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1. INTRODUCTION

The statistics literature is filled with hundreds of continuous univariate distribu-
tions. However, in recent years, applications from the environmental, financial,
biomedical sciences, engineering among others, have further shown that data sets
following the classical distributions are more often the exception rather than the
reality. Since there is a clear need for extended forms of these distributions a
significant progress has been made toward the generalization of some well-known
distributions and their successful application to problems in areas such as engi-
neering, finance, economics and biomedical sciences, among others [1].

The article presents a symmetric distribution with two shape parameters p > −1
and q > 0 called the extended easily changeable kurtosis (EECK) distribution.
As the name suggests, the EECK(p > −1, q > 0) is an extended version of the
easily changeable kurtosis (ECK) distribution with scale and shape parameters
a > 0 and p > −1, respectively [31]. Instead of kurtosis γ2, the article analyzes
the excess kurtosis γ2 = γ2 − 3, which can be positive or negative.

Symmetric distributions do not form such a big family as asymmetric distribu-
tions. Table 1 presents (in alphabetical order) thirty four symmetric distribu-
tions with the range of excess kurtosis γ2 and modality. Symmetric distributions
with undefined excess kurtosis are: Cauchy [17], degenerate [12] and Voigt [32].
Symmetric distributions with constant excess kurtosis are: arcsine [19], bimodal
normal [14], bimodal Laplace [14], cosine [24], hyperbolic secant [15], Laplace [15],
logistic [3], normal [15], raised cosine [26], sine [9], semicircle [27], uniform [8],
U-shaped [7]. Symmetric distributions with excess kurtosis in an finite interval:
Bates [15], bimodal exponential power [14], bimodal power normal [5], ECK [31],
extended normal [16], extended Laplace [15], extended t [15], Irwin-Hall [15],
plasticizing component [30], Q-gaussian [34], t [15], Tukey with finite domain
[10], U-power [7], Von Mises [21]. Symmetric distributions with excess kurtosis
in an infinite interval are: generalized normal [23], normal-exponential-gamma
[15], Tukey with infinite domain [10], U-quadratic [6]

The ECK(a > 0, p > −1) [31], as the previous version of the EECK(p > −1, q >
0), is unimodal distribution and can be used to model excess kurtosis in the range
(−2, 0).

The main goal of the paper is to define the distribution for excess kurtosis mod-
eling in a larger range than (−2, 0). As follows from the Malachov inequality
γ2 ⩾ γ21 − 2 [20], the best range would be the maximum range, i.e. ⟨−2,∞).

The proposed distribution with γEECK
2 ≥ −2 (see Subsection 2.4), like the gen-

eralized normal (GN) with γGN
2 ≥ −1.2, normal-exponential-gamma (NEG) with

γNEG
2 > 0 and Tukey (T) defined in an infinite domain with γT2 > 0, belongs

to the family of symmetrical, unimodal distributions with excess kurtosis values
on infinite interval (see Table 1). In addition, the EECK is defined in the finite
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Table 1: Symmetric distributions with range of excess kurtosis and
modality

domain whereas the NEG, GN and T are defined in an infinite domain.

PDF of the NEG, as a mixture of normal distributions, has a complicated form
and the analytical formula for excess kurtosis does not exist. PDF of the T
distribution has a simple, closed form for a few exceptional values of the shape
parameter, e.g. we get, respectively, for λ = {1, 0} uniform and logistic distribu-
tions.

The analytical formulas for excess kurtosis of the EECK, GN and T distributions
are respectively:

(1.1)

γEECK
2 =

Γ2
(
p+ 3

q

)
Γ
(
1
q

)
Γ
(
5
q

)
(pq + 3)2

Γ2
(
3
q

)
Γ
(
p+ 1

q

)
Γ
(
p+ 5

q

)
(pq + 1) (pq + 5)

− 3 (p > −1, q > 0) ,
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(1.2) γGN
2 =

Γ
(

5
β

)
Γ
(

1
β

)
Γ
(

3
β

)2 − 3 (β > 0) ,

(1.3)

γT2 =
(2λ+ 1)2 Γ (2λ+ 1)2

[
3Γ (2λ+ 1)2 + Γ (4λ+ 4)− 4Γ (3λ+ 1)Γ (λ+ 1)

]
(8λ+ 1)Γ (4λ+ 1)

[
Γ (λ+ 1)2 − Γ (2λ+ 1)

]2
− 3 (λ > −0.25)

The proof of (1.1) is presented in Subsection 2.4 (see Theorem 2.4).

Figure 1 shows the excess kurtosis of the EECK, GN and T distributions as
a function of the shape parameters p > −1, β > 0 and λ ∈ (−0.25, 0). The
γEECK
2 (p) is an increasing function similar to a linear function while γGN

2 (β) and
γT2 (λ) are initially decreasing strongly functions and then transforming into con-
stant functions. This is especially visible for the GN distribution. The EECK and
GN distributions can be used to model the negative and positive excess kurtosis.
The negative values of excess kurtosis for the EECK and GN distributions are
available on [−2, 0] and [−1.2, 0), respectively.
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Figure 1: Excess kurtosis as a function of shape parameter

Formula (1.3) is the most complicated among formulas (1.1)-(1.3), however, for
the EECK, GN, and T distributions, the shape parameter cannot be represented
as a function of γ2, as is for the ECK and Q-gaussian distributions. This is the
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price for expanding the range of γ2. Nowadays, in the era of advanced mathe-
matical software, it is possible to compute the argument of a function knowing
its value (using for example Mathcad or Microsoft Excel in newer versions).

Summarizing, the new proposal can be extremely useful when you want to seam-
lessly test the goodness-of-fit tests (GoFTs) ability to detect deviations from
normality caused by the maximum range of excess kurtosis values, i.e. nega-
tive and positive. Real data example (see Section 4.2) demonstrates that the
EECK(p > −1, q > 0) distribution in the mixed variant is flexible and com-
petitive model that deserves to be added to the existing distributions in data
modeling.

Special cases of the EECK(p > −1, q > 0) distribution are: the uniform, triangle
and obviously ECK(a > 0, p > −1). The EECK(p > −1, q > 0) tends to the
normal distribution (see Subsection 2.1).

It should also be mentioned that there is a group of asymmetric distributions,
which are symmetrical for certain parameter values, e.q. the truncated normal,
Birnbaum-Saunders [4], skew-normal [2], beta, two-piece normal [11], two-piece
power normal [28] and plasticizing component [30].

This article is organized as follows. Section 2 presents the main properties of
the EECK distribution such as PDF, CDF, modes, inflection points, quantiles,
moments, Moors’ measure, instructions to generate EECK pseudo-random num-
bers and the Fisher Information Matrix. The estimation procedures are provided
in Section 3. The articles ends with applications and conclusions. The most
important R codes are given in the supplementary material.

2. Main properties of introduced distribution

2.1. Distribution and density functions

Definition 1 The Eta function for p > −1 and q > 0 is defined as

(2.1) H (p, q) =

∫ 1

−1
[1− |x|q]p dx =

2B
(
1
q , p+ 1

)
q

=
2Γ (p+ 1)Γ

(
1
q + 1

)
Γ
(
p+ 1

q + 1
) ,

where B(u, v) is the beta function.

Calculations in (2.1) were performed by the formula [13]

(2.2)

∫ 1

0
xa−1

(
1− xb

)c−1
dx =

B
(
a
b , c

)
b

.
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Exemplary values of the Eta function (2.1):

H (1, 1) = 1, H (0, 1) = 2, H (−0.5, 1) = 4, H (1, 0.5) =
2

3
, H(0.5, 1) =

4

3
.

Definition 2 The distribution of the random variable X with PDF given by

(2.3) f (x; p, q) =
[1− |x|q]p

H (p, q)
, x ∈

{
(−1, 1) if − 1 < p < 0
[−1, 1] if p ≥ 0

is called the extended easily changeable kurtosis (EECK) distribution, where
p > −1 and q > 0 are the shape parameters. The EECK(p > −1, q > 0)
is symmetric around zero, since, based on (1.3) , f (x; p, q) = f (−x; p, q) (see
Figure 2). The EECK(p > −1, q = 2) is the ECK(a = 1, p > −1) [31].

The R codes of the dEECK function for computing PDF are provided in the
supplementary material.

The standard deviation of the new proposal, based on (2.17), equals

µ2 =
(1 + pq) Γ

(
3
q

)
Γ
(
p+ 1

q

)
(3 + pq) Γ

(
1
q

)
Γ
(
p+ 3

q

)
therefore the EECK(p, q) distribution tends to the normal distributionN

(
0,
√
µ2

)
with PDF ϕ

(
x; 0,

√
µ2

)
Let M (2.4) be the similarity measure of these distributions [29]. We have for
p > −1, q > 0

(2.4)

M (p, q) =

∫ 1

−1
min

f (x; p, q) , ϕ

x; 0,
√√√√√(1 + pq) Γ

(
3
q

)
Γ
(
p+ 1

q

)
(3 + pq) Γ

(
1
q

)
Γ
(
p+ 3

q

)

 dx.

The similarity measure M takes values on (0,1) and if PDFs are identical then
M = 1. For example M (33, 1) = 0.871, M (33, 1.5) = 0.954, M (33, 2) = 0.995,
M (33, 2.5) = 0.961. A more detailed analysis of the value of the M measure
showed that it has the highest values for q = 1.96. We have M (50, 1.96) = 0.999.

The EECK(p > −1, q > 0) is the symmetrical distribution (Figure 2). The
EECK(p = 0, q > 0) is the uniform distribution U(−1, 1) (Figure 3, serie p =
0, q = 1. The EECK(p > 0, q > 0) is unimodal with mode equals 0 (Figure 2,
series p = 0.5, q = 2; p = 5, q = 3). The EECK(−1 < p < 0, q > 0) is pseudo
(−1 < x < 1) bimodal with bathtub shape (Figure 2, serie p = −0.5, q = 0.5).
The EECK(p = 1, q = 1) is the triangle distribution (Figure 2, serie p = 1, q =
1). The EECK(50, 1.96) is in 99.9% the normal distribution N(0, 0.096) (Figure
2, serie N(0, 0.096)).



Extended Easily Changeable Kurtosis Distribution 7

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1

PDF

x

EECK(p,q) p=0,q=1

p=0.5,q=2

p=5,q=3

p=-0.5,q=0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

-1 -0.5 0 0.5 1

PDF

x

EECK(p,q)
p=1,q=1

p=5,q=1.96

p=15,q=1.96

p=30,q=1.96

N(0,0.096)

Figure 2: PDF of the EECK(p, q) distribution for various parameter val-
ues

Theorem 2.1. If X ∼ EECK(p > −1, q > 0) with PDF f (x; p, q) (2.3) then
CDF of X is given by

(2.5) F (x; p, q) = 0.5 + x
2F1

(
−p, 1q , 1 +

1
q , |x|

q
)

H (p, q)

where 2F1 (a, b, c, x) is the Gaussian hypergeometric function.

Proof From (2.3) we have

(2.6) F (x; p, q) =
1

H (p, q)

∫ x

−1
(1− |x|q)p dx

=
1

H (p, q)

[∫ 0

−1
(1− |x|q)p dx+

∫ x

0
(1− |x|q)p dx

]
.

To complete the proof, we need to calculate two integrals. The first one, based
on (2.1), has the form

(2.7)

∫ 0

−1
(1− |x|q)p dx = 0.5H (p, q) .

The second one can be written using a power series [13]

(2.8)

∫ x

0
(1− |x|q)p dx = x

∞∑
k=0

(−p)k

(
1
q

)
k(

1 + 1
q

)
k

|x|qk

k!
= 2F1

(
−p,

1

q
, 1 +

1

q
, |x|q

)
x

where 2F1 (a, b, c, x) is the Gaussian hypergeometric function and (x)n is the
Pochhammer symbol

(x)n =
Γ (x+ n)

Γ (x)
= x (x+ 1) ... (x+ n− 1) .

Substituting (2.7) and (2.8) to (2.6) we obtain (2.5). The proof is complete.

The R codes of the pEECK function for computing CDF are provided in the
supplementary material.
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Figure 3: CDF of the ECK(a, p) distribution for various parameter values

Figure 3 plots CDF of the EECK(p > −1, q > 0) distribution for some values
of parameters. For p = 0 we obtain the straight line (uniform distribution).
For p > 0 CDF is convex in [−1, 0) and is concave in (0, 1]. For −1 < p < 0
CDF is concave in (−1, 0) and is convex in (0, 1). CDFs of the EECK(50, 1.96)
distribution and N(0, 0.096) one coincide.

Theorem 2.2. The EECK(p > −1, q > 0) distribution with PDF given by (2.3)
is identifiable in the parameter space v = (p, q).

Proof Let v1 = (p1, q1) and v2 = (p2, q2). Let us suppose that fv1 (x) = fv2 (x)
for all x from support. This condition based on (2.1) and (2.3) implies that

(2.9)
q1 (1− |x|q1)p1

2B
(

1
q1
, p1 + 1

) =
q2 (1− |x|q2)p2

2B
(

1
q2
, p2 + 1

)
If we apply log to both sides of (2.9) we obtain the system of three equations
(2.10)

log

(
q1
q2

)
= 0, p1 log (1− |x|q1)− p2 log (1− |x|q2) = 0, log

B
(

1
q2
, p2 + 1

)
B
(

1
q1
, p1 + 1

)
 = 0.

From the first equation is q1 = q2 and then from the second one is p1 = p2. The
proof is complete.

2.2. Modes and inflection points

Theorem 2.3. Let X ∼ EECK(p > −1, q > 0). If p = 0 then modal values
xm ∈ [−1, 1] (case of uniform distribution). If p > 0 then xm = 0. If −1 < p < 0
then the EECK(p, q) distribution is pseudo bimodal with modes xm(−1), xm(1).
The f(x; p > 0, q) (2.3) is monotonically increasing on the interval (−1, 0) and
monotonically decreasing on the interval (0, 1). The f(x;−1 < p < 0, q) (2.3) is
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monotonically decreasing on the interval (−1, 0) and monotonically increasing on
the interval (0, 1).

Proof Let p ≥ 0 then PDF of the EECK(p, q) distribution, based on (2.1) and
(2.3), for any x ∈ [−1, 1] is given by

(2.11) f (x; p, q) =
Γ
(
p+ 1

q + 1
)

2Γ (p+ 1)Γ
(
1
q + 1

) (1− |x|q)p .

Let p = 0 then f (x; 0, q) =
Γ
(

1
q
+1

)
2Γ

(
1
q
+1

) = 0.5 is constant in [−1, 1].

Let p > 0 then

(2.12)
d

dx
f (x; p, q) =

Γ
(
p+ 1

q + 1
)

2Γ (p+ 1)Γ
(
1
q + 1

)p (1− |x|q)p−1
[
−q |x|q−1

]
.

As a result of simple transformations xm = 0 and (15) is positive on the interval
(−1, 0) and negative on the interval (0, 1).

Let −1 < p < 0 then PDF (2.11) is defined for any x ∈ (−1, 1). As a result
of simple transformations, (2.12) is negative on the interval (−1, 0) and posi-
tive on the the interval (0, 1). For x values very close to −a and a PDF (2.8)
has locally maximum values. The author of this article denotes these values as
xm(−1), xm(1) and proposed distribution defines as pseudo bimodal with modes
at these points. The proof is complete.

Theorem 2.4. Let X ∼ ECK(p > −1, q > 0). The inflection points of the
f(x; p, q) (6) for p > 1 ∧ q > 1 or −1 < p < 1 ∧ 0 < q < 1 are given by means of
the following formulas

(2.13) x1 = −
(

1− q

1− pq

) 1
q

, x2 =

(
1− q

1− pq

) 1
q

.

Proof We can write (2.12) as

(2.14)
d

dx
f (x; p, q) =

−pqΓ
(
p+ 1

q + 1
)

2Γ (p+ 1)Γ
(
1
q + 1

) |x|q−1 (1− |x|q)p−1 .

Let A =
−pqΓ

(
p+ 1

q
+1

)
2Γ(p+1)Γ

(
1
q
+1

) then (17) has the simpler form

d

dx
f (x; p, q) = A |x|q−1 (1− |x|q)p−1 .
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The second derivative is given by

d2

dx2
f (x; p, q) = A

{
(q − 1) |x|q−2 (1− |x|q)p−1 − q |x|q−1 (p− 1) (1− |x|q)p−2 |x|q−1

}
,

d2

dx2
f (x; p, q) = A |x|q−2 (1− |x|q)p−2

{
(q − 1) (1− |x|q)− q |x| (p− 1) |x|q−1

}
.

thus
d2

dx2
f (x; p, q) = 0 ⇔ (q − 1) (1− |x|q)− q |x| (p− 1) |x|q−1 = 0.

As a result of simple transformations we have

(2.15) x1 = −
(

1− q

1− pq

) 1
q

∧ x1 > −1, x2 =

(
1− q

1− pq

) 1
q

∧ x2 < 1,

then from (2.15) we obtain p > 1 ∧ q > 1 or −1 < p < 1 ∧ 0 < q < 1. The proof
is complete.

2.3. Quantiles

Theorem 2.5. Let X ∼ EECK(p > −1, q > 0). The u-th (0 < u < 1) quantile
xu is the solution of the following equation

(2.16) (0.5− u)H (p, q) + 2F1

(
−p,

1

q
, 1 +

1

q
, |xu|q

)
xu = 0,

where 2F1 (a, b, c, x) is the Gaussian hypergeometric function and H(p, q) is given
by (2.1). The proposed distribution is symmetrical then xu = −x1−u, obviously
and x0.5 = 0.

Proof Obtaining (19), based on the quantile definition, is trivial. The proof is
complete.

The quantile xu can be computed by numerical methods. The R codes of the
qEECK function for computing the quantile xu are provided in the supplementary
material.

2.4. Moments and Moors’ measure

Theorem 2.6. The k-th (k = 0, 1, 2, . . . ) non-central moments of the EECK(p >
−1, q > 0) distribution are given by

(2.17) αk =

[
1 + (−1)k

]
B
(
k+1
q , p+ 1

)
qH (p, q)

=

[
1 + (−1)k

]
B
(
k+1
q , p+ 1

)
2B

(
1
q , p+ 1

) .
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Proof The k-th (k = 0, 1, 2, . . . ) non-central moments, based on (2.1) and (2.3),
are defined as
(2.18)

αk =
q

2B
(
1
q , p+ 1

) [∫ 0

−1
xk (1− |x|q)p dx+

∫ 1

0
xk (1− |x|q)p dx

]
=

q (I1 + I2)

2B
(
1
q , p+ 1

) .
To solve the integrals I1 and I2, we have to use the integral formula (2.2). Thus:

(2.19) I1 = (−1)k
B
(
k+1
q , p+ 1

)
q

, I2 =
B
(
k+1
q , p+ 1

)
q

and substituting obtained results into (2.18) we get (2.17). The proof is complete.

Theorem 2.7. The non-central moments αk(k = 1, 3, . . . ), variance µ2 and
excess kurtosis γ2 of the EECK(p > −1, q > 0) distribution are given by

(2.20) αk = 0 (k = 1, 3, ...) , µ2 =
(1 + pq) Γ

(
3
q

)
Γ
(
p+ 1

q

)
(3 + pq) Γ

(
1
q

)
Γ
(
p+ 3

q

) ,

(2.21) γ̄2 =
(pq + 3)2 Γ

(
1
q

)
Γ
(
5
q

)
Γ
(
p+ 3

q

)2

(pq + 1) (pq + 5)Γ
(
p+ 1

q

)
Γ
(
p+ 5

q

)
Γ
(
3
q

)2 − 3.

Proof The proof αk = 0 (k = 1, 3, ...), based on (2.17), is trivial.

The first non-central moment equals zero, so the non-central moments αk (k = 0, 1, ...)
are equal to the central moments µk (k = 0, 1, ...).

From (2.17), using the properties of the gamma function Γ (x+ 1) = xΓ (x), we
have
(2.22)

α2 = µ2 =
B
(
3
q , p+ 1

)
B
(
1
q , p+ 1

) =
Γ
(
3
q

)
Γ
(
p+ 1

q + 1
)

Γ
(
1
q

)
Γ
(
p+ 3

q + 1
) =

(1 + pq) Γ
(
3
q

)
Γ
(
p+ 1

q

)
(3 + pq) Γ

(
1
q

)
Γ
(
p+ 3

q

) ,
(2.23)

α4 = µ4 =
B
(
5
q , p+ 1

)
B
(
1
q , p+ 1

) =
Γ
(
5
q

)
Γ
(
p+ 1

q + 1
)

Γ
(
1
q

)
Γ
(
p+ 5

q + 1
) =

(1 + pq) Γ
(
5
q

)
Γ
(
p+ 1

q

)
(5 + pq) Γ

(
1
q

)
Γ
(
p+ 5

q

) .
Thus the excess kurtosis is given by

(2.24) γ̄2 =
µ4

µ2
2

− 3 =
(1 + pq) Γ

(
5
q

)
Γ
(
p+ 1

q

)
(5 + pq) Γ

(
1
q

)
Γ
(
p+ 5

q

) (3 + pq)2 Γ
(
1
q

)2
Γ
(
p+ 3

q

)2

(1 + pq)2 Γ
(
3
q

)2
Γ
(
p+ 1

q

)2 − 3.
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Figure 5: Excess kurtosis γ̄2 as a function of the shape parameter q

and we obtain (2.21) as a result of simple transformation. The proof is complete.

Figure 4 shows the excess kurtosis γ̄2 as a function of the shape parameter p
for q = 0.4, 0.6, 0.8, 1 (left) and for q = 2, 4, 6, 8 (right). The excess kurtosis,
according to the definition, varies in the range [−2,∞). The smaller q value,
the higher excess kurtosis and the parameter p has a greater effect on the excess
kurtosis.

Figure 5 shows the excess kurtosis γ̄2 as a function of the shape parameter q for
p = 0.3, 0.5, 0.7, 0.9 (left) and for p = 0.25, 0.75, 1, 10 (right). For p ∈ (−1, 0) the
excess kurtosis tends from −2 to −1.2 when q → ∞. For p > 0 kurtosis tends
from ∞ to −1.2 when q → ∞.

Moors [18] proposed a measure based on quantiles in the form

(2.25) T =
x7/8 − x5/8 + x3/8 − x1/8

x6/8 − x2/8
,

where xu is the solution of (2.16). The measure T is a quantile alternative for
kurtosis and exists even for distribution for which no moments exist. Figure 6
shows the measure T as a function of the shape parameter p for q = 0.75, 1, 2, 4
(left) and as a function of the shape parameter q for p = 0.75, 1, 2, 4 (right). The
T (p) function decreases for p (−1, 0) and increases for p > 0 mainly for its initial
values. The T (q) function tends to one.
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Figure 6: Moors’ measure T as a function of the shape parameter p (left)
and q (right)

2.5. Pseudo-random number generator

Let X ∼ EECK(p > −1, q > 0), R ∼ U(0, 1). The algorithm for generating n
values of X, using the inverse CDF method, is as follows:

1. Repeat steps 1.1-1.4 n times:

1.1 Let R ∼ U (0, 1),

1.2 Let x = −1 + 0.01,

1.3 If CDF (x; p, q) < R, then x = x+ 0.01,

1.4 Return x,

where CDF (x; p, q) is given by (2.5). It is obviously a universal algorithm for
any distribution with CDF (x; par), where par is the vector of distribution pa-
rameters.

The quantile function of the EECK(p, q) does not have an analytical form, PDF
(2.3) is non-negative on the interval [−1, 1] and bounded by constant d = f(0; p ≥
0, q), then we can use the von Neumann method, which in this case is much faster
than the inverse CDF method. The algorithm for generating n values of X, using
the von Neumann method [35], is as follows:

1. If −1 < p < 0 then use the inverse CDF method

2. If p ≥ 0 then d = f (0; p, q)

3. Repeat steps 3.1-3.3 n times:

3.1 Let R1 ∼ U (−1, 1) , R2 ∼ U (0, d),

3.2 If f (R1; p, q) < R2 then goto Step 3.1 else x = R1
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3.3 Return x,

The R codes of the rEECK and rEECK1 functions for generating n values of
X are presented in the supplementary material.

2.6. Fisher Information Matrix

Theorem 2.8. The Fisher information matrix Ii,j(i, j = 1, 2) for the EECK(p >
−1, q > 0) distribution is given by

(2.26) I11 =

[
A−B + H̃ (p)− H̃

(
p+

1

q

)]2
+Ψ1 (p+ 1)−Ψ1

(
p+

1

q
+ 1

)
,

(2.27) I12 = I21 =
(A−B) (C −A)

q2
−

(A−B) Γ
(
p+ 1

q + 1
)

Γ (p+ 1)Γ
(
1
q + 1

)
+

(C −A)
[
H̃ (p)− H̃

(
p+ 1

q

)]
q2

+
Γ
(
p+ 1

q + 1
)

pΓ (p+ 1)Γ
(
1
q + 1

) ,
(2.28)

I22 =
(C −A)2

q4
−

2 (C −A) Γ
(
p+ 1

q + 1
)

q3Γ (p+ 1)Γ
(
1
q + 1

) +
pq2 (pq + 1)Γ

(
2− 1

q

)
Γ
(
p+ 1

q

)
(p− 1) (pq − 1) Γ

(
p− 1

q

)
Γ
(
1
q

) ,

where H̃ (z) =
∑z

k=1
1
k is the harmonic function, Ψn (z) is the nth derivative of

the digamma function Ψ (z), A = Ψ
(
p+ 1

q + 1
)
, B = Ψ(p+ 1) , C = Ψ

(
1
q + 1

)
as well as I11, I12 = I21, I22 are defined for (p > −1, q > 0), (p > 0, q > 0) and
(p > 1, q > 0.5) respectively.

Proof First, we need to take the logarithm. From (5) we have

ln [f (x; p, q)] = ln

[
Γ

(
p+

1

q
+ 1

)]
+p ln (1− |x|q)−ln [2Γ (p+ 1)]−ln Γ

(
1

q
+ 1

)

Second, we need to calculate the partial derivatives

d ln [f (x; p, q)]

dp
= Ψ

(
p+

1

q
+ 1

)
+ ln (1− |x|q)−Ψ(p+ 1) ,

d ln [f (x; p, q)]

dq
=

−1

q2
Ψ

(
p+

1

q
+ 1

)
− pq |x|q−1

1− |x|q
+

1

q2
Ψ

(
1

q
+ 1

)
.

Hence, we get the Fisher score in the form

h (x; p, q) =

[
A−B + ln (1− |x|q)

C−A
q2

− pq|x|q−1

1−|x|q

]



Extended Easily Changeable Kurtosis Distribution 15

Let u (x; p, q) = h (x; p, q)h (x; p, q)T then

u11 = [A−B + ln (1− |x|q)]2 , u22 =

[
C −A

q2
− pq |x|q−1

1− |x|q

]2

,

u12 = u21 = [A−B + ln (1− |x|q)]

[
C −A

q2
− pq |x|q−1

1− |x|q

]
.

Let Ii,j= E [ui,j ] (i, j = 1, 2) then

(2.29) I11 = (A−B)2 + 2 (A−B)E [ln (1− |x|q)] + E
[
ln2 (1− |x|q)

]
,

(2.30)

I12 = I21 =
(A−B) (C −A)

q2
−pq (A−B)E

[
|x|q−1

1− |x|q

]
+
C −A

q2
E [ln (1− |x|q)]

− pqE

[
|x|q−1 ln (1− |x|q)

1− |x|q

]
,

(2.31) I22 =
(C −A)2

q4
− 2p (C −A)

q2
E

[
|x|q−1

1− |x|q

]
+ p2q2E

[
|x|2q−2

(1− |x|q)2

]
.

To write the Fisher Information Matrix in a simpler form, we use (2.2) and
Mathematica software. We obtain:
(2.32)

E [ln (1− |x|q)] =
Γ
(
p+ 1

q + 1
)

2Γ (p+ 1)Γ
(
1
q + 1

) ∫ 1

−1

ln (1− |x|q)
(1− |x|q)−pdx = H̃ (p)−H̃

(
p+

1

q

)
,

(2.33)

E
[
ln2 (1− |x|q)

]
=

Γ
(
p+ 1

q + 1
)

2Γ (p+ 1)Γ
(
1
q + 1

) ∫ 1

−1

ln2 (1− |x|q)
(1− |x|q)−p dx =

Γ
(
p+ 1

q + 1
)

2Γ (p+ 1)Γ
(
1
q + 1

)
.
2Γ (p+ 1)Γ

(
1
q + 1

)
Γ
(
p+ 1

q + 1
) {[

H̃ (p)− H̃

(
p+

1

q

)]2
+Ψ1 (p+ 1)−Ψ1

(
p+

1

q
+ 1

)}

=

[
H̃ (p)− H̃

(
p+

1

q

)]2
+Ψ1 (p+ 1)−Ψ1

(
p+

1

q
+ 1

)
,

(2.34)

E

[
|x|q−1

1− |x|q

]
=

Γ
(
p+ 1

q + 1
)

2Γ (p+ 1)Γ
(
1
q + 1

) ∫ 1

−1

|x|q−1

(1− |x|q)−p+1dx =
Γ
(
p+ 1

q + 1
)

pqΓ (p+ 1)Γ
(
1
q + 1

) ,
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(2.35)

E

[
|x|q−1 ln (1− |x|q)

1− |x|q

]
=

Γ
(
p+ 1

q + 1
)

2Γ (p+ 1)Γ
(
1
q + 1

) ∫ 1

−1

|x|q−1 ln (1− |x|q)
(1− |x|q)−p+1 dx =

=
Γ
(
p+ 1

q + 1
)

2Γ (p+ 1)Γ
(
1
q + 1

) −2

p2q
=

−Γ
(
p+ 1

q + 1
)

p2qΓ (p+ 1)Γ
(
1
q + 1

)

(2.36) E

[
|x|2q−2

(1− |x|q)2

]
=

Γ
(
p+ 1

q + 1
)

2Γ (p+ 1)Γ
(
1
q + 1

) ∫ 1

−1

|x|2q−2

(1− |x|q)−p+2dx =

=
Γ
(
p+ 1

q + 1
)

2Γ (p+ 1)Γ
(
1
q + 1

) 2Γ (p− 1) Γ
(
2− 1

q

)
qΓ

(
1 + p− 1

q

) =
(pq + 1)Γ

(
2− 1

q

)
Γ
(
p+ 1

q

)
p (p− 1) (pq − 1) Γ

(
p− 1

q

)
Γ
(
1
q

) .
Substituting formulas (2.32)-(2.36) into formulas (2.29)-(2.31), as a result of sim-
ple transformations, we get formulas (2.26)-(2.28). The proof is complete.

3. Maximum likelihood estimation

Let x∗1, x
∗
2, ..., x

∗
n be a random sample size n from the EECK(p > −1, q > 0)

distribution. Our target is to estimate the unknown values of the parameters
p, q. The likelihood function based on (2.3) is given by

L =

n∏
i=1

f (x∗i ; p, q) =
Γ
(
p+ 1

q + 1
)

2Γ (p+ 1)Γ
(
1
q + 1

) n∏
i=1

(1− |x∗i |
q)p ,

then the log-likelihood function is defined as
(3.1)

l = n ln

[
Γ

(
p+

1

q
+ 1

)]
−n ln [2Γ (p+ 1)]−n ln

[
Γ

(
1

q
+ 1

)]
+p

n∑
i=1

ln (1− |x∗i |
q)

and

(3.2)
dl

dp
= nΨ

(
p+

1

q
+ 1

)
− nΨ(p+ 1) +

n∑
i=1

ln (1− |x∗i |
q) = 0,

(3.3)
dl

dq
=

−n

q2
Ψ

(
p+

1

q
+ 1

)
+

n

q2
Ψ

(
1

q
+ 1

)
− npq |x∗i |

q−1

1− |x∗i |
q = 0.
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where Ψ is the digamma function.

The maximum likelihood estimates (MLEs) are solutions of the system equations
(3.2)-(3.3). We have

(3.4)
1

n

n∑
i=1

ln (1− |x∗i |
q) = Ψ (p+ 1)−Ψ

(
p+

1

q
+ 1

)
,

(3.5) Ψ

(
1

q
+ 1

)
−Ψ

(
p+

1

q
+ 1

)
= −pq3 |x∗i |

q−1

1− |x∗i |
q .

Solving the system equations (3.2)-(3.3) with numerical method we have obtain
p̂, q̂. We can also maximize the log-likelihood function (3.1) to obtain the MLEs
of the p, q parameters.

The biases and the root mean squared errors (RMSEs) of the MLEs are shown
in Tables 2 and 3. The simulation study was performed with 103 samples using
sample sizes of 100, 150, 200. The samples were drawn from the EECK(p, 3),
where p = 1, 2, 3 (see Table 2) and from the EECK(3, q), where q = 1, 2, 3 (see
Table 3). We observe that the estimates approach true values when the sample
size increases, it implies the consistency of the estimates. The biases of the p̂
and q̂ diminish for large samples and are smaller for q̂ than for p̂. The RMSEs
decrease with the value of p for q̂ (see Table 2).

p̂ q̂

p n Bias RMSE Bias RMSE

1 100 0.555 2.820 0.443 3.593
150 0.296 1.802 0.186 2.992
200 0.110 1.172 -0.081 2.279

2 100 0.965 4.408 0.379 2.313
150 0.724 2.739 0.339 1.908
200 0.338 1.468 0.110 1.397

3 100 1.255 3.875 0.336 1.701
150 0.892 3.126 0.269 1.441
200 0.712 2.289 0.259 1.261

Table 2: Biases and RMSEs of the MLEs from the EECK(p, 3)

To examine the accuracy of the coverage probability of the asymptotic confidence
intervals (CIs), another simulation study was performed with 103 samples using
sample sizes of 100, 150, 200. The study focused on the parameters p, q and
samples drawn from the EECK(p = 3, q = 3). The coverage probabilities of
the obtained 95% CIs for p = 3, q = 3 reported in Table 4 are very close to the
nominal level. The results suggested that the obtained standard errors and hence
the asymptotic CIs are reliable.
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p̂ q̂

q n Bias RMSE Bias RMSE

1 100 0.266 5.510 0.485 3.361
150 0.011 1.202 0.231 2.169
200 -0.125 0.320 -0.034 1.290

2 100 0.173 1.168 0.531 3.600
150 0.046 0.873 0.176 3.234
200 -0.020 0.711 -0.044 2.729

3 100 0.264 2.584 0.439 5.733
150 0.149 1.586 0.209 5.283
200 0.047 1.005 0.029 4.544

Table 3: Biases and RMSEs of the MLEs from the EECK(0.5, q)

n p q

100 0.954 0.942
150 0.938 0.945
200 0.957 0.96

Table 4: Coverage probability for the standard asymptotic 95% CIs,
EECK(p = 3, q = 3)

4. Application

This section is divided into two subsections. We present examples of the appli-
cability and flexibility of the EECK(p > −1, q > 0). Subsection 4.1 is devoted
to GoFTs, Subsection 4.2 deals with fitting distributions to data.

4.1. Comparison of goodness-of-fit tests

As it was mentioned in Introduction, the shape parameter of the EECK distri-
bution cannot be represented as a function of γ2, as is for the ECK distribution
[31]. Recall, however, that the ECK excess kurtosis takes values on interval
(−2, 0), while the EECK excess kurtosis has values on interval [−2,∞). Using
e.g. Mathcad, you can easily calculate the argument of a function knowing its
value.

The EECK distribution can be extremely useful when you want to seamlessly
test GoFTs ability to detect deviations from normality caused by a negative and
positive excess kurtosis.

Let x(1), x(2), ..., x(n) be an ordered random sample of size n. Seven GoFTs were
selected to be subjects of the Monte Carlo simulation. Five of them as being
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very popular GoFTs have been implemented in the R software. These tests
are: Shapiro-Wilk (SW), Kolmogorov-Smirnov (KS), Cramer-von Mises (CVM),
Anderson-Darling (AD) and Shapiro - Francia (SF). Two tests not implemented
yet, probably for their novelty, are: Hn [33] and LFm [29] tests.

The Hn test statistic is defined as

(4.1) Hn =
1

n

n∑
i=1

h

1 + Φ
(
x(i)−x

s , 0, 1
)

1 + i
n

 , h (x) =

(
x− 1

x+ 1

)2

,

where x and s2 are the sample mean and sample variance, respectively.

The LFm test statistic is given by

(4.2) LFm = max

∣∣∣∣ i− α

n− α− β + 1
− Φ

(
x(i) − x

s
, 0, 1

)∣∣∣∣ , (α, β ≥ 1
)
.

If an alternatively distribution is both symmetric and of negative (positive) excess
kurtosis α = β = 0 (α = β = 1) are recommended.

The similarity measure M (2.4) of N(0, 0.096) and EECK(p = 50, 1.96), as was
mentioned in Subsection 2.1, is 0.999. In the legend of Figure 7, the values of the
similarity measure M of the normal distribution and the EECK are given. Figure
17 (left) shows PDF of the N (0, 0.096) and EECK(p, 1.96) distributions. For
the presented values of the shape parameters, an excess kurtosis of the EECK
is negative (see Table 5). If p increases, the similarity measure also increases.
Figure 7 (right) shows PDF of the N (0, 0.297) and EECK(p, 1.3) distributions.
The similarity measure M of N(0, 0.297) and EECK(p = 2.75, 1.3) is 0.999

For the presented values of the shape parameters, an excess kurtosis of the EECK
is positive (see Table 6). If p decreases, the similarity measure M increases.
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Figure 7: The EECK(p, q) distribution with values of the similarity mea-
sure M to the normal distribution

Table 5 (Table 6) shows the modeling of negative (positive) excess kurtosis, i.e.
for a given value of γ2 of the EECK(p, 1.96) (EECK(p, 1.3)) the value of the
shape parameter p is caclulated.
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Table 5: Modeling of negative excess kurtosis γ2. EECK(p, 1.96)

Table 6: Modeling of negative excess kurtosis γ2. EECK(p, 1.3)

Phase 1: In this phase the aim is to investigate to what degree selected GoFTs
listed in Table 7 are able to distinct between the normal and proposed distri-
butions. In other words the aim is to determine powers of GoFTs being under
discussion when samples come from EECK(p, q) general populations. For the
aim to be accomplished, critical values cv0.05 ascribed to GoFTs (where α = 0.05
is the test significance level) were needed. These critical values were estimated
with the Monte Carlo method. Seven large scale experiments were performed
each of which devoted to one of GoFT. Each experiment consisted of generat-
ing 105 samples of sizes n = 20, 40, 60. The samples followed the N(0, 0.096) and
N(0, 0.297) distributions. Each sample was tested for normality. Obtained in this
way values of test statistics (denoted Qi (i = 1, 2, ...,m) were collected an then
ranked. Critical values were assessed according to the formula cv0.05 = Q[αm].

Table 7 present obtained cv0.05 critical values. Tables 8 and 9, in turn, present
relevant test powers when samples come from the EECK(p, q) general popula-
tions. Each experiment consisted of generating 105 samples of sizes n = 20, 40, 60.
The shape parameter is q = 1.96(q = 1.3). Values of the shape parameter p were
listed in Table 5 (Table 6).

The conclusions from Tables 8 and 9 are very interesting. For n = 20, the
LF, CvM, AD, SW, Hn tests detect only γ2 = −1, LFm - γ2 = −0.75; LFm,
SF tests detect even γ2 = 0.001. For n = 40, the LF, CvM, AD, SW, Hn and
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n 20 40 60

s 0.096 0.259 0.096 0.259 0.096 0.259

LF 0.19177 0.19202 0.13841 0.13844 0.11385 0.11376
CVM 0.12278 0.12223 0.12445 0.12446 0.12490 0.12484
AD 0.72300 0.71959 0.73751 0.73840 0.74215 0.74084
SW 0.98287 0.98282 0.98860 0.98861 0.99140 0.99139
SF 0.98464 0.98469 0.99003 0.99007 0.99248 0.99249
Hn 0.00077 0.00076 0.00038 0.00038 0.00025 0.00025
LFm 0.16195 0.17471 0.12388 0.12895 0.10450 0.10726

Table 7: Critical values cv0.05 for GoFTs. The samples of size n followed
the N(0, s)

Table 8: Powers of tests at α = 0.05, when the EECK(p, 1.96) is the
actual population distribution. The case of negative excess kur-
tosis values

LFm tests detect only γ2 = −0.75; LF, CvM, AD, Hn, and LFm tests detect
even γ2 = 0.001. For n=60, the AD, Hn and LFm tests detect only γ2 = −0.5;
LF and CVM tests detect only γ2 = −0.75; LF, CvM, AD, Hn, and LFm tests
detect even γ2 = 0.001.

In Phase 1, we showed that the considered GoFTs detect positive excess
kurtosis better than negative one.

Phase 2. In this phase the aim is to investigate to what degree an undetected
excess kurtosis impacts the performance of two basic tests related to parameters



22 Piotr Sulewski

Table 9: Powers of tests at α = 0.05, when the EECK(p, 1.3) is the
actual population distribution. The case of positive excess kur-
tosis values

of the Normal distribution, namely Student t test and Fisher–Snedecor F test.

Let x1,1, x1,2, ..., x1,n and x2,1, x2,2, ..., x2,n be two samples of sizes n drawn from
particular general populations. Let us remember that t and F test statistics have
the following forms:

(4.3) ṫ =
x1 − x2√
s2x1+s2x2

n

, Ḟ =
s2x1
s2x2

,

where x1, x2 are the sample means and sx1, sx2 are the sample standard devia-
tions.

The course of action was as follows:

Step 1: m = 105 pairs of samples both of size n = 60 were drawn from EECK(4, 627, 1.96)
(for negative excess kurtosis) and EECK(3.669, 1.3) (for positive excess kurtosis)
general populations.

Step 2: These pairs of samples were consecutively, converted into pairs of ṫv
statistics and Ḟv statistics, v = 1, 2, ...,m.

Step 3: Sets of values of ṫv and Ḟv statistics were stored in two matrices named
T and F .
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Step 4: The matrices were sorted in ascending order and served to determine two

empirical CDFs namely Θt

(
ṫv
)
and ΘF

(
Ḟv

)
.

Step 5: Probability papers were employed to check whether the above empirical
CDFs fit the Student and Fisher-Snedecor distributions.

Figures 8 and 9 show empirical CDFs of Step 4 plotted on the Student and
Snedecor probability papers, when samples were drawn from EECK(4, 627, 1.96)
and EECK(3.669, 1.3), appropriately. These probability papers were constructed
in the same way as the Normal probability is constructed.
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Figure 8: Empirical CDFs of Step 4 plotted on the Student and Snedecor
probability paper. Case of negative excess kurtosis values
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Figure 9: Empirical CDFs of Step 4 plotted on the Student and Snedecor
probability paper. Case of positive excess kurtosis values

It turns out that the empirical distribution in question perfectly fit straight lines
that relevant theoretical distributions. Thus, we can conclude that Student and
Fisher-Snedecor tests may be applied even as population distributions are of
negative (see Figure 8) or positive (see Figure 9) excess kurtosis.
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4.2. Fitting distributions to data

Symmetric distributions have limited use in fitting the distributions to data
(e.g. normal distribution). However, the situation looks much better when we
use their mixture (e.g. compound normal distribution).

For the purposes of this subsection, we extend the domain of the EECK(p, q)
from [−1, 1] to [−a, a](a ∈ R). PDF of the modified EECK(p, q) distribution
denoted as EECK2(x, a, p, q) has the form
(4.4)

EECK2 (x; a, p, q) =

∫ a
−a

[
1−

(
|x|
a

)q]p
dx

2
∫ a
0

[
1−

(
|u|
a

)q]p
du

, x ∈
{
(−a, a) if − 1 < p < 0
[−a, a] if p ≥ 0

In this subsection, we present real data examples to demonstrate a flexibility
of the EECK(p > −1, q > 0) distribution in the mixed variant. PDF of the
compound EECK (CEECK) distribution is given by

(4.5) CEECK (x; a, p1, q1, p2, q2, ω) = ωEECK2 (x; a, p1, q1)

+ (1− ω)EECK2 (x; a, p2, q2)

The estimation of the model parameters is carried out by the maximum likeli-
hood method. To avoid local maxima of the logarithmic likelihood function, the
optimization routine is run 100 times with several different starting values that
are widely scattered in the parameter space. The KS GoFT was used for model
fitting, while the AIC, BIC and HQIC were used for model comparisons. The
p-values for the KS GoFT calculated as follows. First, we obtain the values of the
KS test statistics (denoted ST) for true values of parameters Θ̂ based on the sam-
ple x(1), x(2), ..., x(n). In the next step we simulate 103 samples x

′

(1), x
′

(2), ..., x
′

(n)

from the given distribution with true values of parameters Θ̂. For each sample, we
calculate the values of the KS test statistics (denoted STs). Finally, the p-value
is calculated as p ≈ # {i : ST s

i > ST} 10−3.

Real data examples

The first data set presents temperature dynamics of beaver Castor canadensis
in north-central Wisconsin [25]. Body temperature was measured by telemetry
every 10 minutes from one period of less than a day. The data consists of 114
observations of the variable “measured body temperature in degrees Celsius” and
are available in the R software with code beaver1[3].

The second data set contains statistics, in arrests per 100,000 residents for assault
in each of the 50 US states in 1973 [22]. The data consisting of 50 observations
are available in the R software with code USArrests[2].

The models selected for comparison with the CEECK (a, p1, q1, p2, q2, ω) are:
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• the compound ECK (CECK):

fCECK (x; a, p1, p2, ω) = ω

(
1−x2

a2

)p1

aB(0.5,p1+1) + (1− ω)

(
1−x2

a2

)p2

aB(0.5,p2+1)

• the compound normal (CN):

fCN (x; a1, b1, a2, b2, ω) = ωϕ (x; a1, b1) + (1− ω)ϕ (x; a2, b2)

• the compound Laplace (CL):

fCL (x; a1, b1, a2, b2, ω) =
ω
2b1

exp
[
exp

(
− |x−a1|

b1

)]
+1−ω

2b2
exp

[
exp

(
− |x−a2|

b2

)]
,

• the compound Cauchy (CC):

fCC (x; a1, b1, a2, b2, ω) =
ω

πb1

[
1+

(
x−a1
b1

)2
] + 1−ω

πb2

[
1+

(
x−a2
b2

)2
]

• the compound logistic (CLOG):

fCLOG (x; a1, b1, a2, b2, ω) =
ω exp

(
x−a1
b1

)
b1

[
1+exp

(
x−a1
b1

)2
] +

(1−ω) exp
(

x−a2
b2

)
b2

[
1+exp

(
x−a2
b2

)2
] .

Tables 10 and 11 present values of the MLEs, log-likelihood function l, information
criteria, KS test statistics and p-value for the first and second data set, respec-
tively. The lowest values are in bold. The values of standard errors (calculated
in the R software) for some parameters in the CEECK models are surprisingly
large compared to other models. These values for the first data set are smaller
than for the second data set. Figure 10 presents histograms, estimated PDFs of
the analyzed models for the first (left) and second (right) data sets.

The CLOG model is the best in terms of the AIC, BIC and HQIC values
and the CEECK model is distinguished in terms of the KS GoFT. It has the
lowest KS test statistics and the highest p-value (see Table 10). The CEECK
model is the best in terms of the AIC, BIC and HQIC values and the CL model
is distinguished in terms of the KS GoFT. It has the lowest KS test statistics
and the highest p-value (see Table 11). Based on the graphical and the numerical
results, the CEECK distribution is considered as one of the best models for the
analyzed data sets.

5. Conclusions

The article presents the extended easily changeable kurtosis (EECK) distribution,
the special cases of which are the ECK, uniform and triangle distributions. The
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Table 10: Results of estimation for the first data set. The respective stan-
dard errors are in parentheses

Table 11: Results of estimation for the second data set. The respective
standard errors are in parentheses

new proposal tends to the normal distribution. The EECK, like the ECK, belongs
to the family of symmetric, unimodal distributions, defined in the finite domain
with excess kurtosis values on infinite interval. The obtained results demonstrate
that the EECK distribution can be extremely useful when we want to seamlessly
test GoFT’s ability to detect deviations from normality by modeling of negative
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Figure 10: Histograms and estimated PDF of analyzed models for first
(left) and second (right) data sets

or positive excess kurtosis. Student and Fisher-Snedecor tests may be applied
even as population distributions are of negative or positive excess kurtosis. Real
data example demonstrates that the EECK(p, q) distribution in the mixed vari-
ant is flexible and competitive model that deserves to be added to the existing
distributions in data modeling. The information presented in the article shows
that the proposed distribution deserves to be added to the symmetric distribution
family.
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