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1. INTRODUCTION

The statistics literature is filled with hundreds of continuous univariate distribu-
tions. However, in recent years, applications from the environmental, financial,
biomedical sciences, engineering among others, have further shown that data sets
following the classical distributions are more often the exception rather than the
reality. Since there is a clear need for extended forms of these distributions a
significant progress has been made toward the generalization of some well-known
distributions and their successful application to problems in areas such as engi-
neering, finance, economics and biomedical sciences, among others [1].

The article presents a symmetric distribution with two shape parameters p > �1
and q > 0 called the extended easily changeable kurtosis (EECK) distribution.
As the name suggests, the EECK(p > �1; q > 0) is an extended version of the
easily changeable kurtosis (ECK) distribution with scale and shape parameters
a > 0 and p > �1, respectively [31]. Instead of kurtosis 2, the article analyzes
the excess kurtosis 2 = 2 � 3, which can be positive or negative.

Symmetric distributions do not form such a big family as asymmetric distribu-
tions. Table 1 presents (in alphabetical order) thirty four symmetric distribu-
tions with the range of excess kurtosis 2 and modality. Symmetric distributions
with undefined excess kurtosis are: Cauchy [17], degenerate [12] and Voigt [32].
Symmetric distributions with constant excess kurtosis are: arcsine [19], bimodal
normal [14], bimodal Laplace [14], cosine [24], hyperbolic secant [15], Laplace [15],
logistic [3], normal [15], raised cosine [26], sine [9], semicircle [27], uniform [8],
U-shaped [7]. Symmetric distributions with excess kurtosis in an finite interval:
Bates [15], bimodal exponential power [14], bimodal power normal [5], ECK [31],
extended normal [16], extended Laplace [15], extended t [15], Irwin-Hall [15],
plasticizing component [30], Q-gaussian [34], t [15], Tukey with finite domain
[10], U-power [7], Von Mises [21]. Symmetric distributions with excess kurtosis
in an infinite interval are: generalized normal [23], normal-exponential-gamma
[15], Tukey with infinite domain [10], U-quadratic [6]

The ECK(a > 0; p > �1) [31], as the previous version of the EECK(p > �1; q >
0), is unimodal distribution and can be used to model excess kurtosis in the range
(�2; 0).

The main goal of the paper is to define the distribution for excess kurtosis mod-
eling in a larger range than (�2; 0). As follows from the Malachov inequality
2 ⩾ 21 � 2 [20], the best range would be the maximum range, i.e. h�2;1).

The proposed distribution with EECK2 � �2 (see Subsection 2.4), like the gen-
eralized normal (GN) with GN2 � �1:2, normal-exponential-gamma (NEG) with
NEG2 > 0 and Tukey (T) defined in an infinite domain with T2 > 0, belongs
to the family of symmetrical, unimodal distributions with excess kurtosis values
on infinite interval (see Table 1). In addition, the EECK is defined in the finite
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Table 1: Symmetric distributions with range of excess kurtosis and
modality

domain whereas the NEG, GN and T are defined in an infinite domain.

PDF of the NEG, as a mixture of normal distributions, has a complicated form
and the analytical formula for excess kurtosis does not exist. PDF of the T
distribution has a simple, closed form for a few exceptional values of the shape
parameter, e.g. we get, respectively, for � = f1; 0g uniform and logistic distribu-
tions.

The analytical formulas for excess kurtosis of the EECK, GN and T distributions
are respectively:

(1.1)

EECK2 =
Γ2
�
p+ 3

q

�
Γ
�
1
q

�
Γ
�
5
q

�
(pq + 3)2

Γ2
�
3
q

�
Γ
�
p+ 1

q

�
Γ
�
p+ 5

q

�
(pq + 1) (pq + 5)

� 3 (p > �1; q > 0) ;
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(1.2)  GN
2 =

�
�

5
�

�
�

�
1
�

�

�
�

3
�

� 2 � 3 (� > 0) ;

(1.3)

 T
2 =

(2� + 1) 2 � (2 � + 1) 2
h
3� (2 � + 1) 2 + � (4 � + 4) � 4� (3 � + 1) � ( � + 1)

i

(8� + 1) � (4 � + 1)
h
� ( � + 1) 2 � � (2 � + 1)

i 2

� 3 (� > � 0:25)

The proof of (1.1) is presented in Subsection 2.4 (see Theorem 2.4).

Figure 1 shows the excess kurtosis of the EECK, GN and T distributions as
a function of the shape parametersp > � 1, � > 0 and � 2 (� 0:25; 0). The
 EECK

2 (p) is an increasing function similar to a linear function while  GN
2 (� ) and

 T
2 (� ) are initially decreasing strongly functions and then transforming into con-

stant functions. This is especially visible for the GN distribution. The EECK and
GN distributions can be used to model the negative and positive excess kurtosis.
The negative values of excess kurtosis for the EECK and GN distributions are
available on [� 2; 0] and [� 1:2; 0), respectively.

Figure 1 : Excess kurtosis as a function of shape parameter

Formula (1.3) is the most complicated among formulas (1.1)-(1.3), however, for
the EECK, GN, and T distributions, the shape parameter cannot be represented
as a function of  2, as is for the ECK and Q-gaussian distributions. This is the
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price for expanding the range of 2. Nowadays, in the era of advanced mathe-
matical software, it is possible to compute the argument of a function knowing
its value (using for example Mathcad or Microsoft Excel in newer versions).

Summarizing, the new proposal can be extremely useful when you want to seam-
lessly test the goodness-of-�t tests (GoFTs) ability to detect deviations from
normality caused by the maximum range of excess kurtosis values, i.e. nega-
tive and positive. Real data example (see Section 4.2) demonstrates that the
EECK (p > � 1; q > 0) distribution in the mixed variant is exible and com-
petitive model that deserves to be added to the existing distributions in data
modeling.

Special cases of theEECK (p > � 1; q > 0) distribution are: the uniform, triangle
and obviously ECK (a > 0; p > � 1). The EECK (p > � 1; q > 0) tends to the
normal distribution (see Subsection 2.1).

It should also be mentioned that there is a group of asymmetric distributions,
which are symmetrical for certain parameter values, e.q. the truncated normal,
Birnbaum-Saunders [4], skew-normal [2], beta, two-piece normal [11], two-piece
power normal [28] and plasticizing component [30].

This article is organized as follows. Section 2 presents the main properties of
the EECK distribution such as PDF, CDF, modes, inection points, quantiles,
moments, Moors' measure, instructions to generate EECK pseudo-random num-
bers and the Fisher Information Matrix. The estimation procedures are provided
in Section 3. The articles ends with applications and conclusions. The most
important R codes are given in the supplementary material.

2. Main properties of introduced distribution

2.1. Distribution and density functions

De�nition 1 The Eta function for p > � 1 and q > 0 is de�ned as

(2.1) H (p; q) =
Z 1

� 1
[1 � j xjq]p dx =

2B
�

1
q ; p + 1

�

q
=

2� ( p + 1) �
�

1
q + 1

�

�
�

p + 1
q + 1

� ;

where B (u; v) is the beta function.

Calculations in (2.1) were performed by the formula [13]

(2.2)
Z 1

0
xa� 1

�
1 � xb

� c� 1
dx =

B
� a

b; c
�

b
:
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Exemplary values of the Eta function (2.1):

H (1; 1) = 1 ; H (0; 1) = 2 ; H (� 0:5; 1) = 4 ; H (1; 0:5) =
2
3

; H (0:5; 1) =
4
3

:

De�nition 2 The distribution of the random variable X with PDF given by

(2.3) f (x; p; q) =
[1 � j xjq]p

H (p; q)
; x 2

�
(� 1; 1) if � 1 < p < 0
[� 1; 1] if p � 0

is called the extended easily changeable kurtosis (EECK) distribution, where
p > � 1 and q > 0 are the shape parameters. TheEECK (p > � 1; q > 0)
is symmetric around zero, since, based on (1.3) ,f (x; p; q) = f (� x; p; q) (see
Figure 2). The EECK (p > � 1; q = 2) is the ECK (a = 1 ; p > � 1) [31].

The R codes of the dEECK function for computing PDF are provided in the
supplementary material.

The standard deviation of the new proposal, based on (2.17), equals

� 2 =
(1 + pq) �

�
3
q

�
�

�
p + 1

q

�

(3 + pq) �
�

1
q

�
�

�
p + 3

q

�

therefore theEECK (p; q) distribution tends to the normal distribution N
�
0;

p
� 2

�

with PDF �
�
x; 0;

p
� 2

�

Let M (2.4) be the similarity measure of these distributions [29]. We have for
p > � 1; q > 0

(2.4)

M (p; q) =
Z 1

� 1
min

8
><

>:
f (x; p; q) ; �

2

6
4x; 0;

vu
u
u
t

(1 + pq) �
�

3
q

�
�

�
p + 1

q

�

(3 + pq) �
�

1
q

�
�

�
p + 3

q

�

3

7
5

9
>=

>;
dx:

The similarity measure M takes values on (0,1) and if PDFs are identical then
M = 1. For example M (33; 1) = 0 :871, M (33; 1:5) = 0 :954, M (33; 2) = 0 :995,
M (33; 2:5) = 0 :961. A more detailed analysis of the value of the M measure
showed that it has the highest values forq = 1 :96. We haveM (50; 1:96) = 0:999.

The EECK (p > � 1; q > 0) is the symmetrical distribution (Figure 2). The
EECK (p = 0 ; q > 0) is the uniform distribution U(� 1; 1) (Figure 3, serie p =
0; q = 1. The EECK (p > 0; q > 0) is unimodal with mode equals 0 (Figure 2,
seriesp = 0 :5; q = 2; p = 5 ; q = 3). The EECK (� 1 < p < 0; q > 0) is pseudo
(� 1 < x < 1) bimodal with bathtub shape (Figure 2, serie p = � 0:5; q = 0 :5).
The EECK (p = 1 ; q = 1) is the triangle distribution (Figure 2, serie p = 1 ; q =
1). The EECK (50; 1:96) is in 99:9% the normal distribution N (0; 0:096) (Figure
2, serieN (0; 0:096)).
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Figure 2 : PDF of the EECK (p; q) distribution for various parameter val-
ues

Theorem 2.1 . If X � EECK (p > � 1; q > 0) with PDF f (x; p; q) (2.3) then
CDF of X is given by

(2.5) F (x; p; q) = 0 :5 + x
2F1

�
� p; 1

q ; 1 + 1
q ; jxjq

�

H (p; q)

where 2F1 (a; b; c; x) is the Gaussian hypergeometric function.

Proof From (2.3) we have

(2.6) F (x; p; q) =
1

H (p; q)

Z x

� 1
(1 � j xjq)p dx

=
1

H (p; q)

� Z 0

� 1
(1 � j xjq)p dx +

Z x

0
(1 � j xjq)p dx

�
:

To complete the proof, we need to calculate two integrals. The �rst one, based
on (2.1), has the form

(2.7)
Z 0

� 1
(1 � j xjq)p dx = 0 :5H (p; q) :

The second one can be written using a power series [13]

(2.8)
Z x

0
(1 � j xjq)p dx = x

1X

k=0

(� p)k

�
1
q

�

k�
1 + 1

q

�

k

jxjqk

k!
= 2F1

�
� p;

1
q

; 1 +
1
q

; jxjq
�

x

where 2F1 (a; b; c; x) is the Gaussian hypergeometric function and (x)n is the
Pochhammer symbol

(x)n =
� ( x + n)

� ( x)
= x (x + 1) ::: (x + n � 1) :

Substituting (2.7) and (2.8) to (2.6) we obtain (2.5). The proof is complete.

The R codes of the pEECK function for computing CDF are provided in the
supplementary material.
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Figure 3 : CDF of the ECK (a; p) distribution for various parameter values

Figure 3 plots CDF of the EECK (p > � 1; q > 0) distribution for some values
of parameters. For p = 0 we obtain the straight line (uniform distribution).
For p > 0 CDF is convex in [� 1; 0) and is concave in (0; 1]. For � 1 < p < 0
CDF is concave in (� 1; 0) and is convex in (0; 1). CDFs of the EECK (50; 1:96)
distribution and N (0; 0:096) one coincide.

Theorem 2.2 . The EECK (p > � 1; q > 0) distribution with PDF given by (2.3)
is identi�able in the parameter space v = ( p; q).

Proof Let v1 = ( p1; q1) and v2 = ( p2; q2). Let us suppose that f v1 (x) = f v2 (x)
for all x from support. This condition based on (2.1) and (2.3) implies that

(2.9)
q1 (1 � j xjq1 )p1

2B
�

1
q1

; p1 + 1
� =

q2 (1 � j xjq2 )p2

2B
�

1
q2

; p2 + 1
�

If we apply log to both sides of (2.9) we obtain the system of three equations
(2.10)

log
�

q1

q2

�
= 0 ; p1 log (1 � j xjq1 ) � p2 log (1 � j xjq2 ) = 0 ; log

2

4
B

�
1
q2

; p2 + 1
�

B
�

1
q1

; p1 + 1
�

3

5 = 0 :

From the �rst equation is q1 = q2 and then from the second one isp1 = p2. The
proof is complete.

2.2. Modes and inection points

Theorem 2.3 . Let X � EECK (p > � 1; q > 0). If p = 0 then modal values
xm 2 [� 1; 1] (case of uniform distribution). If p > 0 then xm = 0. If � 1 < p < 0
then the EECK (p; q) distribution is pseudo bimodal with modes xm (� 1); xm (1).
The f (x; p > 0; q) (2.3) is monotonically increasing on the interval (� 1; 0) and
monotonically decreasing on the interval (0; 1). The f (x; � 1 < p < 0; q) (2.3) is
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monotonically decreasing on the interval (� 1; 0) and monotonically increasing on
the interval (0 ; 1).

Proof Let p � 0 then PDF of the EECK (p; q) distribution, based on (2.1) and
(2.3), for any x 2 [� 1; 1] is given by

(2.11) f (x; p; q) =
�

�
p + 1

q + 1
�

2� ( p + 1) �
�

1
q + 1

� (1 � j xjq)p :

Let p = 0 then f (x; 0; q) =
�

�
1
q +1

�

2�
�

1
q +1

� = 0 :5 is constant in [� 1; 1].

Let p > 0 then

(2.12)
d

dx
f (x; p; q) =

�
�

p + 1
q + 1

�

2� ( p + 1) �
�

1
q + 1

� p(1 � j xjq)p� 1
h
� qjxjq� 1

i
:

As a result of simple transformationsxm = 0 and (15) is positive on the interval
(� 1; 0) and negative on the interval (0; 1).

Let � 1 < p < 0 then PDF (2.11) is de�ned for any x 2 (� 1; 1). As a result
of simple transformations, (2.12) is negative on the interval (� 1; 0) and posi-
tive on the the interval (0 ; 1). For x values very close to� a and a PDF (2.8)
has locally maximum values. The author of this article denotes these values as
xm (� 1); xm (1) and proposed distribution de�nes as pseudo bimodal with modes
at these points. The proof is complete.

Theorem 2.4 . Let X � ECK (p > � 1; q > 0). The inection points of the
f (x; p; q) (6) for p > 1 ^ q > 1 or � 1 < p < 1 ^ 0 < q < 1 are given by means of
the following formulas

(2.13) x1 = �
�

1 � q
1 � pq

� 1
q

; x2 =
�

1 � q
1 � pq

� 1
q

:

Proof We can write (2.12) as

(2.14)
d

dx
f (x; p; q) =

� pq�
�

p + 1
q + 1

�

2� ( p + 1) �
�

1
q + 1

� jxjq� 1 (1 � j xjq)p� 1 :

Let A =
� pq�

�
p+ 1

q +1
�

2�( p+1)�
�

1
q +1

� then (17) has the simpler form

d
dx

f (x; p; q) = A jxjq� 1 (1 � j xjq)p� 1 :
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The second derivative is given by

d2

dx2 f (x; p; q) = A
n

(q � 1) jxjq� 2 (1 � j xjq)p� 1 � qjxjq� 1 (p � 1) (1 � j xjq)p� 2 jxjq� 1
o

;

d2

dx2 f (x; p; q) = A jxjq� 2 (1 � j xjq)p� 2
n

(q � 1) (1 � j xjq) � qjxj (p � 1) jxjq� 1
o

:

thus
d2

dx2 f (x; p; q) = 0 , (q � 1) (1 � j xjq) � qjxj (p � 1) jxjq� 1 = 0 :

As a result of simple transformations we have

(2.15) x1 = �
�

1 � q
1 � pq

� 1
q

^ x1 > � 1; x2 =
�

1 � q
1 � pq

� 1
q

^ x2 < 1;

then from (2.15) we obtain p > 1 ^ q > 1 or � 1 < p < 1 ^ 0 < q < 1. The proof
is complete.

2.3. Quantiles

Theorem 2.5 . Let X � EECK (p > � 1; q > 0). The u-th (0 < u < 1) quantile
xu is the solution of the following equation

(2.16) (0:5 � u) H (p; q) + 2F1

�
� p;

1
q

; 1 +
1
q

; jxu jq
�

xu = 0 ;

where2F1 (a; b; c; x) is the Gaussian hypergeometric function andH (p; q) is given
by (2.1). The proposed distribution is symmetrical then xu = � x1� u , obviously
and x0:5 = 0.

Proof Obtaining (19), based on the quantile de�nition, is trivial. The proof is
complete.

The quantile xu can be computed by numerical methods. The R codes of the
qEECK function for computing the quantile xu are provided in the supplementary
material.

2.4. Moments and Moors' measure

Theorem 2.6 . The k-th ( k = 0 ; 1; 2; : : : ) non-central moments of theEECK (p >
� 1; q > 0) distribution are given by

(2.17) � k =

h
1 + ( � 1)k

i
B

�
k+1

q ; p + 1
�

qH (p; q)
=

h
1 + ( � 1)k

i
B

�
k+1

q ; p + 1
�

2B
�

1
q ; p + 1

� :
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Proof The k-th ( k = 0 ; 1; 2; : : : ) non-central moments, based on (2.1) and (2.3),
are de�ned as
(2.18)

� k =
q

2B
�

1
q ; p + 1

�
� Z 0

� 1
xk (1 � j xjq)p dx +

Z 1

0
xk (1 � j xjq)p dx

�
=

q(I 1 + I 2)

2B
�

1
q ; p + 1

� :

To solve the integrals I 1 and I 2, we have to use the integral formula (2.2). Thus:

(2.19) I 1 = ( � 1)k
B

�
k+1

q ; p + 1
�

q
; I 2 =

B
�

k+1
q ; p + 1

�

q

and substituting obtained results into (2.18) we get (2.17). The proof is complete.

Theorem 2.7 . The non-central moments � k (k = 1 ; 3; : : : ), variance � 2 and
excess kurtosis 2 of the EECK (p > � 1; q > 0) distribution are given by

(2.20) � k = 0 ( k = 1 ; 3; :::) ; � 2 =
(1 + pq) �

�
3
q

�
�

�
p + 1

q

�

(3 + pq) �
�

1
q

�
�

�
p + 3

q

� ;

(2.21) � 2 =
(pq+ 3) 2 �

�
1
q

�
�

�
5
q

�
�

�
p + 3

q

� 2

(pq+ 1) ( pq+ 5) �
�

p + 1
q

�
�

�
p + 5

q

�
�

�
3
q

� 2 � 3:

Proof The proof � k = 0 ( k = 1 ; 3; :::), based on (2.17), is trivial.

The �rst non-central moment equals zero, so the non-central moments� k (k = 0 ; 1; :::)
are equal to the central moments� k (k = 0 ; 1; :::).

From (2.17), using the properties of the gamma function � (x + 1) = x� ( x), we
have
(2.22)

� 2 = � 2 =
B

�
3
q ; p + 1

�

B
�

1
q ; p + 1

� =
�

�
3
q

�
�

�
p + 1

q + 1
�

�
�

1
q

�
�

�
p + 3

q + 1
� =

(1 + pq) �
�

3
q

�
�

�
p + 1

q

�

(3 + pq) �
�

1
q

�
�

�
p + 3

q

� ;

(2.23)

� 4 = � 4 =
B

�
5
q ; p + 1

�

B
�

1
q ; p + 1

� =
�

�
5
q

�
�

�
p + 1

q + 1
�

�
�

1
q

�
�

�
p + 5

q + 1
� =

(1 + pq) �
�

5
q

�
�

�
p + 1

q

�

(5 + pq) �
�

1
q

�
�

�
p + 5

q

� :

Thus the excess kurtosis is given by

(2.24) � 2 =
� 4

� 2
2

� 3 =
(1 + pq) �

�
5
q

�
�

�
p + 1

q

�

(5 + pq) �
�

1
q

�
�

�
p + 5

q

�
(3 + pq)2 �

�
1
q

� 2
�

�
p + 3

q

� 2

(1 + pq)2 �
�

3
q

� 2
�

�
p + 1

q

� 2 � 3:
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Figure 4 : Excess kurtosis � 2 as a function of the shape parameterp

Figure 5 : Excess kurtosis � 2 as a function of the shape parameterq

and we obtain (2.21) as a result of simple transformation. The proof is complete.

Figure 4 shows the excess kurtosis � 2 as a function of the shape parameterp
for q = 0 :4; 0:6; 0:8; 1 (left) and for q = 2 ; 4; 6; 8 (right). The excess kurtosis,
according to the de�nition, varies in the range [� 2; 1 ). The smaller q value,
the higher excess kurtosis and the parameterp has a greater e�ect on the excess
kurtosis.

Figure 5 shows the excess kurtosis � 2 as a function of the shape parameterq for
p = 0 :3; 0:5; 0:7; 0:9 (left) and for p = 0 :25; 0:75; 1; 10 (right). For p 2 (� 1; 0) the
excess kurtosis tends from� 2 to � 1:2 when q ! 1 . For p > 0 kurtosis tends
from 1 to � 1:2 when q ! 1 .

Moors [18] proposed a measure based on quantiles in the form

(2.25) T =
x7=8 � x5=8 + x3=8 � x1=8

x6=8 � x2=8
;

where xu is the solution of (2.16). The measureT is a quantile alternative for
kurtosis and exists even for distribution for which no moments exist. Figure 6
shows the measureT as a function of the shape parameterp for q = 0 :75; 1; 2; 4
(left) and as a function of the shape parameterq for p = 0 :75; 1; 2; 4 (right). The
T(p) function decreases forp(� 1; 0) and increases forp > 0 mainly for its initial
values. The T(q) function tends to one.
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Figure 6 : Moors' measureT as a function of the shape parameterp (left)
and q (right)

2.5. Pseudo-random number generator

Let X � EECK (p > � 1; q > 0); R � U(0; 1). The algorithm for generating n
values ofX , using the inverse CDF method, is as follows:

1. Repeat steps 1.1-1.4n times:

1.1 Let R � U (0; 1),

1.2 Let x = � 1 + 0:01,

1.3 If CDF (x; p; q) < R , then x = x + 0 :01,

1.4 Return x,

where CDF (x; p; q) is given by (2.5). It is obviously a universal algorithm for
any distribution with CDF (x; par), where par is the vector of distribution pa-
rameters.

The quantile function of the EECK (p; q) does not have an analytical form, PDF
(2.3) is non-negative on the interval [� 1; 1] and bounded by constantd = f (0; p �
0; q), then we can use the von Neumann method, which in this case is much faster
than the inverse CDF method. The algorithm for generating n values ofX , using
the von Neumann method [35], is as follows:

1. If � 1 < p < 0 then use the inverse CDF method

2. If p � 0 then d = f (0; p; q)

3. Repeat steps 3.1-3.3n times:

3.1 Let R1 � U (� 1; 1) ; R2 � U (0; d),

3.2 If f (R1; p; q) < R 2 then goto Step 3.1 elsex = R1
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3.3 Return x,

The R codes of therEECK and rEECK 1 functions for generatingn values of
X are presented in the supplementary material.

2.6. Fisher Information Matrix

Theorem 2.8 . The Fisher information matrix I i;j (i; j = 1 ; 2) for the EECK (p >
� 1; q > 0) distribution is given by

(2.26) I 11 =
�
A � B + eH (p) � eH

�
p +

1
q

�� 2

+ 	 1 (p + 1) � 	 1

�
p +

1
q

+ 1
�

;

(2.27) I 12 = I 21 =
(A � B ) (C � A)

q2 �
(A � B ) �

�
p + 1

q + 1
�

� ( p + 1) �
�

1
q + 1

�

+
(C � A)

h
eH (p) � eH

�
p + 1

q

�i

q2 +
�

�
p + 1

q + 1
�

p� ( p + 1) �
�

1
q + 1

� ;

(2.28)

I 22 =
(C � A)2

q4 �
2 (C � A) �

�
p + 1

q + 1
�

q3� ( p + 1) �
�

1
q + 1

� +
pq2 (pq+ 1) �

�
2 � 1

q

�
�

�
p + 1

q

�

(p � 1) (pq� 1) �
�

p � 1
q

�
�

�
1
q

� ;

where eH (z) =
P z

k=1
1
k is the harmonic function, 	 n (z) is the nth derivative of

the digamma function 	 ( z), A = 	
�

p + 1
q + 1

�
; B = 	 ( p + 1) ; C = 	

�
1
q + 1

�

as well asI 11; I 12 = I 21; I 22 are de�ned for (p > � 1; q > 0), (p > 0; q > 0) and
(p > 1; q > 0:5) respectively.

Proof First, we need to take the logarithm. From (5) we have

ln [f (x; p; q)] = ln
�
�

�
p +

1
q

+ 1
��

+ p ln (1 � j xjq)� ln [2� ( p + 1)] � ln �
�

1
q

+ 1
�

Second, we need to calculate the partial derivatives

d ln [f (x; p; q)]
dp

= 	
�

p +
1
q

+ 1
�

+ ln (1 � j xjq) � 	 ( p + 1) ;

d ln [f (x; p; q)]
dq

=
� 1
q2 	

�
p +

1
q

+ 1
�

�
pqjxjq� 1

1 � j xjq
+

1
q2 	

�
1
q

+ 1
�

:

Hence, we get the Fisher score in the form

h (x ; p; q) =

"
A � B + ln (1 � j xjq)

C� A
q2 � pqjxjq� 1

1�j x jq

#
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