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1. INTRODUCTION

In recent years, the inverse Lindley distribution (ILD) has attracted the
attention of several authors. It was first introduced by [28] and its stress-strength
reliability was explored under classical and Bayesian models. In addition, its
application to head and neck cancer data was demonstrated. Let Y have a Lindley

distribution with parameter θ, and define X =
1

Y
, then X has an inverse Lindley

distribution with parameter θ
(
notationally X ∼ ILD(θ)

)
and the probability

density function (PDF ) of X is obtained to be

(1.1) f(x; θ) =
θ2

1 + θ

(
x+ 1

x3

)
e−

θ
x , x > 0, θ > 0.

The corresponding cumulative distribution function (CDF ) is given by

(1.2) F (x; θ) =

(
1 +

θ

(1 + θ)x

)
e−

θ
x , x > 0, θ > 0.

The PDF (1.1), is a mixture of the inverse exponential distribution with pa-
rameter θ and the inverse gamma distribution with shape parameter 2 and scale
parameter θ, namely (1.1) can be written as

f(x; θ) = pf1(x) + (1− p)f2(x),

where

f1(x) = θx−2e−
θ
x , f2(x) = θ2x−3e−

θ
x , and p =

θ

1 + θ
.

[7] and [8] discussed the problem of estimation of the parameter of the
ILD under Type-I censored data and hybrid censored data, respectively. Many
generalizations of the ILD have been introduced. For example, [5] studied the
generalized inverse Lindley distribution and presented an application to Danish
fire insurance data.

Record values are of great significance in many real-life situations such as
in industry, weather, and life-testing events. Record values and their basic prop-
erties have been discussed by [12], [27], [25], and [3] among others. Recently,
[4] and [17] worked on the inferential problems for the Lindley distribution, and
[29] focused on the inference for the generalized Lindley distribution based on
record data. Let X1, X2, . . . be a sequence of independent and identically dis-
tributed (iid) random variables with CDF F (x; θ) and PDF f(x; θ). Then
the observation Xj is a lower record value if it is smaller than all its preced-
ing observations, namely Xj < Xi, ∀i < j. In other words, let L(1) = 1 and
L(m) = min{j|j > L(m − 1), Xj < XL(m−1)} for m > 1. Then XL(m) is the
m-th lower record value, and the sequence {L(m),m ≥ 1} represents the record
times. The PDF of XL(m) for m ≥ 1 is given by (see e.g. [3])

fXL(m)
(x) =

1

(m− 1)!

[
− ln

(
F (x; θ)

)]m−1
f(x; θ), x > 0, m ≥ 1.
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The joint PDF of XL(m) and XL(n), for 1 ≤ m < n and x < y, is

fXL(m),XL(n)
(x, y; θ) =

1

(m− 1)!(n−m− 1)!

[
− ln

(
F (x; θ)

)]m−1

×
[

ln
(
F (x; θ)

)
− ln

(
F (y; θ)

)]n−m−1 f(x; θ)

F (x; θ)
f(y; θ).

In addition, suppose that x = (x1, . . . , xm) is the observed vector of
(
XL(1), . . . , XL(m)

)
,

then the likelihood function of θ given the m lower records can be expressed as

(1.3) L(θ|xxx) = f(xm; θ)
m−1∏
i=1

f(xi; θ)

F (xi; θ)
, x > 0, m ≥ 1.

So, for the ILD, the PDF of m-th lower record is given by
(1.4)

fXL(m)
(x) =

1

Γ(m)

[
− ln

(
1 +

θ

(1 + θ)x

)
+
θ

x

]m−1
θ2

1 + θ

(
1 + x

x3

)
e−

θ
x , x > 0, θ > 0.

The main aim of this article is to present both frequentist and Bayesian
methodology to estimate the parameter of the ILD based on lower records and
to predict a future record based on past observed record values. The rest of
the paper is organized as follows: In Section 2, we use the maximum likelihood
(ML) method as a frequentist methodology to obtain a point estimator of the
parameter. Besides, the asymptotic confidence interval (CI) as well as two differ-
ent bootstrap-type CIs are obtained. We also consider the problem of Bayesian
estimation of the unknown parameter in this section. In Section 3, the problem
of predicting a future record value is discussed based on using both classical and
Bayesian procedures. In Section 4, a Monte Carlo simulation study is conducted
to evaluate the performances of the proposed estimators in the sense of estimated
bias and their associated estimated risks. In Section 5, the applicability of the
paper results, is shown using an application to real data. Finally, the paper ends
with some conclusions in Section 6.

2. PARAMETER ESTIMATION

In this section, we use both classical and Bayesian methods of estimation
to evaluate the parameter of the inverse Lindley distribution based on lower
records.

2.1. Maximum likelihood estimation

In this subsection, we discuss the process of obtaining the ML estima-
tor of parameter θ based on lower record values for ILD(θ). Suppose that
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XL(1), . . . , XL(m) are the first m record statistics arising from a sequence of iid
random variables from ILD(θ) with PDF (1.1) and xxx = (x1, x2, . . . , xm) is the
observed vector of (XL(1), . . . , XL(m)). The likelihood function of the parameter
given xxx is as follows

L(θ|xxx) =
θ2me−

θ
xm

xm(1 + θ)

m∏
i=1

1 + xi
x2
i

m−1∏
i=1

1

θ(1 + xi) + xi
.

Hence, the log-likelihood function is

(2.1) l(θ) = lnL(θ|xxx) = 2m ln θ− ln(1+θ)− θ

xm
−
m−1∑
i=1

ln
(
θ(1+xi)+xi

)
+A(xxx),

where A(xxx) =
∑m

i=1 ln(1 + xi)− lnxm − 2
∑m

i=1 lnxi.

The ML estimate of θ can be obtained by maximizing (2.1) with respect
to θ. Upon differentiating (2.1) with respect to θ and equating it with zero, we
have

∂l(θ)

∂θ
=

2m

θ
− 1

1 + θ
− 1

xm
−
m−1∑
i=1

1 + xi
θ(1 + xi) + xi

= 0.

It can be shown that the solution of (2.1) can be obtained as a fixed point solution
of h(θ) = θ where

h(θ) = 2m

(
1

1 + θ
+

1

xm
+

m−1∑
i=1

1 + xi
θ(1 + xi) + xi

)−1

.

Next, we show the uniqueness and existence of the ML estimate of θ. To this
end, let v1(θ) = h(θ) and v2(θ) = θ. It can be easily verified that v1(θ) is an
increasing function with

v1(0) = 2m
( m∑
i=1

1

xi
+m

)−1
, v1(∞) = 2mxm.

So v1(θ) starts from a positive real value at 0 and increases to 2mxm, which is a
finite value. For large θ, v1(θ) is a finite value whereas v2(θ)→∞ as θ goes to∞.
This implies that there exists one real positive root, say θ̂, such that h(θ̂) = θ̂.

2.2. Asymptotic confidence interval

It seems that the ML estimate of θ does not possess an explicit form, and
therefore it is not easy to obtain the variance of θ̂, where θ̂ denotes the ML
estimator (MLE) of θ. Consequently, we cannot get the exact distribution of
the MLE and the exact bounds for the parameter. The intent is to use the
large-sample approximation. The asymptotic distribution of θ̂ is ([21])

(θ̂ − θ) D−→ N(0, I−1
XL(1)

, . . . ,XL(m)
(θ)),
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where I−1
XL(1),...,XL(m)

(θ) is the inverse of the Fisher information of the first m

lower records about the unknown parameter θ and
D−→ stands for convergence in

distribution. Since θ is unknown, we estimate the asymptotic variance of θ̂ based
on the inverse of the observed Fisher information of the first m lower records, in
other words, we have

V̂ar(θ̂) =

(
ĨXL(1),··· ,XL(m)

(θ̂)

)−1

,

where

ĨXL(1),··· ,XL(m)
(θ̂) =

2m

θ̂2
− 1

(1 + θ̂)2
−
m−1∑
i=1

(
1 +XL(i)

θ̂(1 +XL(i)) +XL(i)

)2

.

Using the above element, one can derive the approximate 100(1−α)% CI of the
parameter θ as follows

θ̂ ± zα
2

√
V̂ar(θ̂),

where zα
2

is the upper α
2 quantile of the standard normal distribution.

2.3. Bootstrap confidence interval

In this subsection, two different bootstrap confidence intervals are proposed.
The first one is the bootstrap percentile (Boot − P ) CI and the second one is
the basic bootstrap (Boot − B)CI [13, 16]. The following algorithm is used to
generate parametric bootstrap samples.

Algorithm 1

Step 1: Compute the ML estimate of θ, denoted by θ̂, based on the observed
lower records.

Step 2: Generate the bootstrap lower record sample X∗L(1), . . . , X
∗
L(m), from

ILD(θ̂).
Step 3: Compute the ML estimate of θ based on the generated bootstrap sample

in Step 2, denoted by θ̂∗1.
Step 4: Repeat Steps 2 and 3, B times, and store θ̂∗i for i = 1, . . . , B, say
{θ̂∗1, · · · , θ̂∗B}.

i) Boot− P method
Arrange θ̂∗i ’s in an ascending order and let θ∗i be the i-th ordered member
of {θ̂∗1, · · · , θ̂∗B}, then the 100(1−γ)% bootstrap percentile CI for θ is given
by (

θ∗(B+1) γ
2
, θ∗(B+1)(1− γ

2
)

)
.
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ii) Boot−B method
The 100(1− γ)% basic bootstrap CI for θ is given by(

2θ̂ − θ∗(B+1)(1− γ
2

), 2θ̂ − θ
∗
(B+1)( γ

2
)

)
.

2.4. Bayesian estimation

In this subsection, we work on Bayesian estimation of the unknown pa-
rameter θ in the ILD, based on lower record values. It should be noted that all
the relations given in this subsection hold for the general case of one-dimensional
parameter θ. In the context of Bayes estimation, the parameter is assumed to be
a random variable with a prior distribution, π(θ). Let X denote the informative
sample and L

(
θ, δ(X)

)
denote the loss function, where δ(X) is an estimator of

θ. The Bayes estimator of θ is derived through minimizing the posterior risk
E[L(θ, δ(X))|X] with respect to δ. In the literature, the squared error (SE)
loss function is one of the common loss functions that has been frequently used
for estimation problems, which is defined as L

(
θ, δ(X)

)
=
(
δ(X) − θ

)2
. The

Bayes estimator of θ is given by δSE(X) = E(θ|X) under the SE loss function,
provided that the mentioned expectation exists and is finite. The SE loss func-
tion, as a symmetric function, allocates equivalent losses to the overestimation
and underestimation. However, in some practical situations, overestimation and
underestimation are not of the same importance, and the use of symmetric loss
functions seems inappropriate. [32] proposed an asymmetric loss function, called
the linear-exponential (LE or linex) loss function, which is defined as

L
(
θ, δ(X)

)
= b∗

[
ec(δ(X)−θ) − c(δ(X)− θ)− 1

]
, c 6= 0, b∗ > 0,

where b∗ and c are the parameters of the function. Without loss of generality, we
can assume b∗ = 1 whereas c has to be determined carefully. Positive values of
c are considered when the overestimation is more serious than underestimation,
while the negative values are considered when the underestimation is more serious
than overestimation (see e.g. [34]). The Bayes estimator of θ under the LE loss
function is given by

δLE(X) =
−1

c
lnE(e−cθ|X), c 6= 0.

provided that the above expectation exists and is finite.

Another asymmetric loss function, proposed by [10], is the general entropy
(GE) loss function, which is defined as

L
(
θ, δ(X)

)
= w

[(
δ(X)

θ

)p
− p ln

(
δ(X)

θ

)
− 1

]
, p 6= 0, w > 0.

Without loss of generality, we assume w = 1. The Bayes estimator of θ under
the GE loss function is given by

δGE(X) = [E(θ−p|X)]
− 1
p , p 6= 0,
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provided that the above expectation exists and is finite. Now, assume that θ has
a gamma prior distribution with the following PDF

(2.2) π(θ) =
ba

Γ(a)
θa−1e−bθ; a > 0, b > 0, θ > 0.

From the likelihood function (2.1) and the prior distribution (2.2), the posterior
density function can be obtained to be

π(θ|xxx) =
L(θ|xxx)π(θ)∫∞

0 L(θ|xxx)π(θ)dθ

= m(xxx)θ2m+a−1e−θ(
1
xm

+b){(1 + θ)
m−1∏
i=1

(
θ(1 + xi) + xi

)}−1
,(2.3)

where

m(xxx) =
1∫∞

0 θ2m+a−1e−θ(
1
xm

+b){(1 + θ)
m−1∏
i=1

(
θ(1 + xi) + xi

)}−1
dθ

.

2.5. Tierney and Kadane’s approximation

This subsection presents the approximate Bayes estimates of θ under the
SE,LE, and GE loss functions using the Tierney and Kadane’s (TK) approxi-
mation method. [31] used Laplace’s formula to approximate posterior moments.
To apply the TK approximation method, suppose that F (θ) = 1

m lnπ(θ) + 1
m l(θ)

and F ∗(θ) = F (θ)+ 1
m ln g(θ) where l(θ) is the log-likelihood function of θ, π(θ) is

the prior density, and g(θ) should be a smooth positive function on the parameter
space. We know that posterior moment of g(θ) is

(2.4) E(g(θ)|xxx) =

∫ ∞
0

g(θ) · π(θ|xxx)dθ.

The expression (2.4) can be rewritten as

(2.5) E(g(θ)|xxx) =

∫∞
0 emF

∗(θ)dθ∫∞
0 emF (θ)dθ

.

Using the TK method, the approximate form of (2.5) becomes

Ê(g(θ)|xxx) =
(σ∗
σ

)
exp

(
m
(
F ∗(θ̃∗)− F (θ̃)

))
,

where θ̃ and θ̃∗ are the modes of F (θ) and F ∗(θ), respectively and

σ2 = − 1

F ′′(θ)|θ=θ̃
and σ∗

2
= − 1

F ∗′′(θ)|θ=θ̃∗
,
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where F ′′(·) and F ∗
′′
(·) denote the second order derivatives of F (θ) and F ∗(θ),

respectively.

Now, let

G(θ, k1, k2) =
1

m

[
(2m+a−1+k1) ln(θ)−ln(1+θ)−θ

(
b+k2+

1

xm

)
−

m−1∑
i=1

ln
(
θ(1+xi)+xi

)
+B(xxx)

]
,

where B(xxx) =
∑m

i=1 ln(1 +xi)− lnxm− 2
∑m

i=1 lnxi +a ln b− ln Γ(a) and k1 and
k2 are real numbers. Then, F (θ) = G(θ, 0, 0) and F ∗(θ) = G(θ, k∗1, k

∗
2), where

(2.6) k∗1 =


1 under SE,

0 under LE,

−p under GE,

and k∗2 =

{
0 under SE and GE,

c under LE.

Let G∗(θ, k1, k2) =
∂G(θ, k1, k2)

∂θ
. Then, we have

G∗(θ, k1, k2) =
1

m

[2m+ a− 1 + k1

θ
− 1

1 + θ
−
(
b+k2+

1

xm

)
−
m−1∑
i=1

1 + xi
θ(1 + xi) + xi

]
.

Note that
∂2G(θ, k1, k2)

∂θ2
is free of k2, so we let G∗∗(θ, k1) =

∂2G(θ, k1, k2)

∂θ2
and

we have

G∗∗(θ, k1) =
1

m

[
− 2m+ a− 1 + k1

θ2
+

1

(1 + θ)2
+
m−1∑
i=1

( 1 + xi
θ(1 + xi) + xi

)2]
.

Let F ′(·) and F ∗
′
(·) denote the first order derivatives of F (θ) and F ∗(θ), respec-

tively. Then, F ′(θ) = G∗(θ, 0, 0) and F ∗
′
(θ) = G∗(θ, k∗1, k

∗
2), where k∗1 and k∗2 are

given in (2.6).

Moreover, F ′′(θ) = G∗∗(θ, 0) and F ∗
′′
(θ) = G∗∗(θ, k∗1). Consequently, we

get

Ê(g(θ)|xxx) =

√
F ′′(θ)|θ=θ̃
F ∗′′(θ)|θ=θ̃∗

exp
(
m
(
F ∗(θ̃∗)− F (θ̃)

))
,

where θ̃ and θ̃∗ can be derived from F
′
(θ) = 0 and F ∗

′
(θ) = 0, respectively, and

g(θ) =


θ under SE,

exp(−cθ) under LE,

θ−p under GE.

Therefore, the approximate Bayes estimates of θ under the SE,LE and GE loss
functions are given by

θ̃SE = Ê
(
gSE(θ)|xxx

)
θ̃LE = −1

c
ln
[
Ê
(
gLE(θ)|xxx

)]
, c 6= 0

θ̃GE =
[
Ê
(
gGE(θ)|xxx

)]− 1
p , p 6= 0,

respectively, where gSE(θ) = θ, gLE(θ) = e−cθ, and gGE(θ) = θ−p.
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2.6. MCMC methods

In this subsection, we consider two Markov chain Monte Carlo (MCMC)
methods to generate samples from the posterior distribution and then compute
the approximate Bayes estimates of the parameter θ under the SE,LE, and
GE loss functions. Two important subclasses of MCMC methods, which are
considered here, are importance sampling (IS) and Metropolis-Hastings (MH)
methods, see [24] and [20] for the details of the MH algorithm.

To implement the IS procedure, we rewrite the posterior density function
(2.3) as follows

π(θ|xxx) = C(xxx) gamma
(
θ; 2m+ a,

1

xm
+ b
)
h(θ),

where gamma(θ; 2m + a, 1
xm

+ b) is the density of the gamma distribution with

shape and rate parameters 2m+ a and 1
xm

+ b, respectively, C(xxx) = m(xxx)Γ(2m+a)

(x−1
m +b)

2m+a

and

h(θ) =

{
(1 + θ)

m−1∏
i=1

(
θ(1 + xi) + xi

)}−1

.

Now, let G(θ|xxx) = gamma(θ; 2m+ a, 1
xm

+ b)h(θ). Then the Bayes estimate of θ
under the SE loss function is given by

(2.7) θ̂SE =

∫∞
0 θG(θ|xxx)dθ∫∞
0 G(θ|xxx)dθ

.

Consider the following algorithm.

Algorithm 2

Step 1: Generate θ from the gamma distribution with shape and rate parameters
respectively as 2m+ a and 1

xm
+ b.

Step 2: Repeat Step 1, N times to obtain the importance sample θ1, θ2, . . . , θN .

The approximate value of (2.7), which is the approximate Bayes estimate
of θ under the SE loss function, can be obtained as

θ̂SE =

N∑
i=1

θih(θi)

N∑
i=1

h(θi)

=
N∑
i=1

θiwi,

where wi = h(θi)∑N
i=1 h(θi)

. Besides, the approximate Bayes estimates of θ under the

LE and GE loss functions are given by

θ̂LE = −1

c
ln
( N∑
i=1

e−cθi wi

)
, and θ̂GE =

( N∑
i=1

θ−pi wi

)− 1
p
,
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respectively.

In the sequel, we use theMH algorithm to approximate the Bayes estimates
of the parameter of the ILD. Here, we consider the normal distribution as a
symmetric proposal distribution. According to [14], we write the MH algorithm
steps as follows:

Algorithm 3

Step 1: Set an initial value θ(0), we propose to consider the ML estimate of θ as
the initial value.

Step 2: For j = 1, . . . , N ′, repeat the following steps.

• Set θ = θ(j−1).

• Following [14], generate a new candidate parameter value δ from

N
(

ln(θ),
Sθ0

[θ(0)]2

)
, where Sθ0 can be obtained using the inverse of the

observed Fisher information as follows

Sθ0 =

{
2m

θ2
− 1

(1 + θ)2
−
m−1∑
i=1

(
1 + xi

θ(1 + xi) + xi

)2
}−1 ∣∣∣∣∣

θ=θ(0)

.

• Set θ′ = exp(δ).

• Calculate P = min
{

1, π(θ′|xxx)q(θ|θ′)
π(θ|xxx)q(θ′|θ)

}
, where q(x|b) is the density of the

log-normal distribution with parameters ln(b) and
Sθ0

[θ(0)]2
.

• Update θ(j) = θ′ with probability P , otherwise set θ(j) = θ.

We may discard the first k generated data, where k is the burn-in period.
Suppose {θl, l = 1, . . . ,M} is a sample produced according to Algorithm 3 with
M = N ′−k. Therefore, the approximate Bayes estimates of θ under the SE, LE
and GE loss functions are given by

θ̃∗SE =
1

M

M∑
l=1

θl, and θ̃∗LE = −1

c
ln
( 1

M

M∑
l=1

e−cθl
)
,

and

θ̃∗GE =
( 1

M

M∑
l=1

θ−pl
)− 1

p ,

respectively.
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3. PREDICTION of a FUTURE RECORD VALUE

Prediction of future records has been studied by many authors, see for
example [15], [9], and [2]. In this section, we study the problem of predicting a
future record value, given a sample of observed past record values.

3.1. Maximum likelihood prediction

Suppose that the first m lower record values XL(1), . . . , XL(m) are avail-
able from a population with PDF f(x; θ) and CDF F (x; θ). Let Z = XL(n),
n > m, is an unobserved future record value. Then, the joint PDF of Z and
XL(1), . . . , XL(m) is given by [6], which can also be obtained from the Markovian
property of records, see e.g. [3]. Here, using the result given by [6] and from (1.1)
and (1.2), the logarithm of the predictive likelihood function of the parameter
and Z for the ILD is given by

lnL(z, θ;xxx) = (2m+ 2) ln(θ)− ln(1 + θ)− ln Γ(n−m) + ln(z + 1)− 3 ln(z)

−θ
z

+ (n−m− 1) ln

(
θ

z
− θ

xm
+ ln

(z[(1 + θ)xm + θ]

xm[(1 + θ)z + θ]

))
−

m∑
i=1

ln
(
θ(1 + xi) + xi

)
+

m∑
i=1

ln(1 + xi)− 2

m∑
i=1

ln(xi), z < xm.(3.1)

Maximizing (3.1) with respect to θ and z, we could find the ML prediction of Z
and the predictive maximum likelihood estimate of θ. Upon differentiating (3.1)
partially with respect to θ and z and equating the results with zero, we have the
following equations

∂ lnL(z, θ;xxx)

∂θ
=

2m+ 2

θ
− 1

1 + θ
− 1

z
−

m∑
i=1

1 + xi
θ(1 + xi) + xi

+

(n−m− 1)

(
1

z
− 1

xm
+

xm + 1

(1 + θ)xm + θ
− z + 1

(1 + θ)z + θ

)
θ

z
− θ

xm
+ ln

(z[(1 + θ)xm + θ]

xm[(1 + θ)z + θ]

) = 0,

∂ lnL(z, θ;xxx)

∂z
=

1

1 + z
− 3

z
+

θ

z2

+

(n−m− 1)

(
1

z
− θ

z2
− θ + 1

(1 + θ)z + θ

)
θ

z
− θ

xm
+ ln

(z[(1 + θ)xm + θ]

xm[(1 + θ)z + θ]

) = 0.(3.2)

A numerical procedure can help us to find the solutions of the above equations.

One may also find the approximate ML (AML) prediction of Z by means
of solving (3.2) after replacing θ with its ML estimate.
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3.2. Interval prediction

In this subsection, we study the problem of interval prediction of a future
record based on observed past lower record values coming from the ILD. Shortest
and equal tails intervals have been nicely discussed in [18]. As mentioned earlier,
record values satisfy the Markovian property (see e.g. [3]), in the sense that the
conditional density of Z = XL(n) (n > m ≥ 1) given the set of the first m lower
records (XL(1), . . . , XL(m)) = (x1, . . . , xm) is the same as the conditional density
of Z given XL(m) = xm. From (1.1) and (1.2), the conditional PDF of Z given
xm for the ILD becomes
(3.3)

fZ(z|xm; θ) =

θ2(1 + z)xm

(
θ

z
− θ

xm
+ ln

(z[(1 + θ)xm + θ]

xm[(1 + θ)z + θ]

))n−m−1

(n−m− 1)![θ(1 + xm) + xm]z3
e−θ(

1
z
− 1
xm

),

where z < xm.

As a consequence of (3.3), it can be proved that (see Appendix)

(3.4) U =
θ

Z
− θ

xm
+ ln

(Z[(1 + θ)xm + θ]

xm[(1 + θ)Z + θ]

)∣∣∣∣XL(m) = xm ∼ Gamma(n−m, 1),

with the following density

gU (z) =
1

Γ(n−m)
zn−m−1e−z, z > 0.

Then, the highest conditional density (HCD) interval for U at the level of (1−α)
is in the form of [c1, c2] if

[c1, c2] = {c : c ≥ 0, gU (c) ≥ k},

for some k > 0, where

∫ c2

c1

gU (c)dc = 1− α.

If n > m + 1, then gU (c) is a unimodal PDF whose maximum value is
achieved at v = n −m − 1 > 0. In this case, c1 and c2 are the solutions of the
following non-linear equations (see e.g. [11])∫ c2

c1

gU (c)dc = 1− α, and gU (c1) = gU (c2).

The above equations can be reexpressed as follows

γ(c2, n−m)− γ(c1, n−m) = 1− α, and
c1

c2
= exp

(
− c2 − c1

n−m− 1

)
,

where γ(c, a) =
1

Γ(a)

∫ c

0
xa−1e−xdx is the incomplete gamma function.
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Thus, a 100(1 − α)% prediction interval (PI) of Z based on the above
(HCD) method is in the form of (L∗, U∗), where L∗ and U∗ satisfy the following
non-linear equations

L∗
(
xm(1 + θ) + θ

)
xm
(
L∗(1 + θ) + θ

) = exp
(
− θ

L∗
+

θ

xm
+ c2

)
,

and
U∗
(
xm(1 + θ) + θ

)
xm
(
U∗(1 + θ) + θ

) = exp
(
− θ

U∗
+

θ

xm
+ c1

)
,

respectively. If θ is unknown, then it can be replaced by its MLE, which leads
to a 100(1− α)% approximate PI (API) for Z.

Next, we consider the case when n = m + 1, where gU (c) is a decreasing
function with gU (0) = 1 and gU (∞) = 0. So, we find the interval of the form
[0, c1] where c1 satisfies the following equation∫ c1

0
gU (c)dc = 1− α.

Therefore, c1 = − lnα and a 100(1−α)% PI for Z will be in the form of (L∗, xm),
where L∗ satisfies the following equation

αL∗
(
xm(1 + θ) + θ

)
xm
(
L∗(1 + θ) + θ

) = exp
(
− θ

L∗
+

θ

xm

)
.

3.3. Bayesian prediction

In this subsection, we consider the prediction of a future record based on a
Bayesian approach under the SE,LE, and GE loss functions. Suppose that the
first m lower records XL(1), . . . , XL(m) are available from the ILD and we wish
to predict the nth lower record Z = XL(n), n > m, based on the observed vector
xxx. From (2.3) and (3.3), the Bayes predictive density of Z given xxx is given by

fZ(z|xxx) =

∫ ∞
0

fZ(z|xm; θ)π(θ|xxx) dθ

=
(1 + z)xmm(xxx)

z3 Γ(n−m)

∫ ∞
0

(
θ

z
− θ

xm
+ ln

(z[(1 + θ)xm + θ]

xm[(1 + θ)z + θ]

))n−m−1

× θ2m+a+1

xm + θ(1 + xm)
e−θ(

1
z

+b)
[
(1 + θ)

m−1∏
i=1

(
xi + θ(1 + xi)

)]−1
dθ.

In the particular case of n = m + 1, the Bayes predictive density function of Z
simplifies as

fZ(z|xxx) =
(1 + z)xmm(xxx)

z3

∫ ∞
0

θ2m+a+1e−θ(
1
z

+b)

xm + θ(1 + xm)

[
(1+θ)

m−1∏
i=1

(
xi+θ(1+xi)

)]−1
dθ.
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The Bayesian prediction of the nth lower record under the SE loss function is
given by

ẐBS = Ê(Z|xxx) =

∫ xm

0
zfZ(z|xxx)dz,

and the Bayesian predictions of Z under the LE and GE loss functions are

ẐBL = −1

c
ln Ê(e−cZ |xxx) = −1

c
ln
( ∫ xm

0
e−czfZ(z|xxx)dz

)
,

and

ẐBG = [Ê(Z−p|xxx)]
− 1
p =

[ ∫ xm

0
z−pfZ(z|xxx)dz

]− 1
p
,

respectively, provided that the above integrals exist and are finite.

The predictive limits of a 100(1 − τ)% two-sided PI for the future lower
record Z = XL(n) can be obtained by solving the following two equations simul-
taneously with respect to L∗∗ and U∗∗∫ ∞

L∗∗
fZ(z|xxx)dz = 1− τ

2
, and

∫ ∞
U∗∗

fZ(z|xxx)dz =
τ

2
.

4. A SIMULATION STUDY

In this section, we performed a simulation study to assess the performance
of the point and interval estimators of θ and predictors of a future record value
coming from the ILD. With this in mind, in each iteration of the simulation, we
generate m lower records from the ILD with parameter θ and then we compute
the ML estimate, the approximate Bayes estimates under the SE,LE, and GE
loss functions using the TK, IS, and MH methods. The 95% asymptotic CIs,
as well as the two bootstrap-type CIs are obtained. In the context of prediction,
we compute AML prediction and 95% PI (based on the HCD method) for the
(m+1)th lower record value. The following setting has been applied: We consider
three different values for the number of lower records as m = 3, 4, 5 and three
different values for the parameter as θ = 0.5, 1, 2. The number of bootstrap
repetitions is taken to be B = 1000. In the context of the Bayesian estimation,
two gamma priors have been applied, Prior 1 with (a1, b1) = (0.2, 1.5) and Prior
2 with (a2, b2) = (3, 1). Besides, we take c = −0.2, 0.2 for the LE loss function
and p = −0.2, 0.2 for the GE loss function. The results of the simulation study
are based on N = 1000 iterations.

The assessment of the performances of the point estimators is based on
estimated risks (ERs) under the SE,LE, and GE functions, and the evaluation
of CIs is based on average length (AL) and coverage probability (CP ). Let
θ̃ be an estimator of θ and θ̃i be the corresponding estimate obtained in the
ith iteration. Then the estimated bias (bias for short) and ERs of θ̃ under the
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SE,LE, and GE loss functions are given by

Bias(θ̃) =
1

N

N∑
i=1

(
θ̃i − θ

)
,(4.1)

ERSE(θ̃) =
1

N

N∑
i=1

(
θ̃i − θ

)2
,(4.2)

ERLE(θ̃) =
1

N

N∑
i=1

[
ec(θ̃i−θ) − c(θ̃i − θ)− 1

]
,

ERGE(θ̃) =
1

N

N∑
i=1

[(
θ̃i
θ

)p
− p ln

(
θ̃i
θ

)
− 1

]
,

respectively.

Besides, we compute the empirical biases (biases for short) and mean
squared prediction errors (EMSPEs) of the AML predictors (which can be for-
mulated similarly as (4.1) and (4.2), respectively) and the ALs and CP s of the
interval predictors.

The simulation results related to the point estimation are presented in
Tables 1-6. The following abbreviations are used in Tables 1-6: BS (Bayes es-
timator under the SE loss function), BLc1 (Bayes estimator under the SE loss
function with c1 = 0.2), BLc2 (Bayes estimator under the SE loss function with
c2 = −0.2), BGp1 (Bayes estimator under the GE loss function with p1 = 0.2)
and BGp2 (Bayes estimator under the GE loss function with p2 = −0.2). It
is observed from Tables 1-6 that in all estimation methods, ERs are decreasing
with respect to the number of records except for the case under Prior 2 when
θ = 2. We also observe that the ERs are close to each other for the TK, IS, and
MH methods. Furthermore, for Prior 1, the ERs of the Bayes estimators are less
than or equal to those of the ML estimators (a few exceptions exist), whereas
for Prior 2 when θ = 0.5, the ML estimators outperform the Bayes estimators
in the sense of ER and bias. Prior 1 produces smaller ERs than Prior 2, when
θ = 0.5 and 1, which is also true for θ = 2 in the most cases.

The performances of the asymptotic CIs and two different bootstrap CIs
(Boot−B and Boot−P methods) are compared in terms of their ALs and CP s in
Table 7. Table 7 shows that in all three methods, the AL of the CI decreases as
the number of records increases. Besides, in all cases, the CP s of the asymptotic
CIs are more than the corresponding CP s of the bootstrap CIs., and the ALs of
the asymptotic CIs are less than those of the others. We also observe that the
Boot−B CIs perform better than the Boot−P CIs in the sense of CP .

Finally, Table 8 presents the biases and EMSPEs of the AML predictors
as well as the ALs and CP s of the APIs for the (m + 1)th lower record value.
From Table 8, we observe that for all values of θ, the AL, bias, and EMSPE
decrease as the number of records increases.
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Method

θ m Asymptotic Boot−B Boot−P

0.5

3
AL 1.222 1.938 1.938
CP 0.985 0.868 0.840

4
AL 1.005 1.362 1.362
CP 0.997 0.902 0.788

5
AL 0.900 1.113 1.113
CP 0.999 0.927 0.668

1

3
AL 2.517 4.328 4.328
CP 0.984 0.863 0.838

4
AL 2.062 2.956 2.956
CP 0.999 0.916 0.787

5
AL 1.872 2.443 2.443
CP 0.998 0.929 0.678

2

3
AL 5.481 10.002 10.002
CP 0.982 0.879 0.812

4
AL 4.431 6.771 6.771
CP 0.995 0.918 0.772

5
AL 4.163 5.750 5.750
CP 0.998 0.942 0.633

Table 7: ALs and CP s of 95% CIs of θ.

θ m AML Predictor API based on the HCD method

0.5

3
Bias 0.041 AL 0.070
EMSPE 0.004 CP 0.886

4
Bias 0.026 AL 0.046
EMSPE 0.002 CP 0.899

5
Bias 0.016 AL 0.033
EMSPE 0.000 CP 0.887

1

3
Bias 0.095 AL 0.156
EMSPE 0.037 CP 0.887

4
Bias 0.049 AL 0.098
EMSPE 0.007 CP 0.917

5
Bias 0.036 AL 0.071
EMSPE 0.003 CP 0.887

2

3
Bias 0.225 AL 0.362
EMSPE 0.226 CP 0.884

4
Bias 0.130 AL 0.223
EMSPE 0.055 CP 0.880

5
Bias 0.090 AL 0.162
EMSPE 0.026 CP 0.883

Table 8: The estimated biases and EMSPEs of the AML predictors and
the ALs and CP s of the 95% APIs based on the HCD methods.

5. REAL DATA EXAMPLE

In this section, we use a real data set to illustrate the estimation and
prediction procedures for the ILD. The data are the monthly rainfall during
December recorded at Los Angeles civic center from 2001 to 2016 (see the website
of Los Angeles Almanac: www.laalmanac.com/weather/we08aa.htm).

1.38 3.31 1.35 8.77 1.03 0.81 1.73 2.79

2.89 10.23 1.01 2.16 0.20 3.88 0.57 4.55

To assess the suitability of the inverse Lindley distribution for the pro-

www.laalmanac.com/weather/we08aa.htm
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vided dataset, various statistical tests and criteria were applied, including the
Kolmogorov-Smirnov (K−S) test, Akaike information criterion (AIC), and Bayesian
information criterion (BIC). The fitness results for the ILD were compared
with those for the inverse xgamma distribution introduced by [33], with PDF

f(x) = θ2

x2(1+θ)
(1 + θ

2x2
) exp(−θx ), the inverse Maxwell distribution introduced by

[30], with PDF f(x) = 4θ1.5√
πx4

exp(− θ
x2

), and the inverse Rayleigh distribution

with PDF f(x) = 2θ
x3

exp(− θ
x2

). The results of the K−S test, AIC, and BIC
collectively support the appropriateness of the inverse Lindley distribution for
the dataset. Specifically, the K−S test yielded a p-value of 0.8047 for the ILD,
as opposed to 0.6995 for the inverse xgamma, 0.000065 for the inverse Maxwell,
and 0.001386 for the inverse Rayleigh distributions. This indicates that both
the inverse Lindley and inverse xgamma distributions are suitable for these data.
The AIC and BIC values for the ILD were obtained to be 71.9553 and 72.7279,
respectively. In contrast, for the inverse xgamma distribution, the AIC and BIC
values were computed as 72.7797 and 73.5523, suggesting that the inverse Lindley
distribution is more appropriate for modeling this dataset.

From the original data set, we have extracted the first five lower records
as follows: 1.38, 1.35, 1.03, 0.81, 0.20. Here, we use the same priors used
in the simulation study, which are Prior 1 and Prior 2. We calculated the point
and interval estimates for the unknown parameter θ based on the observed five
lower records. Besides, we computed the AML prediction and the 95% API for
the 6th lower record value. Table 9 represents our numerical findings.

Point Estimation

MLE TK IS MH

Prior 1

SE 1.315 1.090 1.121 1.009
LE(c = 0.2) 1.073 1.108 0.997
LE(c = −0.2) 1.102 1.135 1.021
GE(p = −0.2) 1.013 1.052 0.940
GE(p = −0.2) 1.039 1.074 0.963

Prior 2

SE 1.578 1.588 1.625
LE(c = 0.2) 1.553 1.566 1.604
LE(c = −0.2) 1.600 1.610 1.648
GE(p = −0.2) 1.489 1.508 1.546
GE(p = −0.2) 1.519 1.535 1.572

Interval Estimation

95% Asymptotic CI 95% Boot−B CI 95% Boot−P CI

(0.382, 2.248) (−0.814, 1.679) (0.951, 3.443)

Prediction

AML prediction 95% API

0.200 (0.133, 0.200)

Table 9: The numerical results of the example.
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6. CONCLUSIONS

The inverse Lindley distribution, introduced by [28], offers a versatile distri-
bution with an inverted bathtub-shaped hazard rate function. [28] demonstrated
its applicability to real-world data, specifically survival times of head and neck
cancer patients. Since its inception, various authors have explored inferential
aspects of the inverse Lindley distribution (ILD).

This paper focuses on the estimation of the unknown parameter of the
ILD when the first m record values are available. The classical and Bayesian
procedures were employed for parameter estimation, and attention was given to
predicting a future record value. The article includes a simulation study and a real
data application to illustrate the proposed procedures. A comparative analysis
involved the maximum likelihood estimator and different Bayes estimators under
squared error, linear-exponential, and general entropy loss functions, consider-
ing average empirical biases and associated estimated risks. The asymptotic and
two bootstrap-type confidence intervals were assessed for their coverage probabil-
ities and average lengths. Notably, the asymptotic confidence intervals demon-
strated shorter lengths and larger coverage probabilities compared to bootstrap
confidence intervals. Furthermore, Bayesian methods with small prior variance
emerged as more preferable than classical methods.

The exploration extends to the estimation problem for R = P (X < Y ), uti-
lizing two sequences of lower record values from two inverse Lindley populations
with different parameters. Future work is suggested on inferential challenges
for generalizations of the ILD based on record data. Additionally, the paper
proposes investigating estimation and prediction problems for the ILD using
alternative data types, such as progressively type I and type II censored data,
hybrid censored data, progressively first failure censored data, and more. The
authors anticipate reporting findings on some of these topics in future research
endeavors. All computations were carried out using the statistical software R [26]
and the packages AdequacyModel [22], LindleyR [23], lamW [1], and nleqslv [19]
therein.

Appendix

Here, we want to prove (3.4). From (3.3), the conditional PDF of Z given
the last observed record xm for the ILD, fZ(z) ≡ fZ(z|xm; θ), can be rewritten
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as

fZ(z) =

(
θ

z
− θ

xm
+ ln

(z[(1 + θ)xm + θ]

xm[(1 + θ)z + θ]

))n−m−1

(n−m− 1)!
× θ2(1 + z)

z2[(1 + θ)z + θ]

× xm[(1 + θ)z + θ]

z[(1 + θ)xm + θ]
e−θ(

1
z
− 1
xm

).(6.1)

Let

u = g∗(z) =
θ

z
− θ

xm
+ ln

(z[(1 + θ)xm + θ]

xm[(1 + θ)z + θ]

)
.(6.2)

Then, the jacobian is obtained to be

(6.3) J =
∂g∗(z)

∂z
= − θ2(1 + z)

z2[(1 + θ)z + θ]
.

In addition, from (6.2), we get

(6.4) e−u =
xm[(1 + θ)z + θ]

z[(1 + θ)xm + θ]
e−θ(

1
z
− 1
xm

).

Note that the PDF of U , given in (3.4), can be written as gU (u) =
fZ(g∗

−1
(u))

|J |
,

where g∗
−1

(·) is the inverse function of g∗(·). So, the result follows from (6.1),
(6.2), (6.3), and (6.4).
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