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1. INTRODUCTION

In the analysis of survival data, the researcher attempts to make predictions about the
lifetime of all elements / systems by fitting a statistical distribution / model. The underlying
distribution of a dataset can then be used to estimate component life characteristics, such
as reliability or probability of failure at any given time, average life, failure rate, etc. Reli-
ability is used to assess the characteristics of strength and failure, compare several different
models, predict product reliability, etc. In recent years, the Burr type XII (BXII) distribu-
tion created in Burr (1942) has gained great applicability in the field of reliability / survival
analysis and has been discussed by many authors. It is widely recognized as one of the most
straightforward and applicable heavy-tailed distributions. The fundamental properties and
estimation methods based on the BXII distribution have been derived in Wang et al. (1996),
Zimmer et al. (1998), Moore and Papadopoulos (2000), Mousa and Jaheen (2002) and Wu
et al. (2007). Due to its flexibility for data modeling, some extensions of the BXII distribu-
tion have been introduced in the literature. Among them are the beta BXII distribution (see
Paranaiba et al., 2011), Kumaraswamy BXII distribution (see Paranaiba et al., 2013), beta
exponentiated BXII distribution (see Mead, 2014), Marshall-Olkin BXII distribution (see
Al-Saiari et al., 2014), McDonald BXII distribution (see Gomes et al., 2015), Weibull BXII
distribution (see Afify et al., 2018), Kumaraswamy exponentiated distribution (see Mead
and Afify, 2017), generalized Burr-G distribution (see Nasir et al., 2017), Topp-Leone BXII
distribution (see Reyad and Othman, 2017), transmuted BXII distribution (see Afify et al.,
2018), generalized BXII power series distribution (see Elbatal et al., 2019) and modified BXII
distribution (see Jamal et al., 2020).

Along with these extended BXII distributions, other successful distributions for model-
ing survival phenomena have been established in recent years. This is the case for the ‘power
inverted Topp-Leone (PITL) distribution’ invented in Abushal et al. (2021), which also be-
longs to the heavy-tailed family of distributions. The first thing to know about the PITL
distribution is mathematical; the PITL distribution is the distribution of (1−X)1/cX−1/c,
where c > 0 and X is a random variable with the classical one-parameter Topp-Leone distri-
bution. It is also the power version of the inverted Topp-Leone (ITL) distribution proposed
in Hassan et al. (2020). The PITL distribution is motivated in Abushal et al. (2021) by the
following advantages: (i) it benefits from more flexibility compared with the ITL distribu-
tion on several aspects, including the shape possibilities of the associated probability density
function (pdf) and hazard rate function (hrf), (ii) the inferences of the PITL model are quite
manageable with the standard estimation methods, (iii) precise acceptance sampling plans
can be developed without difficulty, and (iv) the PITL model is better than other competitive
models, a claim illustrated with the analysis of the vinyl chloride data from Bhaumik et al.

(2009) and the precipitation data from Hinkley (1977).

The purpose of this article is to create an original three-parameter heavy-tailed distri-
bution that unifies the BXII and PITL distributions and to present its main statistical prop-
erties. A new tuning parameter that permits a shift between these two famous distributions
largely controls this unification. It thus makes it possible to reach a wide range of intermediate
distributions with equivalent interests and potentials. The proposed distribution is called the
new extended BXII (NEB) distribution. In the first part of the article, we discuss the main
characteristics of the NEB distribution, with an emphasis on the role of the shift parameter.
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Also, some of its functionalities and distributional measures are derived. Among others, we
show that the pdf and hrf may be both decreasing and unimodal, which remains a rare feature
for a three-parameter heavy-tailed distributions. Then, we examine the quantile function (qf),
stochastic dominance, ordinary moments, weighted moments, incomplete moments, and an
important measure of system performance: the stress-strength reliability coefficient, defined
on the basis of two independent random variables with the NEB distribution. The historical
motivations behind this coefficient in a general setting can be found in Church and Harris
(1970). The second part of the article is devoted to the inferences of the NEB model. This
includes properties, estimation of the model parameters, and estimation of the stress-strength
reliability coefficient through classical and Bayesian methods. We now emphasize that the
problem of estimating the stress-strength reliability is widely discussed in many articles and
remains a common demand in mechanical reliability systems. For the consideration of vari-
ous lifetime models, we may refer to Mokhlis (2005), Lio and Tsai (2012), Rao et al. (2015),
Laslan and Nadar (2017) and, more recently, Byrnes et al. (2019) and Maurya and Tripathi
(2020), and the references cited therein. Following the spirit of these works, the estimation
of the stress-strength reliability coefficient in the context of the NEB distribution opens some
perspectives in reliability studies. In this regard, we analyze two sets of engineering data.
Additionally, statistical comparisons with existing lifetime models that incorporate three or
four parameters derived from the BXII model are carried out, and the results are satisfactory
for the NEB model.

From the above consideration, we organize the paper as follows: Section 2 defines the
NEB distribution along with a selection of its properties. Section 3 concerns the parameters
and stress-strength reliability estimates via the maximum likelihood approach, with discus-
sions on their asymptotic distributions. Then, in Section 4, the Bayes estimates are obtained
under two different loss functions assuming uniform and gamma prior distributions for the
parameters. Sections 5 and 6 provide the applicability of the new distribution and obtain the
performance of the estimates. Last, Section 7 provides the concluding remarks.

2. PROPOSED DISTRIBUTION AND ITS PROPERTIES

2.1. Definition and motivation

At the basis of the NEB distribution, there is the following analytical result.

Proposition 2.1. Let a ∈ [0, 2] and c, k > 0. Then, the following function:

F (x) =

1− (1 + axc)k

(1 + xc)2k
, x > 0,

0, x ≤ 0,
(2.1)

has the properties of a valid cumulative distribution function (cdf).

Proof: First, it is clear that F (x) ≤ 1 and, by the Bernoulli inequality, we have (1 +
xc)2 ≥ 1 + 2xc ≥ 1 + axc, implying that F (x) ≥ 0. Furthermore, limx→0 F (x) = 0 = F (0)
implying that F (x) is continuous in 0 and, a fortiori, in R. It is clear that limx→+∞ F (x) = 1.
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Now, for x > 0, since a ∈ [0, 2], we have

F ′(x) = ckxc−1(axc + 2− a)
(1 + axc)k−1

(1 + xc)2k+1
≥ 0,

implying that F (x) is non-decreasing. The required properties are fulfilled; the function F (x)
is a valid cdf.

Based on Proposition 2.1, we are now in the position to explicit the NEB distribution.
The NEB distribution with parameters a, c and k, also denoted as NEB(a, c, k), is defined
either with the cdf F (x) given in (2.1) or the pdf specified as

f(x) =

ckxc−1(axc + 2− a)
(1 + axc)k−1

(1 + xc)2k+1
, x > 0,

0, x ≤ 0.

(2.2)

It is worth mentioning that c and k are shape parameters, whereas a is a scale parameter.

Basically, a random variable X with the NEB distribution satisfies: P (X ∈ D) =∫
D f(x)dx for any univariate real domain D and, for any function φ(x), the expectation

of the transformed variable φ(X), denoted by E(φ(X)), can be expressed in the following
integral form: E(φ(X)) =

∫ +∞
−∞ φ(x)f(x)dx, provided that it converges (in the integral sense).

These two formulas are the basis of measures and known distributional functions based on
the moments.

Thus defined, thanks to the parameter a, the NEB distribution constitutes a new life-
time distribution with three parameters extending both the BXII and PITL distributions.
More precisely, a can be viewed as a ‘shift parameter’ that allows a slip between the BXII
and PITL distributions in the following sense: when a = 0, the NEB distribution becomes
the BXII distribution, when a = 2, the NEB distribution becomes the PITL distribution,
naturally, when a = 2 and c = 1, the power transformation of the PITL distribution disap-
pears and the NEB distribution becomes the ITL distribution, and, to our knowledge, all the
intermediary cases a ∈ (0, 2) bring new distributions.

To realize the possibilities of the NEB distribution modeling, let us now investigate
some analytical properties of its pdf. First, when x → 0, the following equivalence holds:
f(x) ∼ (2− a)ckxc−1 and, when x → +∞, we get f(x) ∼ ckakx−ck−1. From these results, we
derive the following nuanced limits:

lim
x→0

f(x) =


0, c > 1,

(2− a)k, c = 1,

+∞, c ∈ (0, 1),

and limx→+∞ f(x) = 0 for all the values of the parameters, the rate of convergence having
a polynomial decay governed by the parameter c. Further investigations show that f(x) is
a decreasing function for c ≤ 1 and is unimodal for c > 1. The mode can be determined
numerically.

Furthermore, using the Riemann integral criteria, we get
∫ +∞
0 etxf(x)dx = +∞ for all

t > 0, meaning that the NEB distribution is heavy right-tailed. It thus keeps the heavy-tailed
nature of its parental distributions: the BXII and PITL distributions.
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For more remarks, Figure 1 shows some possible shapes of the pdf with diverse values
for a, c and k.
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Figure 1: Panel of shapes of the pdf of the NEB distribution.

Figure 1 illustrates the decreasing and unimodal nature of f(x). It is also shown that
f(x) has a versatile mode which is greatly affected by the parameter a. Almost symmetrical
shapes can be seen, as in the yellow curve, also corresponding to the case a = 2 referring to the
PTIL distribution. Moreover, Figure 1 illustrates the compromise that the NEB distribution
made between the BXII and PITL distributions.

2.2. Complementary functions

We now focus on important reliability functions that may appear in various aspects of
the NEB distribution analysis. The survival function (sf) and hrf of the NEB distribution
are inscribed as

F̄ (x) = 1− F (x) =


(1 + axc)k

(1 + xc)2k
, x > 0,

1, x ≤ 0,

and

h(x) =
f(x)
F̄ (x)

=

ckxc−1 axc + 2− a

(1 + axc)(1 + xc)
, x > 0,

0, x ≤ 0,

respectively. An asymptotic study of h(x) is now provided. First, when x → 0, the following
equivalence holds: h(x) ∼ (2− a)ckxc−1, and when x → +∞, we obtain h(x) ∼ ckx−1. From
these results, we derive the following limits:

lim
x→0

h(x) =


0, c > 1,

(2− a)k, c = 1,

+∞, c ∈ (0, 1),
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and limx→+∞ h(x) = 0 for the values of the parameters. Since the variety of shapes is an
important indicator on the modeling flexibility of a distribution (see Aarset, 1987), we provide
a graphical analysis of h(x) in Figure 2 with diverse values for a, c and k.
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Figure 2: Panel of shapes of the hrf of the NEB distribution.

From Figure 2, we see that h(x) has the same global shapes properties than f(x), only
varying on the weights of the tails: it is decreasing for c ≤ 1 and has only one maximal point
for c > 1. The parameter a mainly affects the value of the maximal point. Hence, the so-
called decreasing and bathtub upside-down hazard rates of survival data can be reached by
the NEB model.

We complete the presentation of the NEB distribution by expressing its qf. The notion
of qf is very useful on various aspects in probability and statistics; it is at the same level of
importance as the cdf to define a distribution (see Gilchrist, 2000). The expression of the
qf of the NEB distribution follows through the solution of the following nonlinear equation:
F (x) = u with respect to x. After a step-by-step development, we come to

Q(u) =
1

21/c

{
−[2− a(1− u)−1/k] +

√
[2− a(1− u)−1/k]2 − 4[1− (1− u)−1/k]

}1/c

,

where u ∈ (0, 1). As a basic application, the three quartiles of the NEB distribution are given
by Q1 = Q(1/4), Q2 = Q(1/2) and Q3 = Q(3/4), respectively. Also, among the possible
uses of this qf, one can use it to generate values from any random variable with the NEB
distribution, define diverse distributional functions analogous to the pdf and hrf, and various
measures on skewness and kurtosis.

2.3. Stochastic dominance

The NEB distribution has several stochastic dominance properties involving F (x) which
are of interest in understanding the roles of the parameters a, c and k for distributional com-
parison. Here, we focus on the notion of first-order stochastic (fos) dominance as presented
in Shaked and Shanthikumar (2007).
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Proposition 2.2. The following stochastic order properties hold: if a2 ≥ a1, the NEB

distribution defined with a = a2 fos dominates the NEB distribution defined with a = a1; if

k2 ≥ k1, the NEB distribution defined with k = k1 fos dominates the NEB distribution defined

with k = k2.

Proof: The proof is based on the monotonicity of F (x) = F (x; a, c, k) with respect to
the parameters. We have

∂

∂a
F (x; a, c, k) = −kxc (1 + axc)k−1

(1 + xc)2k
≤ 0,

which means that F (x) is a decreasing function with respect to a, implying that, if a2 ≥ a1,
the NEB distribution defined with a = a2 fos the NEB distribution defined with a = a1. Now,
we have

∂

∂k
F (x; a, c, k) =

(1 + axc)k

(1 + xc)2k
[2 log(1 + xc)− log(1 + axc)] ≥ 0,

which means that F (x) is an increasing function with respect to k, implying that, if k2 ≥ k1,
the NEB distribution defined with k = k1 fos dominates the NEB distribution defined with
k = k2. This ends the proof of the three items of the proposition.

Thus, based on Proposition 2.2, we see that the parameter c has the most complex role
for the comparison of NEB distributions differing with their parameters. Moreover, the first
result and the expression of F (x) justify the naming of ‘shift parameter’ for a.

2.4. Moment properties

The following result concerns the ordinary moments of the NEB distribution.

Proposition 2.3. Let X be a random variable with the NEB distribution and r be

an integer. Then, X admits an r-th ordinary moment, i.e., µ′r = E(Xr), if and only if r < ck.

In this case, µ′r can be expressed as the following infinite sum expansion:

µ′r = k

+∞∑
`=0

(
k − 1

`

)
(a− 1)`

[
aB

(r

c
+ ` + 2, k − r

c

)
+ (2− a)B

(r

c
+ ` + 1, k + 1− r

c

)]
,

where B(u, v) is the beta function: B(u, v) =
∫ 1
0 tu−1(1− t)v−1dt with u, v > 0.

Proof: Provided that it exists, we have µ′r =
∫ +∞
−∞ xrf(x)dx. In view of the definition

of f(x) in (2.2), only the neighborhoods of x = 0 and +∞ of the function xrf(x) need pro-
cessing, and we can invoke the integral Riemann criteria in this regard. In the neighborhood
of x = 0, we have xrf(x) ∼ ck(2− a)xr+c−1, which is the main term of a convergent integral
over x ∈ (0, d) with d > 0 if and only if r + c > 0, which is always fulfilled. Also, in the neigh-
borhood of x = +∞, we have xrf(x) ∼ ckakxr−ck−1 which is the main term of a convergent
integral over x ∈ (d,+∞) if and only if r − ck < 0, which is satisfied if r < kc. In the end,
µ′r exists if and only r < ck.
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In this case, in order to express µ′r =
∫ +∞
−∞ xrf(x)dx as desired, for x > 0, we set f(x) =

f1(x) + f2(x), where

f1(x) = ckax2c−1 (1 + axc)k−1

(1 + xc)2k+1
, f2(x) = ck(2− a)xc−1 (1 + axc)k−1

(1 + xc)2k+1
,

which can be also written as

f1(x) = ckax2c−1 [1 + (a− 1)xc/(1 + xc)]k−1

(1 + xc)k+2

and

f2(x) = ck(2− a)xc−1 [1 + (a− 1)xc/(1 + xc)]k−1

(1 + xc)k+2
.

Since a ∈ [0, 2] and x > 0, it is clear that |(a− 1)xc/(1 + xc)| < 1. Therefore, the generalized
version of the binomial formula gives[

1 + (a− 1)
xc

1 + xc

]k−1

=
+∞∑
`=0

(
k − 1

`

)
(a− 1)` xc`

(1 + xc)`
.

Note that the limit +∞ can be replaced by k− 1 if k is an integer greater to 1. So f1(x) and
f2(x) can be expressed as

f1(x) = cka

+∞∑
`=0

(
k − 1

`

)
(a− 1)` xc(`+2)−1

(1 + xc)`+k+2

and

f2(x) = ck(2− a)
+∞∑
`=0

(
k − 1

`

)
(a− 1)` xc(`+1)−1

(1 + xc)`+k+2
,

respectively. By invoking the dominated convergence theorem to justify the exchange of the
signs

∑
and

∫
, we obtain

µ′r =
∫ +∞

0
xrf1(x)dx +

∫ +∞

0
xrf2(x)dx

= cka

+∞∑
`=0

(
k − 1

`

)
(a− 1)`

∫ +∞

0

xr+c(`+2)−1

(1 + xc)`+k+2
dx

+ ck(2− a)
+∞∑
`=0

(
k − 1

`

)
(a− 1)`

∫ +∞

0

xr+c(`+1)−1

(1 + xc)`+k+2
dx.(2.3)

With the change of variable y = xc, the two integral terms can be expressed as∫ +∞

0

xr+c(`+2)−1

(1 + xc)`+k+2
dx =

1
c

∫ +∞

0

yr/c+`+1

(1 + y)`+k+2
dy =

1
c
B

(r

c
+ ` + 2, k − r

c

)
and ∫ +∞

0

xr+c(`+1)−1

(1 + xc)`+k+2
dx =

1
c

∫ +∞

0

yr/c+`

(1 + y)`+k+2
dy =

1
c
B

(r

c
+ ` + 1, k + 1− r

c

)
.

By putting these equations into (2.3), we obtain the stated result.
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In any case, if r < ck, µ′r can be evaluated in a numerical way by using any standard
mathematical software.

With one of these approaches, we are able to evaluate standard moment measures such
as the mean of X specified by µ = µ′1 and the variance of X given as V = µ′2 − µ2, as well as
moment measures of skewness and kurtosis.

The incomplete moments of X taken at a specific value t ≥ 0 is also of interest. It can
be expanded as described in the new result.

Proposition 2.4. Let X be a random variable with the NEB distribution, r be an

integer and t ≥ 0. Then, X admits incomplete moments of all orders and the r-th incomplete

moment of X at the level t, i.e., µ′r(t) = E(X1{X≤t}), can be expressed as the following

infinite sum expansion:

µ′r(t) = k
+∞∑
`=0

(
k − 1

`

)
(a− 1)`

×
[
aBtc/(1+tc)

(r

c
+ ` + 2, k − r

c

)
+ (2− a)Btc/(1+tc)

(r

c
+ ` + 1, k + 1− r

c

)]
,

where Bx(u,v) denotes the incomplete beta function taken at x: Bx(u,v) =
∫ x
0 tu−1(1− t)v−1dt

with x ∈ [0, 1] and u, v > 0.

Proof: The proof is almost identical to the one of Proposition 2.3, we thus omit it.

Following the spirit of Abushal et al. (2021), we can use the incomplete moments of X

to define several inequality measures, and various residual life functions, as well as the related
moments. We end this part with a generalization of the ordinary moments by investigating
the weighted probability moments.

Proposition 2.5. Let X be a random variable with the NEB distribution, and r

and s be integers. Then, X admits an (r, s)-th probability weighted moment, i.e., µ′r,s =
E(XrF̄ (X)s), if and only if r < ck. In this case, µ′r,s can be expressed as the following

infinite sum expansion:

µ′r,s =
k

1 + s

+∞∑
`=0

(
k(1 + s)− 1

`

)
(a− 1)`

×
[
aB

(r

c
+ ` + 2, k(1 + s)− r

c

)
+ (2− a)B

(r

c
+ ` + 1, k(1 + s) + 1− r

c

)]
.

Proof: First, let us notice that, for x > 0,

f(x)F̄ (x)s =
1

1 + s
ck(1 + s)xc−1(axc + 2− a)

(1 + axc)k(1+s)−1

(1 + xc)2k(1+s)+1
=

1
1 + s

f◦(x),

where f◦(x) denotes the pdf of the NEB distribution with parameters a, c and k(1 + s).
Therefore, we have

µ′r,s =
∫ +∞

−∞
xrf(x)F̄ (x)sdx =

1
1 + s

∫ +∞

0
xrf◦(x)dx =

1
1 + s

µ′◦r ,
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where µ′◦r denotes the r-th ordinary moment of a random variable with the NEB distribution
with parameters a, c and k(1 + s). Hence, the desired result follows from Proposition 2.3
with adjustment on the definition of the parameters.

Probability-weighted moments can be considered as extended versions of the ordinary
moments. Also, they appear in the theory of order statistics, and remain standard in several
branches of statistics. On this topic, we may refer to Hosking (1989).

2.5. Stress-strength reliability coefficient

Let X and Y be two independent random variables following the NEB distributions with
parameters a, c and k1, and a, c and k2, respectively. We are interested in the determination
of the common stress-strength reliability coefficient defined by

R = P (Y < X).(2.4)

This coefficient is a measure of reliability of a component with strength modeled by X, subject
to a stress modeled by Y . Further details on this special coefficient can be found in Church
and Harris (1970).

Proposition 2.6. The coefficient R precised in (2.4) is

R =
k2

k1 + k2
.

Proof: Let F2(x) be the cdf of Y and f1(x) be the pdf of X. Then, based on (2.1)
and (2.2), after a linear integral development, we get

R =
∫ +∞

−∞
F2(x)f1(x)dx =

∫ +∞

0

[
1− (1 + axc)k2

(1 + xc)2k2

]
× ck1x

c−1(axc + 2− a)
(1 + axc)k1−1

(1 + xc)2k1+1
dx

= 1−
∫ +∞

0
ck1x

c−1(axc + 2− a)
(1 + axc)k1+k2−1

(1 + xc)2(k1+k2)+1
dx

= 1− k1

k1 + k2

∫ +∞

0
c(k1 + k2)xc−1(axc + 2− a)

(1 + axc)k1+k2−1

(1 + xc)2(k1+k2)+1
dx.

Note that the last integral term is equal to one since it corresponds to the integral of a pdf
over its whole support; it is the pdf of the NEB distribution with parameters a, c and k1 + k2.
Hence R = 1− k1/(k1 + k2) = k2/(k1 + k2). This ends the proof.

Thus, in the configuration of Proposition 2.6, R has a quite simple expression. It is
decreasing with respect to k1, whereas it is increasing with respect to k2. If k1 = k2, we get
R = 1/2 meaning that there is a equal chance of Y to be greater than X, and vice-versa.

The rest of the article is devoted to the inferences of the NEB model, beginning with
the estimation of the model parameters through the maximum likelihood approach.
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3. MAXIMUM LIKELIHOOD ESTIMATION

3.1. Estimation of the parameters

Let n be a positive parameter. Let us denote by x1, ..., xn n independent observations
from the NEB distribution. Then, the maximum likelihood method proposes to used the
maximum likelihood estimates (MLEs) â, ĉ and k̂ of a, c and k, respectively, defined by
(â, ĉ, k̂) = argmax(a,c,k)∈[0,2]×(0,+∞)2 `(a, c, k), where `(a, c, k) denotes the log-likelihood func-
tion defined by

`(a, c, k) = n log c + n log k + (c− 1)
n∑

i=1

log(xi) +
n∑

i=1

log(axc
i + 2− a)

+ (k − 1)
n∑

i=1

log(1 + axc
i )− (2k + 1)

n∑
i=1

log(1 + xc
i ).

The MLEs â, ĉ and k̂ can be determined through the score equations. Now let V̂a, V̂c and V̂k

defined by (V̂a, V̂c, V̂k) = diag
[
I(a, c, k)−1

]
| a=â,c=ĉ,k=k̂, where

I(a, c, k) =
(
− ∂2

∂u∂v
`(a, c, k)

)
(u,v)=(a,c,k)2

.

By applying a the well-known asymptotic property of the MLEs, as m and n tends to +∞,
the underlying distribution of{

(1/

√
V̂a)(â− a), (1/

√
V̂c)(ĉ− c), (1/

√
V̂k)(k̂ − k)

}
can be approximated by the standard trivariate normal distribution. As an immediate conse-
quence, a two-sided asymptotic 100(1− α)% confidence interval of a with α ∈ (0, 1) is given
as Ia =

[
â− uα

√
V̂a, â + uα

√
V̂a

]
, where uα = QU (1− α/2), QU (x) denoting the qf of the

standard univariate normal distribution. Analogous two-sided asymptotic 100(1−α)% confi-
dence intervals for c and k can be presented in a similar way. The general theory and formulas
of the maximum likelihood approach can be found in Casella and Berger (1990).

3.2. Estimation of R

We now focus on the estimation of the stress-strength reliability coefficient R as de-
scribed in Subsection 2.5, recalling that R = k2/(k1 + k2). Such estimation problem is of
interest in various applied studied, as motivated in Mokhlis (2005), Lio and Tsai (2012), Rao
et al. (2015), Laslan and Nadar (2017), Byrnes et al. (2019), Maurya and Tripathi (2020) and
Agiwal (2021). We follow the same methodology as the one employed in Agiwal (2021).

Let n and m be two positive integers. Let us denote by x1, ..., xn n independent obser-
vations from the NEB distribution with parameters a, c and k1, and y1, ..., ym m independent
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observations from the NEB distribution with parameters a, c and k2, assuming that a and c

are known. Then, the log-likelihood function based on these two samples is given by

`(k1, k2) = (n + m) log c + n log k1 + (c− 1)
n∑

i=1

log(xi) +
n∑

i=1

log(axc
i + 2− a)

+ (k1−1)
n∑

i=1

log(1+ axc
i )− (2k1+1)

n∑
i=1

log(1+xc
i ) + m log k2 + (c−1)

m∑
i=1

log(yi)

+
m∑

i=1

log(ayc
i + 2− a) + (k2 − 1)

m∑
i=1

log(1 + ayc
i )− (2k2 + 1)

m∑
i=1

log(1 + yc
i ).

The MLEs k̂1 and k2 of k1 and k2, respectively, are obtained as

(k̂1, k̂2) = argmax(k1,k2)∈(0,+∞)2 `(k1, k2).

Classically, they satisfy the score equations defined by ∂`(k1, k2)/∂k1 | k1=k̂1,k2=k̂2
= 0 and

∂`(k1, k2)/∂k2 | k1=k̂1,k2=k̂2
= 0, which give

k̂1 =

{
− 1

n

n∑
i=1

log
(

1 + axc
i

(1 + xc
i )2

)}−1

, k̂2 =

{
− 1

m

m∑
i=1

log
(

1 + ayc
i

(1 + yc
i )2

)}−1

.

Now, we have

∂2

∂k2
1

`(k1, k2) = − n

k2
1

,
∂2

∂k2
2

`(k1, k2) = −m

k2
2

,
∂2

∂k1k2
`(k1, k2) = 0.

By applying a the well-known asymptotic property of the MLEs, as m and n tends to +∞,
the underlying distribution of

{
(k̂1/

√
n)(k̂1 − k1), (k̂2/

√
m)(k̂2 − k2)

}
can be approximated

by the standard bivariate normal distribution. On the other side, by substitution, a point
estimate for R is obtained as

R̂ =
k̂2

k̂1 + k̂2

.(3.1)

By applying the multivariate delta method (see Klein, 1953), since the underlying random
estimates of k1 and k2 are independent, an estimate for the variance of the underlying random
estimate of R is inscribed as

V̂R =
(
− ∂2

∂k2
1

`(k1, k2)
)−1(

∂

∂k1
R

)2

+
(
− ∂2

∂k2
2

`(k1, k2)
)−1(

∂

∂k2
R

)2
∣∣∣∣∣
k1=k̂1,k2=k̂2

=
k̂2

1k̂
2
2

(k̂1 + k̂2)4

(
1
n

+
1
m

)
.

Therefore, as m and n tends to +∞, the underlying distribution of (1/
√

V̂R)(R̂−R) can be
approximated by the standard univariate normal distribution. As an immediate consequence,
a two-sided asymptotic 100(1− α)% confidence interval of R is given as

IR =

[
R̂− uα

k̂1k̂2

(k̂1 + k̂2)2

√
1
n

+
1
m

, R̂ + uα
k̂1k̂2

(k̂1 + k̂2)2

√
1
n

+
1
m

]
.

The rest of the study focuses on the Bayesian inferences of the NEB model, with applications.
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4. BAYESIAN INFERENCE

In the Bayesian framework, not only data but also prior information about the un-
known parameter is used to analyze the data and draw conclusions. In this way, Bayesian
inference incorporates the prior distribution of the model parameters with the likelihood func-
tion to produce the posterior distribution that gathers more quality inferences and controls
the uncertainty. However, the choice of a suitable prior has a significant role in changing the
result. If sufficient information is available about the parameter, then an informative prior is
considered; otherwise, one can use a non-informative prior.

Here, we consider both informative and non-informative priors for the Bayesian anal-
ysis of the unknown model parameters and stress-strength reliability coefficient of the NEB
distribution. Since the shape of the proposed distribution is skewed to the right, we use a
gamma prior as a skewed distribution for the independent parameters k1, k2 and c, whereas
a follows a uniformly distributed prior. Indeed, we know that the gamma distribution is
very flexible and is used frequently everywhere. A slight change in the parameters is also
observed, as are changes in the shape of the distributions. So, we consider this prior for
the Bayesian computation in our manuscript. Because a is the scale parameter, it has little
effect on the distribution’s shape. As a result, we can easily consider the improper prior
in place for uniform distribution. The description of the said priors can be summarized
as follows: π(k1) = Gamma(r1, s1), r1 > 0, s1 > 0, π(k2) = Gamma(r2, s2), r2 > 0, s2 > 0,
π(c) = Gamma(r3, s3), r3 > 0, s3 > 0 and π(a) ∝ 1, a ∈ [0, 2], where Gamma(r, s) denotes
the standard gamma distribution with ‘shape parameter’ r and ‘scale parameter’ s, and
(r1, s1, r2, s2, r3, s3) are called the hyper-parameters. One can notice that, if r1 = s1 = r2 =
s2 = r3 = s3 = 0, the prior is reduced to a non-informative form of gamma prior. Conse-
quently, the joint prior π(Θ = (c, a, k1, k2)) is defined as follows:

π(Θ) =
sr1
1 sr2

2 sr3
3

Γ(r1)Γ(r2)Γ(r3)
kr1−1

1 kr2−1
2 cr3−1e−k1s1−k2s2−cs3 ,

where Γ(u) is the gamma function, i.e., Γ(u) =
∫ +∞
0 tu−1e−tdt, u > 0.

The posterior distribution π(Θ|data) of the parametric space (Θ) is obtained by in-
corporation of likelihood function (L(Θ|data)) with the joint prior distribution π(Θ), that is

π(Θ|data) = KL(Θ|data)π(Θ)

= Kcn+m+r3−1kn+r1−1
1 km+r2−1

2

sr1
1 sr2

2 sr3
3 e−k1s1−k2s2−cs3

Γ(r1)Γ(r2)Γ(r3)

×
n∏

i=1

xc−1
i (axc

i + 2− a)(1 + axc
i )

k1−1

(1 + xc
i )2k1+1

m∏
j=1

yc−1
j (ayc

j + 2− a)(1 + ayc
j)

k2−1

(1 + yc
j)2k2+1

,

where K is a constant such that K−1 =
∫

L(Θ|data)π(Θ)dΘ.

Based on decision theory, it is a well known discussion that the best estimate decision
depends on the pattern of the loss function adopted for a particular situation and the result-
ing outcome may be under or / and over estimation. If the amount of loss is equal in under
and over estimation then the symmetric loss function is considered. On the other situations,
the asymmetric loss function is useful when positive loss may be more serious than a given
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negative loss of the same magnitude or vice-versa. Here, we employ both asymmetric and
symmetric loss functions to investigate the suitability of the loss functions for the model. More
precisely, we use the squared error (symmetric) loss function (SELF) and entropy (asymmet-

ric) loss function (ELF). The SELF and ELF are inscribed as LSELF (θ, θ̂) =
(
θ̂ − θ

)2
and

LELF (θ, θ̂) = θ̂/θ− log
(
θ̂/θ

)
− 1, respectively. Under the SELF and ELF, for any parametric

function, say φ(Θ), the Bayes estimate is obtained as follows:

φ?
self (Θ|data) = K

∫
φ(Θ)π(Θ|data)dΘ(4.1)

and

φ?
elf (Θ|data) =

(
K

∫
φ−1(Θ)π(Θ|data )dΘ

)−1

,(4.2)

respectively. To obtain (4.1) and (4.2), we get the Bayesian estimates of the model parameters
as well as the stress-strength reliability coefficient, where the Bayes estimate under the SELF
is the posterior mean and under the ELF is the inverse of the harmonic mean. Due to the
presence of multiple integrations in equations (4.1) and (4.2), they are very difficult to solve
in an exact manner. Therefore, an iterative numerical procedure is required to solve these
equations. For this situation, the Markov Chain Monte Carlo (MCMC) technique is suggested
to generate a sequence of random draws from posteriors of interest. Using the MCMC method,
a stochastic chain is produced that contains a sequence of random samples. The Gibbs
sampling and the Metropolis-Hastings (MH) algorithm are two approaches in MCMC to
computing the posterior distribution. To implement these approaches, the full conditional
posterior distribution is derived for the study parameters. By putting x = (x1, ..., xn) and
y = (y1, ..., yn), they are given as follows:

π1(c|a, k1, k2,x,y) ∝ cn+m+r3−1e−cs3

n∏
i=1

xc−1
i (axc

i + 2− a)(1 + axc
i )

k1−1

(1 + xc
i )2k1+1

×
m∏

j=1

yc−1
j (ayc

j + 2− a)(1 + ayc
j)

k2−1

(1 + yc
j)2k2+1

,

π2(a|c, k1, k2,x,y) ∝
n∏

i=1

(axc
i + 2− a)(1 + axc

i )
k1−1

m∏
j=1

(ayc
j + 2− a)(1 + ayc

j)
k2−1,

π3(k1|a, c,x,y) ∝ kn+r1−1
1 e−k1s1

n∏
i=1

(1 + axc
i )

k1−1

(1 + xc
i )2k1+1

and

π4(k2|a, c,x,y) ∝ km+r2−1
2 e−k2s2

m∏
j=1

(1 + ayc
j)

k2−1

(1 + yc
j)2k2+1

.

Based on estimated values of the parameters (k̂1, k̂2), the estimated value of stress-strength
reliability coefficient is obtained. To evaluate the above conditional posterior distribution,
the following steps are considered:
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Step 1: Starting with an initial value vector Θ0 = (c0, a0, k0
1, k

0
2) and set l = 1.

Step 2: Generate the point vector Θp = (cp, ap, kp
1, k

p
2) from the candidate proposal

density q
(
Θp|Θ0

)
where q

(
Θp|Θ0

)
proposes a probability with a move Θp,

having conditional probability density given Θ0.

Step 3: Determine the Hastings-ratio using Θp and Θ0 as specified by

ρ
(
Θp|Θ0

)
=

π1

(
cp|a0, k0

1, k
0
2,data

)
q
(
Θp|Θ0

)
π1

(
c0|a0, k0

1, k
0
2,data

)
q(Θ0|Θp)

.

Similarly for the remaining parameters, the Hastings-ratio is obtained.

Step 4: Take into account Θp with probability γ ≤ min
[
1, ρ

(
Θp|Θ0

)]
, otherwise Θ =

Θ0 with rejection probability 1− γ, where γ is generated from the uniform
U(0, 1) distribution.

Step 5: Repeat Steps 2-4, K = 5000 times and record the sequence of parameter
observations. Next, we get the Bayes estimate under different loss functions.

5. SIMULATION STUDY

This section performs a simulation experiment to determine the effectiveness of the pro-
posed method in the model parameters as well as the stress-strength reliability coefficient for
the NEB distribution. For this, various sample sizes, along with different sets of parameter val-
ues, are considered for making better inferences. We take the following sample size combina-
tions, namely, (n, m) = {(20, 20), (30, 50), (50, 30), (50, 50), (40, 60), (60, 40), (40, 40)} and dif-
ferent sets of stress-strength reliability coefficient values, namely (k1, k2) = {(2,1), (2,2), (1,2)}
so that the true reliability parameter values are small (0.33), moderate (0.50) and high (0.67),
respectively. The remaining parameter values are a = 2.5 and c = 1.5. We evaluate the per-
formance of the stress-strength reliability coefficient on the basis of simulated samples with
diverse sample sizes and combinations using the R software. To this end, we simulate a ran-
dom sample of different sizes from the NEB distribution. In this regard, we use the Newton
steps to generate a sample of size n from the NEB(a, c, k) distribution by following the steps
below:

Step 1: Set n, a, c and k.

Step 2: Set initial value x0.

Step 3: Set j = 1.

Step 4: Generate a value u from the uniform U(0, 1) distribution.

Step 5: Update x0 through the Newton formula for solving F (x) = u such as xnew =

x0 −
F (x0)− u

f(x0)
, with the defined with the used parameters a, c and k.

Step 6: If |x0 − xnew| ≤ ε with ε > 0 chosen as small, then xnew will be the desired
value from F (x).

Step 7: If |x0 − xnew| > ε, then, set x0 = xnew and go to Step 5.

Step 8: Repeat Steps 4-7, for j = 1, 2, ..., n and obtained x1, x2, ..., xn.
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Using the generated samples, the maximum likelihood and Bayes estimates are obtained
based on derived estimates of the parameters and reliability function. For the Bayes estimates,
we use different loss functions under different priors and the hyper-parameters of the gamma
prior are taken as follows:

1. When r1 = s1 = r2 = s2 = r3 = s3 = 0 (the non-informative prior case), the Bayes
estimates are denoted as SELF0 and ELF0.

2. When the prior means are equal to the true value of parameters and the prior
variances are equal to 1, the Bayes estimates are denoted as SELF1 and ELF1.

The results are based on 5000 replications. We vary the sample sizes with fixed values of
the stress-strength reliability coefficient and for various combinations of the model parameters
with fixed samples sizes. For different parameter values, different sample sizes and different
priors under both SELF and ELF, we report the average estimates (AVs) and the correspond-
ing mean squared errors (MSEs) of the MLEs and Bayes estimates of the model parameters
and stress-strength reliability coefficient. The simulation results are postponed in Tables 1–5.

We deduce the following findings from the results:

1. The MSE of all estimates, obtained with different parameter values, decreases as
the sample sizes increase.

2. For the distribution parameters and reliability function, the MSE based on the
MLEs is higher as compared to the one of the Bayes estimates.

3. For gamma priors in comparison with informative and non-informative forms, the
MSE of informative priors is smaller.

4. For reliability function and stress-strength reliability coefficients, the ELF performs
better than the SELF in terms of the lesser value of the MSE.

5. For varying n and m, the MSE of k1 is mostly greater than k2 when k1<k2 and k2 <k1.

Table 1: AVs and MSEs of the estimates of R with varying n and m.

(k1, k2) R (n, m)
MLE SELF0 ELF0 SELF1 ELF1

AV MSE AV MSE AV MSE AV MSE AV MSE

(20,20) 0.3919 0.0031 0.3656 0.0027 0.3772 0.0026 0.3559 0.0026 0.3711 0.0025
(30,50) 0.3674 0.0024 0.3381 0.0016 0.3597 0.0019 0.3351 0.0014 0.3332 0.0014
(50,30) 0.3670 0.0025 0.3568 0.0023 0.3592 0.0021 0.3427 0.0013 0.3378 0.0011

(2,1) 0.33 (50,50) 0.3710 0.0022 0.3441 0.0016 0.3417 0.0015 0.3560 0.0015 0.3651 0.0018
(40,60) 0.3677 0.0023 0.3458 0.0015 0.3616 0.0019 0.3436 0.0014 0.3407 0.0014
(60,40) 0.3683 0.0019 0.3585 0.0016 0.3543 0.0014 0.3584 0.0014 0.3621 0.0015
(40,40) 0.3727 0.0029 0.3439 0.0015 0.3399 0.0014 0.3550 0.0021 0.3654 0.0024

(20,20) 0.4715 0.0036 0.4789 0.0033 0.4795 0.0033 0.4843 0.0029 0.4859 0.003
(30,50) 0.4783 0.0021 0.4827 0.0020 0.4851 0.0018 0.4954 0.0011 0.4893 0.0012
(50,30) 0.4892 0.0031 0.4977 0.0030 0.4960 0.0029 0.5128 0.0020 0.5070 0.0019

(2,2) 0.5 (50,50) 0.4827 0.0020 0.5042 0.0011 0.5041 0.0010 0.4848 0.0016 0.4800 0.0018
(40,60) 0.5064 0.0021 0.4916 0.0019 0.4926 0.0018 0.5082 0.0017 0.5035 0.0017
(60,40) 0.4886 0.0015 0.4951 0.0014 0.4940 0.0014 0.5014 0.0009 0.4965 0.0009
(40,40) 0.4889 0.0036 0.5045 0.0016 0.4983 0.0016 0.4913 0.0026 0.4855 0.0028

(20,20) 0.6238 0.0029 0.6324 0.0027 0.6373 0.0026 0.6405 0.0029 0.6467 0.0027
(30,50) 0.6428 0.0018 0.6434 0.0016 0.6412 0.0015 0.6568 0.0015 0.6637 0.0014
(50,30) 0.6316 0.0028 0.6587 0.0026 0.6526 0.0022 0.6459 0.0025 0.6550 0.0021

(1,2) 0.67 (50,50) 0.6416 0.0019 0.6536 0.0018 0.6507 0.0016 0.6548 0.0013 0.6602 0.0011
(40,60) 0.6443 0.0016 0.6516 0.0015 0.6594 0.0015 0.6575 0.0015 0.6625 0.0013
(60,40) 0.6419 0.0017 0.6547 0.0015 0.6502 0.0013 0.6552 0.0015 0.6624 0.0013
(40,40) 0.6277 0.0028 0.6561 0.0022 0.6526 0.0020 0.6318 0.0025 0.6488 0.0020
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Table 2: AVs and MSEs of the estimates of k1 with varying n and m.

k1 (n, m)
MLE SELF0 ELF0 SELF1 ELF1

AV MSE AV MSE AV MSE AV MSE AV MSE

(20,20) 1.3978 0.3245 1.3142 0.2019 1.2756 0.1689 1.2314 0.1632 1.2249 0.1552
(30,50) 1.3297 0.2966 1.2527 0.1728 1.2239 0.1588 1.1914 0.1527 1.1977 0.1290
(50,30) 1.3540 0.2815 1.2803 0.1997 1.2533 0.1354 1.1591 0.1617 1.1445 0.1403

1 (50,50) 1.3446 0.2448 1.2695 0.1590 1.2397 0.1370 1.1554 0.1400 1.1465 0.1498
(40,60) 1.3789 0.2644 1.2936 0.1723 1.2681 0.1488 1.1498 0.1577 1.1430 0.1211
(60,40) 1.3394 0.2394 1.2499 0.1634 1.2831 0.1584 1.1549 0.1329 1.1459 0.1238
(40,40) 1.3080 0.2467 1.2877 0.1541 1.2020 0.1276 1.1594 0.1386 1.1485 0.1265

(20,20) 2.4732 0.312 2.2916 0.2235 2.2478 0.1481 2.2655 0.1567 2.2213 0.1235
(30,50) 2.3296 0.3117 2.2513 0.2102 2.1981 0.1522 2.1634 0.1250 2.0348 0.0483
(50,30) 2.4364 0.2752 2.1203 0.1041 1.9262 0.1312 2.1488 0.0906 2.1041 0.0378

2 (50,50) 2.4488 0.2502 2.2601 0.2098 2.2046 0.1383 2.2330 0.1419 2.0907 0.1185
(40,60) 2.2553 0.2214 2.2078 0.1740 2.1927 0.1556 2.1828 0.1167 2.1766 0.0825
(60,40) 2.4525 0.2404 2.1537 0.0815 2.1444 0.1025 2.1106 0.0694 2.0210 0.0758
(40,40) 2.4793 0.2340 2.2378 0.1422 2.2142 0.1149 2.1208 0.1073 1.9659 0.1097

Table 3: AVs and MSEs of the estimates of k2 with varying n and m.

k2 (n, m)
MLE SELF0 ELF0 SELF1 ELF1

AV MSE AV MSE AV MSE AV MSE AV MSE

(20,20) 1.4710 0.2121 1.3760 0.1867 1.3076 0.1203 1.3129 0.1325 1.2739 0.1091
(30,50) 1.4542 0.1936 1.3164 0.1181 1.2064 0.0564 1.2502 0.0761 1.1671 0.0459
(50,30) 1.4152 0.1874 1.3290 0.1259 1.1942 0.0524 1.2036 0.0604 1.0937 0.0340

1 (50,50) 1.4042 0.1855 1.3683 0.1581 1.2797 0.0952 1.3013 0.1046 1.2181 0.0665
(40,60) 1.4653 0.2018 1.2885 0.1717 1.2183 0.1044 1.3210 0.1129 1.2558 0.0763
(60,40) 1.4996 0.2322 1.3121 0.2061 1.2150 0.1168 1.2499 0.0843 1.1669 0.0532
(40,40) 1.4183 0.1778 1.2856 0.1583 1.1743 0.0628 1.2454 0.0865 1.1539 0.0533

(20,20) 2.5262 0.3023 2.3506 0.2678 2.3008 0.2022 2.3265 0.2231 2.2753 0.1347
(30,50) 2.3960 0.2065 2.3144 0.1845 2.2561 0.1528 2.2813 0.1113 2.1318 0.0483
(50,30) 2.4262 0.2112 2.3415 0.2393 2.2966 0.1500 2.3161 0.1927 2.2163 0.1116

2 (50,50) 2.4151 0.2259 2.3351 0.1966 2.2297 0.1231 2.3016 0.1286 2.1652 0.0655
(40,60) 2.4631 0.3068 2.3378 0.2370 2.3048 0.1917 2.3079 0.2030 2.2521 0.1085
(60,40) 2.4371 0.2929 2.2694 0.1812 2.2513 0.1236 2.2637 0.1621 2.2191 0.0777
(40,40) 2.4664 0.3095 2.2665 0.1609 2.2678 0.1553 2.2918 0.1370 2.1326 0.0678

Table 4: AVs and MSEs of the estimates of c with varying n and m.

c (n, m)
MLE SELF0 ELF0 SELF1 ELF1

AV MSE AV MSE AV MSE AV MSE AV MSE

(20,20) 2.5632 0.1342 2.4183 0.1268 2.4678 0.1176 2.5105 0.1192 2.4747 0.1081
(30,50) 2.5316 0.1100 2.4638 0.0992 2.4925 0.0821 2.4755 0.0955 2.4908 0.0848
(50,30) 2.5489 0.1006 2.4300 0.1235 2.4681 0.0980 2.4732 0.0944 2.4830 0.0843

2.5 (50,50) 2.5660 0.1182 2.4469 0.1140 2.4548 0.1110 2.4781 0.1060 2.4843 0.0961
(40,60) 2.5683 0.1052 2.4835 0.0905 2.4977 0.0881 2.4930 0.0895 2.4971 0.0894
(60,40) 2.5479 0.0984 2.4797 0.0997 2.5170 0.9567 2.4908 0.0894 2.4809 0.0803
(40,40) 2.5647 0.1067 2.5247 0.0990 2.5625 0.1135 2.4862 0.0973 2.4858 0.0865

Table 5: AVs and MSEs of the estimates of a with varying n and m.

a (n, m)
MLE SELF0 ELF0 SELF1 ELF1

AV MSE AV MSE AV MSE AV MSE AV MSE

(20,20) 1.5378 0.0231 1.5442 0.0156 1.5256 0.0162 1.5114 0.0148 1.5249 0.0151
(30,50) 1.4814 0.0189 1.5063 0.0102 1.5108 0.0115 1.4938 0.0103 1.4970 0.0100
(50,30) 1.4918 0.0171 1.4958 0.0104 1.5009 0.0108 1.4952 0.0101 1.4947 0.0126

1.5 (50,50) 1.4894 0.0184 1.4937 0.0116 1.5205 0.0127 1.5221 0.0113 1.4845 0.0120
(40,60) 1.5205 0.0173 1.4836 0.0116 1.5386 0.0124 1.5028 0.0102 1.5155 0.0102
(60,40) 1.5075 0.0178 1.5340 0.0128 1.4709 0.0147 1.4918 0.0106 1.4979 0.0106
(40,40) 1.4955 0.0188 1.5366 0.0120 1.4865 0.0123 1.4996 0.0108 1.4987 0.0108
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6. APPLICATION

In this section, we work with two engineering data sets, initially reported in Cara-
manis et al. (1983) and Mazumdar and Gaver (1984), to demonstrate that the proposed
methodologies can be used in practice quite effectively. These data sets represent two dif-
ferent algorithms, called SC16 and P3, used by the electric utility industry to compare and
estimate unit capacity factors. More precisely, SC16 represents the Southern Company’s pro-
gram using a piecewise linear representation of equivalent charging duration (ELDC) curves
in 16 megawatt increments to represent the original charging duration curve. On his side,
P3 represents the ELDC using the Gram-Charlier series involving all cumulative power in
megawatts. The data sets considered are detailed as follows:

SC16(X), n = 23: 0.853, 0.759, 0.866, 0.809, 0.717, 0.544, 0.492, 0.403, 0.344, 0.213,
0.116, 0.116, 0.092, 0.070, 0.059, 0.048, 0.036, 0.029, 0.021, 0.014, 0.011, 0.008, 0.006.

P3(Y ), m = 22: 0.853, 0.759, 0.874, 0.800, 0.716, 0.557, 0.503, 0.399, 0.334, 0.207,
0.118, 0.118, 0.097, 0.078, 0.067, 0.056, 0.044, 0.036, 0.026, 0.019, 0.014, 0.010.

We remove the value 0.000 from the P3 algorithm so that it does not make the pa-
rameter likelihood estimates meaningless. First, we check the validity of the proposed dis-
tribution using the negative log-likelihood (-logL), Kolmogorov-Smirnov (K-S) statistic, the
Akaike information criterion (AIC) and the Bayesian information criterion (BIC). We compare
the fits of the NEB distribution with those of the Topp-Leone BXII (TLBXII) distribution,
Marshall-Olkin Extended BXII (MOEBXII) distribution, Weibull BXII (WBXII) distribu-
tion, and transmuted BXII (TBXII) distribution, as referenced in the introductory part. The
expressions of the pdfs of the competitor distributions are briefly presented below:

TLBXII : f(x; l, c, k) = 2lckxc−1(1 + xc)−(2k+1)
[
1− (1 + xc)−2k

]l−1
,

MOEBXII : f(x; a, c, k) = ack
xc−1(1 + xc)−(k+1)

[1− (1− a)(1 + xc)−k]2
,

WBXII : f(x; a, l, c, k) =
alckxc−1

1 + xc
{k log(1 + xc)}l−1 exp

[
−a{k log(1 + xc)}l

]
,

TBXII : f(x; c, k, θ, λ) =
ck

θc
xc−1

[
1 +

(x

θ

)c]−(k+1)
[
1− λ + 2λ

{
1 +

(x

θ

)c}−k
]
,

All the involved parameters are supposed to be strictly positive, except λ ∈ [−1, 1] for the
last distribution. It is supposed that x > 0, the standard completion applied on these pdfs
for x ≤ 0. We use the maximum likelihood estimation and the K-S test to fit the two data
sets separately for the proposed and the above competitor distributions. We discover that
the NEB distribution provides a better fit. We also use both information criteria to find
the best model in two data sets that have a good fit based on the minimum values of AIC
and BIC, and conclude that the NEB distribution fits both data sets better than the others
distributions. The values of MLE, K-S test, AIC, and BIC are collected in Tables 6 and 7.
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Table 6: MLEs, AIC, BIC and KS statistic for the SC16 data.

Model MLEs -logL K-S AIC BIC

NEB(a, c, k) (1.3907, 0.7741, 5.3351) −7.0094 0.9400 −8.0187 −4.6123
TLBXII(l, c, k) (234.8565, 0.1510, 5.4960) −6.1992 0.9739 −6.3985 −2.9920
MOEBXII(a, c, k) (0.8894, 0.8332, 3.7239) −6.9174 0.9433 −7.8348 −4.4283
WBXII(a, l, c, k) (1.1192, 13.1646, 0.0756, 1.582) −7.4218 0.9500 −6.8437 −2.3017
TBXII(c, k, θ, λ) (0.7533, 337.0553, 573.6415, 0.0924) −7.4215 1.0206 −6.8308 −2.2888

Table 7: MLEs, AIC, BIC and KS statistic for the P3 data.

Model MLEs -logL K-S AIC BIC

NEB(a, c, k) (1.3630, 0.8704, 5.2907) −4.4913 0.9407 −2.9825 0.2906
TLBXII(l, c, k) (255.2371, 0.1688, 5.5850) −3.9032 0.9767 −1.8063 1.4668
MOEBXII(a, c, k) (0.7887, 0.9515, 3.6233) −4.4305 0.9448 −2.8611 0.4120
WBXII(a, l, c, k) (4.4466, 9.8049, 0.1123, 1.3798) −4.8735 0.9413 −1.7470 2.6171
TBXII(c, k, θ, λ) (0.8467, 474.7816, 428.0671, 0.1096) −4.8649 1.0368 −1.7298 2.6344

From Tables 6 and 7, we can note that the parameter a is estimated in an intermediate
way between 0 and 2, justifying the alternative identity of the distribution NEB compared
to the BXII and PITL distributions.

For both data sets, the MLEs and Bayes estimates of the model parameters are given
along with their standard errors (SEs), and the stress-strength reliability coefficient values
are obtained in Table 8. As we had no prior information apart from a few observations, we
only use non-informative values for the gamma prior.

Table 8: Maximum likelihood and Bayes estimates of R and distribution
parameters with SEs based on the considered data-sets.

Estimates R
a c k1 k2

AV SE AV SE AV SE AV SE

MLE 0.4861 1.1371 0.3581 0.8254 0.1494 4.1941 0.8725 3.9586 0.9018
SELF0 0.4878 1.0790 0.2190 0.8488 0.1502 4.5912 0.7115 4.3966 0.1093
ELF0 0.4747 0.9715 0.3127 0.8448 0.1684 3.9384 0.8198 3.7017 0.1121

Based on Table 8, an estimate of R is approximately obtained as 0.48. We conclude
that the P3 algorithm has slightly more storage capacity for the electric utility industry.
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7. CONCLUSION

This article emphasized a new three-parameter heavy right-tailed distribution that
consolidates, in a certain sense, the “popular Burr type XII distribution” and the “promis-
ing power inverted Topp-Leone distribution”. The slip between these two well-established
distributions was made by a special shift parameter. The new distribution benefits from
notable advantages, including a flexible decreasing and unimodal probability density func-
tion, a decreasing upside-down bathtub-shaped hazard rate function, as well as a manageable
quantile function, (first-order) stochastic ordering properties, moments, incomplete moments,
and probability weighted moments. The classical and Bayesian approaches were developed to
estimate the model and stress-strength reliability parameters. The effectiveness and potential
of the new model were highlighted using both simulated and actual data, demonstrating that
it can be a superior replacement for other lifetime models in the literature.
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