 3)θ + log(θ − 1)(θ − 2).(2.14)

The formula (2.5) is verified from (2.12), (2.13) and (2.14). Also

HX = −
∫ ∞

0
(1 + x)−θ (−θ log(1 + x)) dx =

θ

(θ − 1)2
.

Similarly hY = θ
(θ−1)2

and E(X) = E(Y ) = 1
(θ−1) . Hence from (2.9)

iXE ,YE
= (2θ − 3)θ − θ

θ − 1
− θ

θ − 1
+ log

(θ − 1)2

(θ − 1)(θ − 2)

=
2θ2 − 7θ + 1

θ − 1
+ log

θ − 1

θ − 2
, θ > 2.

The survival copula is

(2.15) C̄X,Y (u, v) =
(
u−

1
θ + v−

1
θ − 1

)−θ
,

which is the Clayton family. Also

(2.16) c(u, v) =
θ + 1

θ

u−
1
θ
−1v−

1
θ
−1(

u−
1
θ + v−

1
θ
−1
)θ+2

(θ + 2).

One can directly calculate both IC̄ and i(X,Y ) from (2.15) and (2.16). We may
also use the fact that

C̄(u, v) =
θ + 1

θ

u−
1
θ
−1v−

1
θ
−1(

u−
1
θ + v−

1
θ
−1
)θ+2

c(u, v)

or formula (2.11). Note that when applying (2.11), fX(x) = θ(1+x)−θ−1 so that

fX
(
F̄−1
X

)
= θu−

θ+1
θ and fY

(
F̄−1
Y

)
= θv−

θ+1
θ



8 N.Unnikrishnan Nair and S.M.Sunoj

Table 2: CCE for FGM copula

θ -0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9

IC̄ 0.24811 0.24615 0.24412 0.24200 0.23981 0.23753 0.23516 0.23268 0.23013

We have so far discussed the entropy function derived from the survival
copula. One can also define the entropy based on the usual copula C.

Definition 2.2. The cumulative copula entropy (CCE) of (X,Y ) is de-
fined as

IC(X,Y ) = −
∫ 1

0

∫ 1

0
C(u, v) logC(u, v)dudv.

Example 2.3. The Farlie-Gumbel-Morgestern copula

C(u, v) = uv [1 + θ(1− u)(1− v)] , −1 ≤ u ≤ 1

has CCE given by

IC = −
∫ 1

0

∫ 1

0
uv (1 + θ(1− u)(1− v)) [log u+ log v + log (1 + θ(1− u)(1− v))] dudv.

The integral does not converge for θ > 0. For θ < 0,

IC =
(
168θ2

)−1
[−690 + 84θ2 + 10θ3 − 3π2 + 9π2θ + 3(17 + 9θ + 9θ2 + θ3)

− 6(−1 + 3θ) log(−θ) log(1 + θ) + 18(1− 3θ)]PolyLog[2, 1 + θ]

where PolyLog(n, z) =
∑∞

k=1 z
k/kn.

Values of the entropy function for some values of θ are given in Table 2

Remark 2.1. In general IC and IC̄ are different for the random vector
(X,Y ). When (X,Y ) is radially symmetric, that is for any (u, v) in I2, the
rectangles [0, u]× [0, v] and [1−u, 1]× [1−v, 1] have equal C-volume, then C = C̄
and the entropy satisfies IC = IC̄ . Since the algebra involved in deriving various
results in IC is similar to those in IC̄ , we restrict our subsequent discussions to
the latter case.

3. PROPERTIES OF SURVIVAL COPULA ENTROPY

An important aspect in favour of SCE among other measures is that its
values lies in a finite interval whcih makes it easier for comparison and interpre-
tation.
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Proposition 3.1. The SCE satisfies

(3.1)
1

18
≤ IC̄(X,Y ) ≤ 1

3

Proof: It is well known that for every copula C and for all (u, v) in I2,

W (u, v) ≤ C(u, v) ≤ M(u, v)

where M(u, v) = min(u, v) and W = max(u+ v − 1, 0) are copula versons of the
Fréchet-Hoeffding bounds of a bivariate distribution in R2. Let M̄ and W̄ be the
survival copulas corresponding to M and W respectively. Then

M̄(u, v) = u+ v − 1 + min(1− u, 1− v)

= u+ v −max(u, v)

= min(u, v) = M.

Similarly W̄ = W . Thus W (u, v) ≤ C̄(u, v) ≤ M(u, v) so that

IC̄(X,Y ) = −
∫ 1

0

∫ 1

0
C̄(u, v) log C̄(u, v)dudv

≥ −
∫ 1

0

∫ 1

0
M̄(u, v) log M̄(u, v)dudv

or

IC̄(X,Y ) ≥ −
∫ 1

0

∫ 1

0
min(u, v) logmin(u, v)dudv

= −
∫ 1

0

∫ 1

u
v log u dudv −

∫ 1

0

∫ u

0
v log v dudv

=
1

18
, using 0 log 0 = 0.

Also

IC̄(X,Y ) ≤ −
∫ 1

0

∫ 1

0
W̄ (u, v) log W̄ (u, v)dudv

=

∫ 1

0

∫ 1

0
max(u+ v − 1, 0) logmax(u+ v − 1, 0)dudv

=

∫ 1

0

(
u− 1

2

)
log udu−

∫ 1

0

∫ 1

1−u

(
v
(
u+ v

2 − 1
)

u+ v − 1
dv

)
du

=

∫ 1

0

(
u− 1

2

)
log udu−

∫ 1

0

∫ 1

1−u

[
v

2
+

3

2
(1− u) +

3

2

(
(1− u)2

u+ v − 1

)]
dudv

=
1

3
.
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Remark 3.1. It is not necessary that the SCE for all copulas attain the
above bounds. For example, the Clayton copula contains M and W and hence
their entropies lie in

[
1
18 ,

1
3

]
. At the same time the Gumbel-Barnett family does

not includeM andW and the bounds prescribed byM andW are not attained for
this family. On the other hand C2 = max (θuv + (1− θ)(u+ v − 1), 0) contains
W but not M , while C3 = θ/ log

(
eθ/u + eθ/v − e−v

)
has M as a member, but

not W . Further C and C̄ have the same entropy if and only if C is radially
symmetric.

3.1. Ordering copulas via entropy

There are many situations where the data on the same random variable
comes from different sources and the problem is to choose the more informative
one for analysis. In such circumstances tha entropies in each case has to be
compared. The ordering of copulas comes handy in comparing the entropies.
If C1 and C2 are two copulas, we say that C1 is smaller (larger) than C2 in
concordance order, if C1(u, v) ≤ (≥)C2(u, v) for all u, v in I, and is denoted by
C1 ≺ (≻)C2. Note that C1 ≺ (≻)C2 ⇔ C̄1 ≺ (≻)C̄2. The following proposition
is immediate.

Proposition 3.2.

(3.2) C̄1 ≺ (≻)C̄2 =⇒ IC̄1
≤ (≥)IC̄2

.

With some additional assumptions the converse of (3.2) is also true.

Proposition 3.3. Let A denote the class of copulas that are concor-
dance ordered, that is, for elements C̄1 and C̄2 ∈ A, we have either C̄1(u, v) ≤
C̄2(u, v) or C̄1(u, v) ≥ C̄2(u, v). Then

(3.3) IC̄1
≤ (≥)IC̄2

=⇒ C̄1(u, v) ≤ (≥)C̄2(u, v) for all u, v in I.

Proof: To prove the above implication assume that IC̄1
≥ IC̄2

which is
equivalent to

(3.4)

∫ 1

0

∫ 1

0
C̄1(u, v) log C̄1(u, v)dudv ≥

∫ 1

0

∫ 1

0
C̄2(u, v) log C̄2(u, v)dudv.

Since C1 and C2 are ordered, if C1 ≤ C2 then ref3.3 is violated and hence
C1 ≥ C2.

As an example, from the values of IC̄ given in Tables 1 and 2, it is seen
that entropies are decreasing. It is well known that the corresponding copulas
are also decreasing functions of θ in their assumed ranges.
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3.2. Survival copula entropy and dependence

An important use of SCE is assessing the nature of dependence between X
and Y , thus making a connection between entropy and dependence. The above
discussion on concordances ordering and entropy have significant implications in
ascertaining the mode of dependence and the SCE. An important and perhaps
mostly used dependence concept is positive (negative) quadrant dependence PQD
(NQD). Recall that a copula C is PQD (NQD) if C̄(u, v) ≥ (≤)uv, for u, v in I.

Proposition 3.4. The vector (X,Y ) is PQD (NQD), then

(3.5) IC̄ ≥ (≤)
1

4
.

Proof:

(X,Y ) is PQD (NQD) =⇒ C(u, v) ≥ (≤)
∏

(u, v) = uv

From∫ 1

0

∫ 1

0
C(u, v) logC(u, v)dudv ≥ (≤)

∫ 1

0

∫ 1

0
uv(log u+ log v)dudv =

1

4
,

the result follows.

Remark 3.2. In view of (3.1), PQD (NQD) random vectors are sought
the interval [14 ,

1
3 ] and [ 118 ,

1
4 ] respectively. Further, if the random variables X and

Y are independent then IC̄ = 1
4 . The next proposition gives a criterion to check

whether which of two random variables are more positively dependent.

Proposition 3.5. For copulas C̄1, C̄2 ∈ A, C̄1 is more PQD than C̄2 if
and only if IC̄1

≥ IC̄2
.

Proof: We say that C̄1 is more PQD than C̄2 if C̄1 ≻ C̄2. Thus

C̄1 is more PQD than C̄2 ⇔ C1(u, v) ≥ C2(u, v) for all u, v

⇔ IC̄1
≥ IC̄2

,

by (3.2) and Remark 3.2.

We can also compare members of a specified family of copulas C̄θ(u, v)
indexed by a parameter θ ∈ Θ. The family {C̄θ}, θ ∈ Θ is positively (negatively)
ordered whenever C̄θ1 ≺ (≻) C̄θ2 for θ1, θ2 ∈ Θ, θ1 ≤ (≥)θ2. In this case we have
the next proposition that gives a criterion to distinguish between more positive
dependent among families of copulas.
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Proposition 3.6. Let {C̄θ} be positively (negatively) ordered. Then
IC̄θ1

≤ (≥)IC̄θ2
, for all θ1, θ2 ∈ Θ, θ1 ≤ (≥)θ2.

Example 3.1. The Gumbel-Barnett family in Example 2.1 is negatively
ordered as can be verified from Table 1 and FGM copula in Table 2 is positively
ordered.

Remark 3.3. For many standard copula families, it is algebraically dif-
ficult to establish whether it is positively or negatively ordered. Proposition 3.4
gives a relative simple alternative tool to resolve this problem.

Remark 3.4. The relationship CCE has with well known measures of
dependence is also worth examination. The measures in common use are the

Kendall’s tau, τ = 4
∫ ∫

I2 C(u, v) ∂2C
∂u∂vdudv − 1,

Spearman’s rho, ρ = 12
∫ ∫

I2 C(u, v)dudv − 3,

Blomqvist’s beta, β = 4C
(
1
2 ,

1
2

)
− 1,

Gini coefficient, ξ = 4
[∫ ∫

I2 C(u, 1− u)du−
∫ ∫

I2 (u− C(u, u)) du
]
, and

the product moment correlation coefficient

r = [D(X)D(Y )]−1
∫ ∫

I2
[C(u, v)− uv]dF−1(u)dG−1(u)

where D(X), D(Y ) are standard deviations of X and Y , and F and G are their
marginal distribution functions. It is known that [13] when X and Y are PQD

(i) 3τ ≥ ρ ≥ 0, β ≥ 0 and ξ ≥ 0

(ii) for non-decreasing function p(x) and q(y) whose expectations are finite and

E (p(X)q(Y )) < ∞, Cov (p(X), q(Y )) ≥ 0

and conversely, implying that Cov(X,Y ) and hence r ≥ 0. Combining
these with our earlier propositions we find that when the cumulative copula
IC̄ lies in the interval [14 ,

1
3 ], we have positive dependence in the sense of

PQD as well as τ, ρ, β, ξ and r. In general it is difficult to find expressions
that connects C̄ with the various coefficients τ, ρ, etc, but one can obtain
formulas in respect of specific copulas. For example, in the Gumbel-Barnett

copula, the Spearman’s coefficient is ρ = 12

[
− e−

4
θ

θ EI
(
−4

θ

)]
− 3 so that

from Example 2.1,

ρ = 12

(
IC̄
θ

)
− 3.
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In this copula, IC̄ is a decreasing function of θ and the maximum of IC̄
occurs at θ = 0, the case of independence in which case IC̄ = 0.25. Hence
for this copula ρ ≤ 0 so that there is negative dependence for all 0 ≤ θ ≤ 1.
By virtue of Propositions 3.2 and 3.4, we also conclude that as the IC̄ value
decreases from 0.25, so does the extent of negative dependence between X
and Y .

3.3. Effect of transformations

There are occasions where transformations have to be applied to the base-
line random variables to facilitate easier analysis. It is of interest to know how
the SCE is affected by such transformations.

Proposition 3.7. Let T (X) and W (Y ) be strictly monotone transfor-
mations of X and Y . Let the corresponding SCE’s be I (T (X),W (Y )) and
I(X,Y ) respectively. Then

(i) I (T (X),W (Y )) = I(X,Y ) when T (X) and W (Y ) are both strictly increas-
ing

(ii) I (T (X),W (Y )) = I(X,Y ) when T (X) and W (Y ) are both strictly de-
creasing and I is the cumulative copula entropy of (X,Y ) and

(iii) I (T (X),W (Y )) =

{ ∫ 1
0

∫ 1
0

[
v − C̄(u, v)

]
log
[
v − C̄(u, v)

]
dudv∫ 1

0

∫ 1
0

[
u− C̄(u, v)

]
log
[
u− C̄(u, v)

]
dudv

where T (X) is strictly increasing (decreasing) and W (Y ) is strictly decreasing
(increasing).

Proof: Proceeding as in Theorems 2.4.3 and 2.4.4 in ([13], p. 25, 26)
we find that

C̄T (X),W (Y )(u, v) = C̄X,Y (u, v).

when both T (X) and T (Y ) are increasing,

C̄T (X),W (Y )(u, v) = v − C̄X,Y (1− u, v).

when T (X) is increasing and W (Y ) is decreasing,

C̄T (X),W (Y )(u, v) = u− C̄X,Y (u, 1− v).

when T (X) is decreasing and W (Y ) is increasing and

C̄T (X),W (Y )(u, v) = CX,Y (u, v).

when T (X) and W (Y ) are strictly decreasing. Then first and last results directly
establish (i) and (ii) of the Proposition and (iii) is obtained from the 2nd and 3rd
results with a transformation of (1 − u) (1 − v) to u (v). It may be noted that
entropy of (T (X),W (Y )) is independent of the form of the two functions.
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Example 3.2. The linear transformations T (x) = αx+ β and W (y) =
γy + ϕ are common in data analysis. When α > 0, γ > 0, in this case

C̄(u, v) = u v exp[−θ log u log v], 0 ≤ θ ≤ 1.

and

IC̄(αX + β, γY + ϕ) = −e
4
θEI

(
−4

θ

)
= IC̄(X,Y ), for α, β, γ, ϕ > 0

4. APPLICATIONS

In this section we demonstrate how the results obtained in the previous
sections can be implemented in a practical problem. The example considered
relates to an investigation on 20 individuals for isolated aortic regurgitations
before and after surgery and 20 persons for isolated mitral regurgitation analysed
in [4]. Data on pre-operative ejection fraction (X) and post-operative ejection
fraction (Y ) arranged in order of magnitude are

X : 0.29, 0.36, 0.39, 0.41, 0.50, 0.53, 0.54, 0.55, 0.56, 0.56, 0.56, 0.58, 0.60, 0.60, 0.62,

0.64, 0.64, 0.67, 0.80, 0.87

Y : 0.17, 0.24, 0.26, 0.26, 0.27, 0.29, 0.30, 0.32, 0.33, 0.33, 0.34, 0.38, 0.47, 0.47, 0.50,

0.56, 0.58, 0.59, 0.62, 0.63

The first step in the analysis is the estimation of the SCE. We consider the
empirical survival copula for a random sample (x1, y1), (x2, y2), · · · , (xn, yn) from
a continuous bivariate distribution given by

C̄

(
i

n
,
j

n

)
=

(
number of pairs in the sample with x > x(i), y > y(j)

)
n

,

where x(i)
(
y(j)
)
is the ith (jth) order statistic of the observations onX(Y ). Using

C̄
(

i
n ,

j
n

)
as the estimator of C̄(u, v), the resubstitution estimator of IC̄ is

ÎC̄ =
2

n2

n∑
i=1

n∑
j=1

C̄

(
i

n
,
j

n

)
log C̄

(
i

n
,
j

n

)
,

at those points for which i
n + j

n − 1 > 0. The estimated value for the given

sample is ÎC̄ = 0.3049. [4] in their analysis, found that the Pearson correlation
coefficient r = 0.6870, Kendall’s rank correlation τ = 0.5050 and Spearman’s
rank correlation ρ = 0.6970. Thus all the measures indicate positive dependence
between the two sets of observations. Using Proposition 3.4, our nonparametric
estimate also support this conclusion irrespective of the copula model, since ÎC̄ >
1
4 . Further, the data gives satisfactory evidence for the PQD property of the
underlying copula.
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5. CONCLUSION

In this work we have proposed a measure of uncertainty based on sur-
vival copula and examined some of its properties. Apart from being useful to
evaluate uncertainty it can be of application in assessing copula properties like
independence and their ordering. The proposed concept is more general than
distribution-based counterparts and has some advantages over them and the ex-
isting copula entropy.
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