REVSTAT - Statistical Journal
Volume 0, Number 0, Month 0000, 000-000
https://doi.org/00.00000/revstat.v00i0.000

Statistical Inference for the Inverse Lindley Distribu-
tion Based on Lower Record Values

Authors:  BAHAREH ETEMAD GOLESTANI
— Department of mathematics and Statistics, Mashhad Branch,Islamic
Azad University, Mashhad, Iran.
etemad.bahar@gmail.com

ExsAN OrMOz

— Department of mathematics and Statistics, Mashhad Branch,Islamic
Azad University, Mashhad, Iran.
Ehsanormoz@mshdiau.ac.ir

S.M.T.K. MIRMOSTAFAEE

— Department of Statistics, Faculty of Mathematical Sciences, University
of Mazandaran, Babolsar, Iran.
m.mirmostaface@umz.ac.ir

Received: Month 0000 Revised: Month 0000 Accepted: Month 0000

Abstract:

e In this paper, we discuss the problem of classical and Bayesian estimation of the
parameter of the inverse Lindley distribution based on lower records, as well as the
prediction of a future record value. We obtain the maximum likelihood estimator, the
approximate confidence interval, as well as two bootstrap-type confidence intervals
for the parameter based on the inverse Lindley distribution records. In the context of
Bayesian estimation, we use the Tierney and Kadane’s method and two Markov chain
Monte Carlo approaches. The future record values are also explored using the maxi-
mum likelihood and Bayesian approaches. The highest conditional density, as well as
Bayesian intervals, are also constructed for a future lower record. A simulation study
and a real data example are also given for the sake of comparison and illustration.

Keywords:

e Bayesian estimation and prediction; general entropy loss function; inverse Lindley
distribution; lower record values; mazximum likelihood estimation.

AMS Subject Classification:

e 62F10, 62C10.

™ Corresponding author


https://doi.org/00.00000/revstat.v00i0.000
https://orcid.org/0009-0000-6360-7422
mailto:etemad.bahar@gmail.com
https://orcid.org/0000-0003-3557-5755
mailto: Ehsanormoz@mshdiau.ac.ir
https://orcid.org/0000-0003-2796-4427
mailto: m.mirmostafaee@umz.ac.ir

2 Bahareh Etemad Golestani, Ehsan Ormoz and S.M.T.K. MirMostafaee

1. INTRODUCTION

In recent years, the inverse Lindley distribution (/LD) has attracted the
attention of several authors. It was first introduced by [28] and its stress-strength
reliability was explored under classical and Bayesian models. In addition, its
application to head and neck cancer data was demonstrated. Let Y have a Lindley

1
distribution with parameter 8, and define X = v then X has an inverse Lindley

distribution with parameter 6 (notationally X ~1T LD(G)) and the probability
density function (PDF') of X is obtained to be

62 r+1\ _o
(1.1) f(x;9)21+9< = )e =, x>0, 6>0.
The corresponding cumulative distribution function (CDF') is given by
(1.2) F:0) = (14— 5, 2>0, 0>0
. x;0) = 0+ 0z ez, x ) .

The PDF (1.1), is a mixture of the inverse exponential distribution with pa-
rameter 6 and the inverse gamma distribution with shape parameter 2 and scale
parameter ¢, namely (1.1) can be written as

f(z;0) =pfi(z) + (1 = p) fo(z),
where

0 _3 _06 0
file) =027%e75, fofa) =02 e s, and p=

[7] and [8] discussed the problem of estimation of the parameter of the
ILD under Type-I censored data and hybrid censored data, respectively. Many
generalizations of the /LD have been introduced. For example, [5] studied the
generalized inverse Lindley distribution and presented an application to Danish
fire insurance data.

Record values are of great significance in many real-life situations such as
in industry, weather, and life-testing events. Record values and their basic prop-
erties have been discussed by [12], [27], [25], and [3] among others. Recently,
[4] and [17] worked on the inferential problems for the Lindley distribution, and
[29] focused on the inference for the generalized Lindley distribution based on
record data. Let X, Xs,... be a sequence of independent and identically dis-
tributed (iid) random variables with CDF F(x;0) and PDF f(z;6). Then
the observation X; is a lower record value if it is smaller than all its preced-
ing observations, namely X; < Xj;, Vi < j. In other words, let L(1) = 1 and
L(m) = min{j|j > L(m — 1), X; < Xp(m_1)} for m > 1. Then Xy, is the
m-th lower record value, and the sequence {L(m),m > 1} represents the record
times. The PDF of Xy, for m > 1 is given by (see e.g. [3])

1

fXL(m) (x) = m[— In (F(a;;@))]mflf(x; 0), >0, m>1.
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The joint PDF of Xr,) and Xy, for 1 <m <n and z <y, is

Pttt @90) = oy [~ I (Plaz)] "
<[1n (P(z6)) —In (F(y:0))" "L ((i?) F(y:6).

In addition, suppose that x = (x1, ..., Z;,) is the observed vector of (XL(l), e XL(m)),
then the likelihood function of 8 given the m lower records can be expressed as

m—1 .
(1.3) L(Olz) = f(zm;0) [ IJ;((ZQH)) >0, m>1.
i=1 v

So, for the ILD, the PDF of m-th lower record is given by
(1.4)

1 0 01" 92 [1+z\ _e
fXL(m)(x) F(m)[ n( +(1+9)x>+x] 1+9< 3 )e , >0, 6>0

The main aim of this article is to present both frequentist and Bayesian
methodology to estimate the parameter of the ILD based on lower records and
to predict a future record based on past observed record values. The rest of
the paper is organized as follows: In Section 2, we use the maximum likelihood
(ML) method as a frequentist methodology to obtain a point estimator of the
parameter. Besides, the asymptotic confidence interval (CT) as well as two differ-
ent bootstrap-type C'Is are obtained. We also consider the problem of Bayesian
estimation of the unknown parameter in this section. In Section 3, the problem
of predicting a future record value is discussed based on using both classical and
Bayesian procedures. In Section 4, a Monte Carlo simulation study is conducted
to evaluate the performances of the proposed estimators in the sense of estimated
bias and their associated estimated risks. In Section 5, the applicability of the
paper results, is shown using an application to real data. Finally, the paper ends
with some conclusions in Section 6.

2. PARAMETER ESTIMATION

In this section, we use both classical and Bayesian methods of estimation
to evaluate the parameter of the inverse Lindley distribution based on lower
records.

2.1. Maximum likelihood estimation

In this subsection, we discuss the process of obtaining the ML estima-
tor of parameter # based on lower record values for ILD(6). Suppose that
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X1(1)s--+»X(m) are the first m record statistics arising from a sequence of iid
random variables from ILD(0) with PDF (1.1) and & = (x1,x2,...,%y) is the
observed vector of (Xp1),..., X[(m)). The likelihood function of the parameter
given z is as follows

-1

e Tm 1+1’Zwt[ 1
Caom(40) 1 af L 00 w) b

Hence, the log-likelihood function is

m—1
(2.1) 16) = I L(0lz) = 2m 0 —n(1+0) — - — 3" In (0(1 +0) ) + A(z),

T
where A(x) =" In(1+2;) —Inz, —2) " Inz,.

The ML estimate of § can be obtained by maximizing (2.1) with respect
to 6. Upon differentiating (2.1) with respect to 6 and equating it with zero, we
have

ole) 2m 1 1 "il 14
90 0 1+0 am o(1

140w S0l tw)tm

It can be shown that the solution of (2.1) can be obtained as a fixed point solution
of h(6) = 6 where

m—1 -1
14 x;
:2 .
7o) m(l ZQl—i—xz—FxZ)

Next, we show the uniqueness and existence of the ML estimate of 8. To this
end, let v1(f) = h(f) and v2(f) = 6. It can be easily verified that v1(f) is an
increasing function with

-1

m
1
0):2m<Z;+m> , v1(00) = 2may,.
i=1""

So v1(6) starts from a positive real value at 0 and increases to 2m x,,, which is a
finite value. For large 6, v1(0) is a finite value whereas vo(6) — oo as 6 goes to oc.
This implies that there exists one real positive root, say 6, such that h(6) = 6.

2.2. Asymptotic confidence interval

It seems that the ML estimate of § does not possess an explicit form, and
therefore it is not easy to obtain the variance of 8, where 6 denotes the ML
estimator (M LE) of . Consequently, we cannot get the exact distribution of
the MLE and the exact bounds for the parameter. The intent is to use the
large-sample approximation. The asymptotic distribution of 6 is ([21])

(60 —0) = N(O, 13! ooy (0)),
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where I,

I x,,.,(0) is the inverse of the Fisher information of the first m
L(1)s+ 2 L(m)

lower records about the unknown parameter 6 and L, stands for convergence in
distribution. Since 6 is unknown, we estimate the asymptotic variance of 6 based
on the inverse of the observed Fisher information of the first m lower records, in
other words, we have

-1
Var(&) = ([XLu),...,XL(m)(Q)) y

where

2
i @) =22 - P
X o XL om = = - ~a. )
L(1) L(m) 62 (14 6? i—1 1 + X)) + Xw

Using the above element, one can derive the approximate 100(1 — «)% C1T of the
parameter 6 as follows

0+ 2o/ Var(f),

where za is the upper § quantile of the standard normal distribution.

2.3. Bootstrap confidence interval

In this subsection, two different bootstrap confidence intervals are proposed.
The first one is the bootstrap percentile (Boot — P) CI and the second one is
the basic bootstrap (Boot — B)CT [13, 16]. The following algorithm is used to
generate parametric bootstrap samples.

Algorithm 1

Step 1: Compute the ML estimate of 6, denoted by é, based on the observed
lower records.

Step 2: G?nerate the bootstrap lower record sample Xz(l),...,Xz(m), from
I1LD(0).

Step 3: Compute the ML estimate of 6 based on the generated bootstrap sample
in Step 2, denoted by 67.

Step 4: Repeat Steps 2 and 3, B times, and store 0* for i« = 1,...,B, say

07,03},

i) Boot — P method
Arraﬁnge 07’s in an ascending order and let 6 be the i-th ordered member
of {07,---,05}, then the 100(1 — )% bootstrap percentile CT for 6 is given
by

(ﬁBH)%v 9(B+1)( ))'
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ii)  Boot — B method
The 100(1 — v)% basic bootstrap C1 for 6 is given by

(20— 0023020 ~ Oy

2.4. Bayesian estimation

In this subsection, we work on Bayesian estimation of the unknown pa-
rameter @ in the LD, based on lower record values. It should be noted that all
the relations given in this subsection hold for the general case of one-dimensional
parameter 6. In the context of Bayes estimation, the parameter is assumed to be
a random variable with a prior distribution, m(#). Let X denote the informative
sample and L(@, (X )) denote the loss function, where §(X) is an estimator of
0. The Bayes estimator of ¢ is derived through minimizing the posterior risk
E[L(0,0(X))|X] with respect to d. In the literature, the squared error (SE)
loss function is one of the common loss functions that has been frequently used
for estimation problems, which is defined as L(6,6(X)) = (6(X) — 9)2. The
Bayes estimator of 6 is given by dgg(X) = E(6|X) under the SE loss function,
provided that the mentioned expectation exists and is finite. The SE loss func-
tion, as a symmetric function, allocates equivalent losses to the overestimation
and underestimation. However, in some practical situations, overestimation and
underestimation are not of the same importance, and the use of symmetric loss
functions seems inappropriate. [32] proposed an asymmetric loss function, called
the linear-exponential (LE or linex) loss function, which is defined as

L(6,5(X)) = b* [e0<5<X>*9> — o(8(X) — ) — 1} . c£0, b >0,

where b* and ¢ are the parameters of the function. Without loss of generality, we
can assume b* = 1 whereas ¢ has to be determined carefully. Positive values of
c are considered when the overestimation is more serious than underestimation,
while the negative values are considered when the underestimation is more serious
than overestimation (see e.g. [34]). The Bayes estimator of § under the LE loss
function is given by

-1
Sp(X)=—mE(E YX), c#0.
c
provided that the above expectation exists and is finite.

Another asymmetric loss function, proposed by [10], is the general entropy
(GE) loss function, which is defined as

200.560) = ] (%2) o (00 1], i, o

Without loss of generality, we assume w = 1. The Bayes estimator of § under
the GIE loss function is given by

Sa(X) = [E(07|X)] 77, p#0,
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provided that the above expectation exists and is finite. Now, assume that 6 has
a gamma prior distribution with the following PDF

(2.2) (0) = Flza)ea—le—be; a>0,b>0,0>0.

From the likelihood function (2.1) and the prior distribution (2.2), the posterior
density function can be obtained to be

L(0|z)m ( )
fo (0]z)m(0)do

m—1
(2.3) = m(z)0*" o le” O+ {(1+0) H T+z)+2)} ),
=1

m(0)z) =

1

O n2m-ta—1 *G(LJFb) mt -1 .
fo g2mta—le™ e {(1+9) I1 (0(14—:31-) +zl)} de
=1

2.5. Tierney and Kadane’s approximation

This subsection presents the approximate Bayes estimates of # under the
SE,LE, and GFE loss functions using the Tierney and Kadane’s (T'K) approxi-
mation method. [31] used Laplace’s formula to approximate posterior moments.
To apply the TK approximation method, suppose that F(6) = % Inm(0)+ %Z(G)
and F*(0) = F(0)+ £ In g(9) where [(6) is the log-likelihood function of 6, 7 () is
the prior density, and g(#) should be a smooth positive function on the parameter
space. We know that posterior moment of g() is

(2.4) E(g(0)le) = /O " 4(6) - m(6lz)d6

The expression (2.4) can be rewritten as

00 omE™(0) 19

(25) E(g(0)|z) = m-
0

Using the TK method, the approximate form of (2.5) becomes

E(g(0)l2) = () exp (m(F*(0%) = F(9)) ).

where 6 and 6* are the modes of F(#) and F*(6), respectively and

1 1
o'=————— and 0*2:—7,

F(0)]5-

™
*\
—~
>
~—
>
Il
>
*
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where F”(-) and F*'(-) denote the second order derivatives of F(#) and F*(6),
respectively.

Now, let
1 1 m—1
G(0,k1, ko) = — [(2m—|—a—1+k1) 1n(0)—1n(1+9)—9(b+k2+x—)— Z In (0(14—3:0—!—@)—!—3(1:)},
mo =1

where B(z) =Y " In(1+2;) —Inzp —2>"  Inz;+alnb—InT'(a) and k; and
ko are real numbers. Then, F'(6) = G(6,0,0) and F*(0) = G(6, k7, k3), where

! under SE, 0 under SE and GE,
(2.6) ki =<0 under LE, and k5 =

¢ under LE.
—p under GE,
0,k k
Let G*(0, k1, ko) = (90(7891,2) Then, we have
m—1
1m2m+a—1+k 1 1 1+
G*(0,k1,ky) = — — —(b+ko+—)— — .

=1

PG(0, k1, ka) &*G(0, k1, ka)

Note that 202 is free of ko, so we let G**(0, k1) = 962 and
we have
m—1
Lp_2m+a—l+k oIt N2
G (0, k1) m 02 1+02+; 1—{-% + x;

Let F'(-) and F*'(-) denote the first order derivatives of F(6) and F*(6), respec-
tively. Then, F'(8) = G*(,0,0) and F* () = G*(0, k}, k3), where k* and kj are
given in (2.6).

Moreover, F"(6) = G**(6,0) and F*" () = G**(6, k}). Consequently, we

get
. F'(6)l,g S
E(g(0)]2) = || morai—e exp (m(F*(6") — F(0)) ),
F¥(0)lp=g ( ( ))
where 6 and 6* can be derived from F'(6) = 0 and F*' (§) = 0, respectively, and
0 under SFE,
g(0) = ¢ exp(—ch) under LE,
0P under GE.

Therefore, the approximate Bayes estimates of 8 under the SE, LE and GFE loss
functions are given by

Osp = E(gsp(8)|z)

e = —

[E(QG’E(H) )P, p#0,
respectively, where gsz(0) =0, gre(f) = e=, and ggr(0) = 07P.

|
8]
S

bow =
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2.6. MCMC methods

In this subsection, we consider two Markov chain Monte Carlo (MCMC)
methods to generate samples from the posterior distribution and then compute
the approximate Bayes estimates of the parameter # under the SE,LFE, and
GE loss functions. Two important subclasses of MCMC methods, which are
considered here, are importance sampling (15) and Metropolis-Hastings (M H)
methods, see [24] and [20] for the details of the M H algorithm.

To implement the I.S procedure, we rewrite the posterior density function
(2.3) as follows

m(f)z) = C(z) gamma (0; 2m + a, L + b)h(9),

Tm

where gamma(6;2m + a, ﬁ + b) is the density of the gamma distribution with
m(z)I'(2m+a)

shape and rate parameters 2m + a and % + b, respectively, C(z) = (et
m T

and
m—1 -1
h(0) = {(1 +6) H (01 + ) +xi)} .
Now, let G(f|x) = gamma(6;2m + a, — + b)h(#). Then the Bayes estimate of 6
under the SFE loss function is given by
~ fooo 0G( 9[:1:)d9

27 I G0lx)ds

Consider the following algorithm.

Algorithm 2

Step 1: Generate 6 from the gamma distribution with shape and rate parameters
respectively as 2m + a and _— +b.

Step 2: Repeat Step 1, N tlmes to obtain the importance sample 61,6, ...,0y.

The approximate value of (2.7), which is the approximate Bayes estimate
of # under the SE loss function, can be obtained as

=1
Ose = —; => b,
Z h( i=1
i=1
where w; = % Besides, the approximate Bayes estimates of 6 under the

LE and GFE loss functions are given by

N N 1
O p = féln (Ze;cgwi), and fgp = (ZO;pwi)ig,
i=1

=1
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respectively.

In the sequel, we use the M H algorithm to approximate the Bayes estimates
of the parameter of the ILD. Here, we consider the normal distribution as a
symmetric proposal distribution. According to [14], we write the M H algorithm
steps as follows:

Algorithm 3

Step 1: Set an initial value 0(9), we propose to consider the ML estimate of 6 as
the initial value.
Step 2: For j =1,...,N’, repeat the following steps.

e Set § = 9U—D),

e Following [14], generate a new candidate parameter value 0 from
S,

N (In(6), W)’ where Sp, can be obtained using the inverse of the

observed Fisher information as follows

m—1 2 -1
2m 1 1+
So0 = {92_ (1+6)2 Z; <9(1—|—xi)—|—azi) }

e Set 0 = exp(d).

0=60(0)

,%}, where g(x|b) is the density of the
Soq

log-normal distribution with parameters In(b) and TOE-

e Calculate P = min {1

e Update 019 = ¢’ with probability P, otherwise set () = 4.

We may discard the first k generated data, where k is the burn-in period.
Suppose {0, [ =1,..., M} is a sample produced according to Algorithm 3 with
M = N’ —k. Therefore, the approximate Bayes estimates of  under the SE, LE
and GE loss functions are given by

1 M

M

~ 1 5 1

GEE:M E 0[7 and HZE:—EIH (M E efcél)v
=1

and

respectively.
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3. PREDICTION of a FUTURE RECORD VALUE

Prediction of future records has been studied by many authors, see for
example [15], [9], and [2]. In this section, we study the problem of predicting a
future record value, given a sample of observed past record values.

3.1. Maximum likelihood prediction

Suppose that the first m lower record values Xy ,..., Xr(y,) are avail-
able from a population with PDF f(x;0) and CDF F(x;0). Let Z = Xy,
n > m, is an unobserved future record value. Then, the joint PDF of Z and
X1y, » XL(m) is given by [6], which can also be obtained from the Markovian
property of records, see e.g. [3]. Here, using the result given by [6] and from (1.1)
and (1.2), the logarithm of the predictive likelihood function of the parameter
and Z for the ILD is given by

InL(z,0;2) = (2m +2)In(f) —In(1 +60) —InT'(n —m) + In(z + 1) — 31n(z)

R =)

(3.1) —Zln (1+z) +x; —|—Zln 1+ x;) —QZln x;), 2 < Tm.
=1 =1

Maximizing (3.1) with respect to 6 and z, we could find the M L prediction of Z
and the predictive maximum likelihood estimate of 6. Upon differentiating (3.1)
partially with respect to # and z and equating the results with zero, we have the
following equations

OlnL(z,0;z)  2m+2 z’”: 1+
00 0 1+0 z 01+ z;) + x4
1 1 Ty + 1 z4+1
+(n_m_1)<z_l‘m+(1—|—0)xm—|—9_(1+9)z—|—9>:0
0 6 | (z[(1+0)xm+0]) ’
zZ Ty ml(1+0)z+ 0]
OlnL(z,0;x) 1 _§+£
0z 1+2z =z 22
1 0 0+1
0 6 | (z[(l—l—@)xm—l—ﬁ])
Z Ty m[(1+0)z + 0]

A numerical procedure can help us to find the solutions of the above equations.

One may also find the approximate M L (AM L) prediction of Z by means
of solving (3.2) after replacing 6 with its M L estimate.
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3.2. Interval prediction

In this subsection, we study the problem of interval prediction of a future
record based on observed past lower record values coming from the ILD. Shortest
and equal tails intervals have been nicely discussed in [18]. As mentioned earlier,
record values satisfy the Markovian property (see e.g. [3]), in the sense that the
conditional density of Z = X,y (n > m > 1) given the set of the first m lower
records (Xp(1y,- -+, Xr(m)) = (T1,...,Zm) is the same as the conditional density
of Z given Xy () = oy, From (1.1) and (1.2), the conditional PDF of Z given
T for the ILD becomes

(3.3) _
92(1+z)xm<9 0+ln(z[(1+9)xm+0])) W

Z T T[(1+ 0)z + 6]
(n—m— D01 + z) + )23

1 1
Ea=y

fZ(Z|xm§9) =
where z < z,,.

As a consequence of (3.3), it can be proved that (see Appendix)

o 0 (Z[(l + 0)z,, + 6]

BHU=7—-—+h T [(1+0)Z + 0]

7 )’ L(m) = Tm ~ Gamma(n —m,1),

with the following density

1
gu(z) = mz”*mfle*’z, z>0.

Then, the highest conditional density (HC D) interval for U at the level of (1—«)
is in the form of [cy, o] if
ensea] = fe: 2 0,00(0) > K},
C2
for some k£ > 0, where / gu(c)de=1—a.
e

If n > m+ 1, then gy(c) is a unimodal PDF whose maximum value is
achieved at v = n —m — 1 > 0. In this case, ¢; and ¢y are the solutions of the
following non-linear equations (see e.g. [11])

Cc2
/ gu(c)de =1 - q, and gu(ci) = gu(ea).

Cc1

The above equations can be reexpressed as follows

2 —cC
v(ea,n —m) —y(c1,n —m) a, an . exp ( — 1),

C
where (¢, a) = / 2% 1e™*dx is the incomplete gamma function.
0

I'(a)
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Thus, a 100(1 — a)% prediction interval (PI) of Z based on the above
(HCD) method is in the form of (L*,U*), where L* and U* satisfy the following
non-linear equations

L*(zm(1+6) +0)
T (L*(1+6) +6)

0 0
:exp(—FJr?qLcQ),

and
U*(xm(1+0) +0)

T (U*(1+0) + 0)
respectively. If 6 is unknown, then it can be replaced by its M LE, which leads
to a 100(1 — «)% approximate PI (API) for Z.

0 0
:exp(—m—kf%—cl)

Next, we consider the case when n = m + 1, where g(c) is a decreasing
function with ¢gi7(0) = 1 and gy(o0) = 0. So, we find the interval of the form
[0, 1] where ¢; satisfies the following equation

C1
/ gu(c)de =1— a.
0

Therefore, ¢; = —Ina and a 100(1 — )% PI for Z will be in the form of (L*, x,,),
where L* satisfies the following equation
al*(x,(14+6)+6 0 6
( ( ) ):exp(—f—i-—).
Tm (L*(1+6) +6) L*  zp

3.3. Bayesian prediction

In this subsection, we consider the prediction of a future record based on a
Bayesian approach under the SE, LE, and GFE loss functions. Suppose that the
first m lower records Xy y),...,Xr(n) are available from the /LD and we wish
to predict the nth lower record Z = Xp,,,), n > m, based on the observed vector
z. From (2.3) and (3.3), the Bayes predictive density of Z given z is given by

fo(elm) = /0 ™ el 0)m (6]z) 46
- (FEznmE) [~ (14 Oz + 0]\
= :1:/0 ( + ( ))

23T (n —m) (14 60)z+ 0]
92m+a+1

X

,_.

>e—6(;+b) [(1 +0) H (2 + 001 + :cz-))] )
=1

In the particular case of n = m + 1, the Bayes predictive density function of Z
simplifies as

(1+ 2)xmy, m(x) /00 g2m+a+1,—0(1+b) m—1
0

-1
f2(zlz) = . [1+9 Hl (zi+0(1+; )} dé.

23
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The Bayesian prediction of the nth lower record under the SE loss function is
given by

Zps = E(Z|z) = / 2f7(z|x)dz,
0

and the Bayesian predictions of Z under the LE and GFE loss functions are

. 1. - 1 Lm
ZpL = - lnE(e_CZ\x) = In (/ e_czfz(z\:z:)dz),
0

and
1

ITm —
Zpa =Bz 7)) = | / PP (elm)dz] 7,
0
respectively, provided that the above integrals exist and are finite.

The predictive limits of a 100(1 — 7)% two-sided PI for the future lower
record Z = X,y can be obtained by solving the following two equations simul-
taneously with respect to L™ and U**

o0 [e.9]

fz(zlz)dz=1- 2,  and f2(2z)dz = .
L** 2 U** 2

4. A SIMULATION STUDY

In this section, we performed a simulation study to assess the performance
of the point and interval estimators of 6 and predictors of a future record value
coming from the ILD. With this in mind, in each iteration of the simulation, we
generate m lower records from the ILD with parameter # and then we compute
the ML estimate, the approximate Bayes estimates under the SE, LE, and GE
loss functions using the TK, IS, and M H methods. The 95% asymptotic C1Ts,
as well as the two bootstrap-type CIs are obtained. In the context of prediction,
we compute AM L prediction and 95% P1I (based on the HCD method) for the
(m—+1)th lower record value. The following setting has been applied: We consider
three different values for the number of lower records as m = 3,4,5 and three
different values for the parameter as § = 0.5,1,2. The number of bootstrap
repetitions is taken to be B = 1000. In the context of the Bayesian estimation,
two gamma priors have been applied, Prior 1 with (aj,b1) = (0.2,1.5) and Prior
2 with (a2,b2) = (3,1). Besides, we take ¢ = —0.2,0.2 for the LE loss function
and p = —0.2,0.2 for the GF loss function. The results of the simulation study
are based on N = 1000 iterations.

The assessment of the performances of the point estimators is based on
estimated risks (ERs) under the SE, LE, and GFE functions, and the evaluation
of CIs is based on average length (AL) and coverage probability (CP). Let
6 be an estimator of 8 and 6; be the corresponding estimate obtained in the
ith iteration. Then the estimated bias (bias for short) and ERs of 6 under the
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SE,LE, and GF loss functions are given by

1 XL,
(4.1) Bias(d) = 3> (91-—9),

1Sl /s N2
(4.2) ERsp(0) = > (6:-9) .

N
ERLE(H) = %Z |:ec(0~,~70) — C(éz — 9) — 1} ,

snat [0 ()}

respectively.

Besides, we compute the empirical biases (biases for short) and mean
squared prediction errors (EMSPEs) of the AML predictors (which can be for-
mulated similarly as (4.1) and (4.2), respectively) and the ALs and C'Ps of the
interval predictors.

The simulation results related to the point estimation are presented in
Tables 1-6. The following abbreviations are used in Tables 1-6: BS (Bayes es-
timator under the SE loss function), BLc; (Bayes estimator under the SE loss
function with ¢; = 0.2), BLcy (Bayes estimator under the SE loss function with
ca = —0.2), BGp; (Bayes estimator under the GE loss function with p; = 0.2)
and BGps2 (Bayes estimator under the GE loss function with po = —0.2). It
is observed from Tables 1-6 that in all estimation methods, E'Rs are decreasing
with respect to the number of records except for the case under Prior 2 when
0 = 2. We also observe that the E Rs are close to each other for the TK, 1.5, and
M H methods. Furthermore, for Prior 1, the F Rs of the Bayes estimators are less
than or equal to those of the M L estimators (a few exceptions exist), whereas
for Prior 2 when 6 = 0.5, the M L estimators outperform the Bayes estimators
in the sense of FR and bias. Prior 1 produces smaller £Rs than Prior 2, when
f# = 0.5 and 1, which is also true for # = 2 in the most cases.

The performances of the asymptotic C'Is and two different bootstrap CIs
(Boot—B and Boot—P methods) are compared in terms of their ALs and C'Ps in
Table 7. Table 7 shows that in all three methods, the AL of the CI decreases as
the number of records increases. Besides, in all cases, the C'Ps of the asymptotic
ClIs are more than the corresponding C'Ps of the bootstrap C'Is., and the ALs of
the asymptotic CIs are less than those of the others. We also observe that the
Boot— B C1s perform better than the Boot— P CIs in the sense of C'P.

Finally, Table 8 presents the biases and EM SPESs of the AM L predictors
as well as the ALs and C'Ps of the APIs for the (m + 1)th lower record value.
From Table 8, we observe that for all values of 0, the AL, bias, and EMSPFE
decrease as the number of records increases.



Bahareh Etemad Golestani, Ehsan Ormoz and S.M.T.K. MirMostafaee

16

Table 1: estimated biases and FRs of point estimators of 8 for Prior

1=(0.2,1.5) and = 0.5.

TK Is MH

mooop Method | BS BLci BLe; BGp  BGps BS BLei BLey; BGpr  BGps BS BLei BLes BGpi  BGps
Bias 0175 0.064 0.052 0.067 0.001 0.022  0.060 0.053 0.068 —0.003 0.018  0.060 0.053 0.068 —0.003 0.018
ERsp 0.218  0.063 0.057 0.066 0.046 0.051  0.062 0.057 0.066 0.045 0.050  0.064 0.060 0.069 0.047  0.052
ERpp (c=02) [0.005 0001 0.001 0.001 0.001 0.001 0001 0001 0.0l 0001 0001  0.001 0.01 0001 0.001 0.001
ERpp (c=-02) | 0004 0001 0.001 0001 0001 0001 0001 0001 000l 0001 0001 0001 000l 0.001 0001 0.001
ERgp (p=02) |0.006  0.003 0.003 0.003 0003 0.003 0003 0.003 0.003 0003 0003 0003 0.003 0.003 0003 0.003
ERgg (p=-0.2) | 0.005  0.003 0.003 0.003 0.003 0.003  0.003 0.003 0.003 0.003 0003  0.003 0.003 0003 0.003 0.003
Bias 0.132  0.062 0.054 0.065 0011 0028  0.060 0054 0.065 0010 0026  0.060 0.054 0.065 0.009 0.026
ERsp 0.097  0.044 0.041 0.046 0.033 0.036  0.044 0.041 0.046 0.033 0.036  0.044 0.042 0.047 0.033 0.036
ERpp (c=02) [0.002 0001 0.001 0.001 0.001 0.001 0001 0001 0.0l 0.001 0001  0.001 0.001 0001 0.001 0.001
ERpp (c=-02) | 0002 0001 0.001 0001 0001 0001 0001 0001 000l 0001 0001 0001 0001 0.001 0001 0.001
ERgp (p=02) |0.004 0002 0.002 0002 0002 0.002 0002 0002 0.002 0002 0002 0002 0002 0.002 0002 0.002
ERgp (p=—-02) | 0.003  0.002 0.002 0.002 0002 0002 0002 0002 0002 0002 0002 0002 0002 0002 0002 0.002
Bias 0.124  0.070 0.063 0.072 0.027 0.041  0.068 0.064 0.073 0.026 0.040  0.060 0.064 0.073 0.026 0.040
ERgp 0.060  0.031 0.029 0.032 0023 002 0031 0.030 0033 0024 0026 0031 0.030 0.033 0023 0.026
ERpp (¢=02) |0.001 0001 000l 0.001 0.000 0.001 0001 0.001 0.00l 0.000 000l 0001l 0.001 0001 0.000 0.001
ERpp (c=-02) | 000 0001 0.001 0.001 0000 0001 0001 0001 0.001 0000 0001 0001 0001 0.0l 0.00 0.001
ERgp (p=02) |0.002 0002 0.002 0002 0001 0.001 0002 0002 0002 0001 000l 0002 0.002 0.002 0001 0.001
ERgp (p=—-02) | 0.002  0.002 0.001 0.002 0001 0001 0002 0001 0.002 0001 0001 0002 0001 0.002 0001 0.001
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TK I8 MH
ER Method |, BS  BLey BLe; BGpi  BGps BS  BLeiy BLey BGpr  BGps BS  BLe, BLe; BGpy BGps
Bias 0801 0588 —0.642 —0556 0751 —0697 0600 —0640 —0555 —0.763 —0.709  —0599 064 0555 —0.762 —0.708
ERsp 4.919 0470 0520  0.449  0.661  0.591 0482 0518 0447  0.677  0.605 0486 0522 0453  0.680  0.609
ERpp (c=02) |0.341 0.009  0.010  0.008 0.012  0.011 0.009 0010 0.008 0013  0.011 0.009 0010 0.009 0013  0.011
ERpp (c=—02) | 0.061 0.010  0.011  0.009 0.014  0.013 0.010  0.011  0.009 0.014  0.013 0.010 0011 0010 0.015 0.013
ERcp (p=0.2) | 0.006 0.004  0.004 0.004 0.006  0.005 0.004  0.004 0.004 0.06  0.005 0.004  0.004 0.004 0.006  0.005
ERgp (p=—0.2) | 0.006 0.004  0.005 0.004 0.007  0.006 0.004  0.005 0.004 0.007  0.006 0.004  0.005 0.004 0.07  0.006
Bias 0.612  —0449 —0497 —0415 —0593 —0545  —0456 —0495 —0414 —0.599 —0551 0457 —0.495 —0415 —0.599 —0.552
ERgp 2.344 0.330  0.360 0314 0455  0.409 0.330  0.363 0317 0469  0.420 0.330 0363 0319 0466  0.419
ERrp (c=02) |0.082 0.006  0.007  0.006 0.009  0.008 0.006  0.007  0.006 0.009  0.008 0.006  0.007  0.006 0.009  0.008
ERpp (c=—02) | 0.034 0.007  0.008 0.007 0010  0.009 0.007  0.008 0.007 0.010  0.009 0.007  0.008 0.07 0.010  0.009
ERgp (p=02) | 0.004 0.002  0.003 0.002 0.004  0.003 0.003  0.003 0.002 0.004  0.003 0.003  0.003  0.02 0.004  0.003
ERgE (p=—0.2) | 0.004 0.003  0.003  0.002 0.004  0.003 0.003  0.003  0.002  0.004  0.004 0.003  0.003  0.003 0.004  0.004
Bias 0719 —0280 —0.326 —0243 —0414 —0369 0283 0323 —0240 —0414 —0371 0288 0328 0246 —0420 —0.376
ERsp 1.971 0220 0233 0215 0290  0.262 0224 0235 0218 0297  0.269 0.229 0239 0223 0300  0.272
ERpp (c=02) | 0.057 0.004  0.005 0.004 0.006  0.005 0.004  0.005 0.004 0.006  0.005 0.004  0.005 0.004 0.06  0.005
ERpg (c=-0.2) | 0.031 0.005  0.005 0.004 0.006  0.005 0.005 0.005 0.004 0.006  0.006 0.005  0.005 0.005 0.006  0.006
ERgp (p=0.2) | 0.004 0.001  0.002 0.001  0.002  0.002 0.001  0.002 0.001  0.02  0.002 0.002  0.002 0.0l  0.02  0.002
ERgp (p=—02) | 0.003 0.002  0.002 0.001  0.002  0.002 0.002  0.002  0.001  0.002  0.002 0.002  0.002  0.001  0.002  0.002

Table 3: The estimated biases and ERs of point estimators of § for Prior 1 = (0.2,1.5) and 6 = 2.
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TK 15 MH
- Method | 57 BS BLey BLe; BGpr BGpy  BS BLei BLe; BGpi BGps  BS  BLey BLe; BGpi BGps
Bias 0.348 0.646 0.601 0.687 0.516 0.559 0.645 0.604 0.689 0.515 0.558 0.639 0.598 0.684 0.509 0.552
ERsEg 0.890 0.865 0.757 0.975 0.641 0.712 0.865 0.766 0.983 0.644 0.713 0.851 0.753 0.967 0.630 0.700
3 ERpp (c=0.2) 0.023 0.020 0.017 0.022 0.014 0.016 0.020 0.017 0.023 0.014 0.016 0.019 0.017 0.022 0.014 0.016
ERrg (¢c=-0.2) | 0.015 0.015 0.014 0.017 0.012 0.013 0.015 0.014 0.017 0.012 0.013 0.015 0.014 0.017 0.011 0.013
ERcr (p=10.2) 0.006 0.007 0.006 0.007 0.005 0.006 0.007 0.006 0.007 0.005 0.006 0.007 0.006 0.007 0.005 0.006
ERcr (p=-0.2) | 0.005 0.006 0.006 0.007 0.005 0.005 0.006 0.006 0.007 0.005 0.005 0.006 0.006 0.007 0.005 0.005
Bias 0.264 0.545 0.512 0.574 0.441 0.476 0.544 0.515 0.576 0.441 0.475 0.544 0.514 0.575 0.440 0.475
ERsE 0.428 0.570 0.511 0.629 0.430 0.474 0.574 0.519 0.636 0.437 0.480 0.573 0.517 0.636 0.433 0.477
4 ERpp (c=0.2) 0.010 0.013 0.011 0.014 0.009 0.010 0.013 0.011 0.014 0.010 0.011 0.013 0.011 0.014 0.010 0.011
ERpg (c=-0.2) | 0.007 0.010 0.009 0.011 0.008 0.009 0.010 0.010 0.012 0.008 0.009 0.010 0.009 0.012 0.008 0.009
ERgr (p=10.2) 0.003 0.005 0.005 0.005 0.004 0.004 0.005 0.005 0.005 0.004 0.004 0.005 0.005 0.005 0.004 0.004
ERgr (p=-0.2) | 0.003 0.005 0.004 0.005 0.004 0.004 0.005 0.004 0.005 0.004 0.004 0.005 0.004 0.005 0.004 0.004
Bias 0.269 0.518 0.491 0.541 0.428 0.458 0.518 0.494 0.544 0.430 0.459 0.516 0.491 0.541 0.427 0.457
ERsE 0.320 0.475 0.432 0.517 0.365 0.400 0.481 0.442 0.525 0.375 0.408 0.474 0.434 0.518 0.366 0.400
5 ERrg (¢ =0.2) 0.007 0.010 0.009 0.011 0.008 0.009 0.011 0.010 0.012 0.008 0.009 0.010 0.009 0.011 0.008 0.009
ERpg (c=-0.2) | 0.006 0.009 0.008 0.009 0.007 0.007 0.009 0.008 0.010 0.007 0.008 0.009 0.008 0.010 0.007 0.007
ERgr (p=0.2) 0.003 0.005 0.004 0.005 0.004 0.004 0.005 0.004 0.005 0.004 0.004 0.005 0.004 0.005 0.004 0.004
ERcr (p=-0.2) | 0.003 0.004 0.004 0.004 0.003 0.004 0.004 0.004 0.004 0.003 0.004 0.004 0.004 0.004 0.003 0.004
Table 5: The estimated biases and ERs of point estimators of 6 for Prior 2 = (3,1) and 6 = 1.
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Method
0 m Asymptotic Boot—B  Boot—P
; AL 1.222 1.938 1.938
cp 0.985 0.868 0.840
o5 4 AL 1.005 1.362 1.362
cp 0.997 0.902 0.788
. AL 0.900 1.113 1113
° ¢cpP 0.999 0.927 0.668
; AL 2.517 1.328 1.328
cp 0.984 0.863 0.838
L4 AL 2.062 2.956 2.956
cp 0.999 0.916 0.787
s AL 1.872 2.443 2.443
cp 0.998 0.929 0.678
, AL 5.481 10.002  10.002
cpP 0.982 0.879 0.812
s 4 AL 1.431 6.771 6.771
CP 0.995 0.918 0.772
- AL 1.163 5.750 5.750
° cp 0.998 0.942 0.633

Table 7: ALs and CPs of 95% C1Is of 6.

6 m | AML Predictor | API based on the HC' D method
3 Bias 0.041 | AL 0.070
EMSPE 0.004 | CP 0.886
05 4 Bias 0.026 | AL 0.046
EMSPE 0.002 | CP 0.899
5 Bias 0.016 | AL 0.033
EMSPE 0.000 | CP 0.887
3 Bias 0.095 | AL 0.156
EMSPE 0.037 | CP 0.887
1 4 Bias 0.049 | AL 0.098
EMSPE 0.007 | CP 0.917
5 Bias 0.036 | AL 0.071
EMSPE 0.003 | CP 0.887
3 Bias 0.225 | AL 0.362
EMSPE 0.226 | CP 0.884
9 4 Bias 0.130 | AL 0.223
EMSPE 0.055 | CP 0.880
5 Bias 0.090 | AL 0.162
EMSPE 0.026 | CP 0.883

Table 8: The estimated biases and EM SPFEs of the AM L predictors and
the ALs and C Ps of the 95% APIs based on the HC' D methods.

5. REAL DATA EXAMPLE

In this section, we use a real data set to illustrate the estimation and
prediction procedures for the ILD. The data are the monthly rainfall during
December recorded at Los Angeles civic center from 2001 to 2016 (see the website
of Los Angeles Almanac: www.laalmanac.com/weather/we08aa.htm).

1.38 331 1.35 877 1.03 0.81 1.73 2.79
2.89 10.23 1.01 2.16 0.20 3.88 0.57 4.55

To assess the suitability of the inverse Lindley distribution for the pro-
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vided dataset, various statistical tests and criteria were applied, including the
Kolmogorov-Smirnov (K—S5) test, Akaike information criterion (AIC'), and Bayesian
information criterion (BIC). The fitness results for the ILD were compared
with those for the inverse xgamma distribution introduced by [33], with PDF
f(z) = #19)(1 + %) exp(%e), the inverse Maxwell distribution introduced by

[30], with PDF' f(x) = 3‘97%54 exp(—a%), and the inverse Rayleigh distribution
with PDF f(x) = i—gexp(—%). The results of the K —S test, AIC, and BIC
collectively support the appropriateness of the inverse Lindley distribution for
the dataset. Specifically, the K —.S test yielded a p-value of 0.8047 for the I LD,
as opposed to 0.6995 for the inverse xgamma, 0.000065 for the inverse Maxwell,
and 0.001386 for the inverse Rayleigh distributions. This indicates that both
the inverse Lindley and inverse xgamma distributions are suitable for these data.
The AIC and BIC values for the I LD were obtained to be 71.9553 and 72.7279,
respectively. In contrast, for the inverse xgamma distribution, the AIC and BIC
values were computed as 72.7797 and 73.5523, suggesting that the inverse Lindley
distribution is more appropriate for modeling this dataset.

From the original data set, we have extracted the first five lower records
as follows: 1.38, 1.35, 1.03, 0.81, 0.20. Here, we use the same priors used
in the simulation study, which are Prior 1 and Prior 2. We calculated the point
and interval estimates for the unknown parameter # based on the observed five
lower records. Besides, we computed the AM L prediction and the 95% API for
the 6th lower record value. Table 9 represents our numerical findings.

Point Estimation

MLE  TK 15 MH
SE 1315 1.090 1.121  1.009
LE(c=0.2) 1.073 1108 0.997

Prior I LE(c=—0.2) 1102 1135 1.021
GE(p=—0.2) 1.013 1052  0.940
GE(p=—0.2) 1.039 1074  0.963
SE 1578 1588  1.625
LE(c = 0.2) 1553 1566  1.604

Prior 2 LE(c = —0.2) 1.600  1.610  1.648
GE(p=—0.2) 1489 1508  1.546
GE(p=—-02) 1519 1535  1.572

Interval Estimation
95% Asymptotic CI  95% Boot—B CI 95% Boot—P CI
(0.382, 2.248) (—0.814, 1.679) (0.951, 3.443)

Prediction
AM L prediction 95% API
0.200 (0.133, 0.200)

Table 9: The numerical results of the example.
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6. CONCLUSIONS

The inverse Lindley distribution, introduced by [28], offers a versatile distri-
bution with an inverted bathtub-shaped hazard rate function. [28] demonstrated
its applicability to real-world data, specifically survival times of head and neck
cancer patients. Since its inception, various authors have explored inferential
aspects of the inverse Lindley distribution (/LD).

This paper focuses on the estimation of the unknown parameter of the
ILD when the first m record values are available. The classical and Bayesian
procedures were employed for parameter estimation, and attention was given to
predicting a future record value. The article includes a simulation study and a real
data application to illustrate the proposed procedures. A comparative analysis
involved the maximum likelihood estimator and different Bayes estimators under
squared error, linear-exponential, and general entropy loss functions, consider-
ing average empirical biases and associated estimated risks. The asymptotic and
two bootstrap-type confidence intervals were assessed for their coverage probabil-
ities and average lengths. Notably, the asymptotic confidence intervals demon-
strated shorter lengths and larger coverage probabilities compared to bootstrap
confidence intervals. Furthermore, Bayesian methods with small prior variance
emerged as more preferable than classical methods.

The exploration extends to the estimation problem for R = P(X < Y), uti-
lizing two sequences of lower record values from two inverse Lindley populations
with different parameters. Future work is suggested on inferential challenges
for generalizations of the ILD based on record data. Additionally, the paper
proposes investigating estimation and prediction problems for the ILD using
alternative data types, such as progressively type I and type II censored data,
hybrid censored data, progressively first failure censored data, and more. The
authors anticipate reporting findings on some of these topics in future research
endeavors. All computations were carried out using the statistical software R [26]
and the packages AdequacyModel [22], LindleyR [23], lamW [1], and nlegslv [19]
therein.

Appendix

Here, we want to prove (3.4). From (3.3), the conditional PDF of Z given
the last observed record z, for the ILD, fz(z) = fz(z|xm;0), can be rewritten
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o 0 2[(1 4 ) + 6]y "™
<z_xm+1n<xm[(1+0)z+0]>) 02(1 + z)
fz(2) = X
Z (n—m—1)! 2[(1+0)z + 0]
Tm[(1+6)z+ 0] e
(61) “ A+ Oz 40 '
Let
PN 0 z[(1 + 0)xy, + 6]
(6.2) u_g(z)_;_a—i_ln(a:m[(l—i—@z—i—@])'

Then, the jacobian is obtained to be

_ogx) 0L+ 2)

0z 2[(1+0)z+0]

(6.3) J

In addition, from (6.2), we get

Tm[(1+0)z + 0] e,g(%,%)

(6.4) M SN P

fz(g" " (u))
: T
where ¢g* " (-) is the inverse function of g*(:). So, the result follows from (6.1),
(6.2), (6.3), and (6.4).

Note that the PDF of U, given in (3.4), can be written as gy (u) =
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