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1. INTRODUCTION

Let X1, X2, ..., Xn be iid random variables (RVs) with a common distribution function
(DF) F (x) and let X1:n, X2:n, ..., Xn:n be the corresponding order statistics. The DF of the
k-th order statistic Xk:n, 1 ≤ k ≤ n, is given by

(1.1) Fk:n(x) = P (Xk:n ≤ x) = BF (x)(k, n− k + 1),

where Bx(a, b) is the usual incomplete beta function with the shape parameters a, b > 0
(cf. David and Nagaraja [19]). A sequence {Xk:n} is called a sequence of order statistics
with variable rank (cf. [3]) if 1 < kn < n and min{kn, n− kn} → ∞, as n →∞ (denoted by
min{kn, n− kn} −−→

n
∞), where we have the following two cases:

1. If kn
n −−→

n
0 (or kn

n −−→
n

1), then Xkn:n is called the lower intermediate order statistic

(or the upper intermediate order statistics);

2. If kn
n −−→

n
p (0 < p < 1), then Xkn:n is called the central order statistic.

A prominent example for the central order statistics is the p-th sample quantile (includ-
ing the median, quartiles, percentiles etc.), where kn = [np] + 1 and [ · ] is the greatest integer
function (see David and Nagaraja [19]). On the other hand, the intermediate order statistics
also have many applications, e.g., they can be used to estimate the probabilities of the future
extremes and tail quantiles of the underlying distribution that are extremely relative to the
available sample size, cf. [33]. Moreover, many authors, e.g., Mason [30] and Teugels [36]
have also found estimates that are based, in part, on intermediate order statistics.

The literature abounds with many different results for intermediate and central order
statistics and their applications. Interested readers may refer to Balkema and de Haan [3, 4],
Barakat [5, 6], Barakat and El-Shandidy [7], Barakat and Omar [8, 9], Chibisov [18], Falk [21],
Falk and Wisheckel [22], Frey and Zhang [23], Ho and Lee [27], Nagaraja and Nagaraja [31],
Peng and Yang [32], Smirnov [35], and Wu [37]. The bootstrap method introduced in Efron
[20] is a general procedure for approximating the sampling distributions of statistics based on
re-sampling from the data at hand. There are several forms of the bootstrap and additionally
several other re-sampling methods that are related to it, such as jackknifing, cross-validation,
randomization tests, and permutation tests. The bootstrap method is shown to be successful
in many situations and is accepted as an alternative to the asymptotic methods (for more
details, see [14] and [31]). Let Xn = (X1, X2, ..., Xn) be a random sample from an unknown
DF F (x). For m = m(n) −−→

n
∞, assume that Yi, i = 1, 2, ...,m, are conditionally iid RVs

with distribution

P (Yi = Xj |Xn) =
1
n

, j = 1, 2, ..., n, i ∈ {1, 2, ...,m},

then (Y1, Y2, ..., Ym) is a random re-sample of size m from the empirical DF

Fn(x) =
1
n

n∑
i=1

I(−∞,x)(Xi) =
1
n

Qn(x),

where IA(x) is the indicator function and Qn(x) is an RV distributed as a binomial distri-
bution with parameters n and F (x), denoted by Qn(x) ∼ B(n, F (x)). Furthermore, let the
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extreme value theory (see [14]) be applicable to the extreme order statistic Xk:n, which
means that there exist normalizing constants an > 0 and bn such that Fk:n(anx + bn) =
BF (anx+bn)(k, n− k + 1) weakly converges, as n →∞ (denoted by w−−→

n
) to a non-degenerate

DF G(x), where G(x) is one of the extreme value distributions. Now, let Y1:m, Y2:m, ..., Ym:m

be the corresponding order statistics of Y1, Y2, ..., Ym, and define

Hn,m(amx + bm) = P (Yk:m ≤ amx + bm|Xn) = BFn(amx+bm)(k, m− k + 1).

Hn,m(amx + bm) is called the bootstrap distribution of a−1
n (Xk:n − bn), where n and m are

the sample size and re-sample size, respectively. A full-sample bootstrap is the case when
m = n. In contrast, m out of n bootstrap technique is the case when m < n. One of the
bootstrap’s desired properties is consistency; namely, the bootstrap’s limit distribution is
the same as the original statistic distribution. For a long time, it has been known that a
full-sample bootstrap does not work for order statistics. This seminal result was apparently
first revealed for extremes by Athreya and Fukuchi [1] and Fukuchi [24]. Moreover, it was
proved for intermediate order statistics by Geluk and de Haan [25] and Barakat et al. [16].
Finally, for central order statistics, this result was proved by Barakat et al. [16]. Athreya
and Fukuchi [1] and Fukuchi [24] (see also Athreya and Fukuchi [2]) studied the consistency
of bootstrapping extremes for known and unknown normalizing constants and they showed
that the bootstrap DF fails to be consistent in the full-sample bootstrap case. Moreover,
they showed that the bootstrap DF is a weakly consistent estimate if m = o(n) and it is
strongly consistent if m = o( n

log n). Barakat et al. [11] extended this result to the extreme
generalized order statistics. Later, Barakat et al. [16] have got some similar results for the
order statistics with variable ranks. Namely, they showed that the bootstrapping central and
intermediate quantiles fail to be consistent in the full-sample bootstrap case. Moreover, they
also showed that when the normalizing constants are known, the bootstrap DFs for central
and intermediate order statistics are weakly consistent when m = o(n) (see, Theorems 4.1
and 4.2 in [16]). Barakat et al. [13] extended this result to the case where we use the bootstrap
for estimating a central, or an intermediate quantile under power normalization.

The main aim of the present work is to extend the results of [16] by investigating the
strong consistency of bootstrapping central and intermediate order statistics for an appro-
priate choice of re-sample size for known and unknown normalizing constants. A simulation
study is conducted to illustrate how to choose the re-sample’s size. Sections 2 and 3 are
devoted respectively to the intermediate and central order statistics, while the simulation
study is conducted in Section 4. Finally, we conclude the paper in Section 5. The rest of this
introductory section will be devoted to review some basic results pertaining to the asymptotic
behaviour of the central and intermediate order statistics, which are the essential pillars of
our study.

1.1. Some important aspects of the asymptotic theory of order statistics with
variable rank

The following lemma (Lemma 1.1 in Barakat [6]) is a cornerstone of the asymptotic
theory of order statistics with variable rank.
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Lemma 1.1 (cf. [6], see also [28]). For any sequence of variable ranks {kn}, let {un,n≥1}
be a sequence of real numbers and let −∞ ≤ τ ≤ ∞. Then,

(1.2) Fkn:n(un) = P (Xkn:n ≤ un) −−→
n

N (τ),

if and only if

(1.3)
nF (un)− kn√

kn(1− kn
n )

−−→
n

τ,

where N ( ·) is the standard normal DF and Fkn:n is defined in (1.1).

Since the variable ranks are classified into central and intermediate ranks, we will
consider each of the two cases separately.

1.1.1. Asymptotic theory of the intermediate order statistics

If kn
n −−→

n
0 (i.e., the lower intermediate case), then by using the linear parametrization’s

transformation un = anx + bn and τ = U(x), (1.3) will be reduced to

(1.4)
nF (anx + bn)− kn√

kn
−−→

n
U(x),

(cf. [18]). A sequence of intermediate rank {kn} is said to satisfy the Chibisov’s condition
([18]), if

(1.5)
√

kn+zn(ν) −
√

kn −−→
n

ανl

2
,

for any sequence of integer values zn(ν), with zn(ν)

n1−α
2
−−→

n
ν, where 0 < α < 1, l > 0, and ν is

any real number. Chibisov [18] showed that, whenever {kn} satisfies the condition (1.5), the
only possible non-degenerate forms for N (U(x)) in (1.2) are N (Ui;β(x)), i = 1, 2, 3, where
U3;β(x) = U3(x) = x, ∀x,

U2;β(x) =

{
−β log |x | , x ≤ 0,

∞, x > 0,
U1;β(x) =

{
−∞, x ≤ 0,

β log x, x > 0,

and β is a positive constant depending only on α, l and the type of the DF F (x). Chibisov [18]
noted that, the condition (1.5) implies kn

nα −−→
n

l2. On the other hand, Barakat and Omar [8]
showed that the last condition implies the Chibisov’s condition, which means that the Chibisov
rank sequences are widely-used and the Chibisov’s limit types are vastly applicable. Recently,
Barakat et al. [12] characterized the asymptotic behaviour of the scale normalizing constant
an.

Lemma 1.2 ([12]). Let L(n) = exp(
√

n). Furthermore, let F(anx+bn) ∈D(l,α)(N(U(x)))
mean that (1.4) is satisfied for kn ∼ l2nα. Then, for any ε > 0,

1. anL
1
β

+ε(kn) −−→
n
∞ and anL

1
β
−ε(kn) −−→

n
0, if F (anx + bn) ∈ D(l,α)(N (U1;β(x)));

2. anL
−1
β

+ε(kn) −−→
n
∞ and anL

−1
β
−ε(kn) −−→

n
0, if F (anx + bn) ∈ D(l,α)(N (U2;β(x)));

3. anL+ε(kn) −−→
n
∞ and anL−ε(kn) −−→

n
0, if F (anx + bn) ∈ D(l,α)(N (U3(x))).



Bootstrapping order statistics with variable rank 549

1.1.2. Asymptotic theory of the central order statistics

Smirnov [35] revealed that it is possible to find two rank sequences {kn} and {k?
n} with

kn
n ∼ k?

n
n ∼ p, 0 < p < 1, to lead to different non-degenerate limiting DFs for Xkn:n and Xk?

n:n.
However, this is not possible if kn ∼ k?

n ∼ pn + o(
√

n). Under this condition, Smirnov [35]
showed that with un = anx + bn and τ = V (x), (1.3) will be reduced to

(1.6)
√

n
F (anx + bn)− p

Cp
−−→

n
V (x),

where Cp =
√

p(1− p). Smirnov [35] showed that, whenever {kn} satisfies the condition
kn ∼ pn+o(

√
n), the only possible non-degenerate forms for N (V (x)) in (1.2) are N (Vi;β(x)),

i = 1, 2, 3, 4, where

V1;β(x) =

{
−∞, x ≤ 0,

cxβ, x > 0,
V2;β(x) =

{
−c |x | β , x ≤ 0,

∞, x > 0,

V3;β(x) =

{
−c1 |x | β , x ≤ 0,

c2x
β , x > 0,

V4;β(x) = W4(x) =


−∞, x ≤ −1,

0, −1 < x ≤ 1,

∞, x > 1,

c = c1 = 1√
p(1−p)

, c2 = c1
A , and A > 0. In this case, we say that the DF F belongs to the

domain of normal p-attraction of the limit type Vi;β(x), i ∈ {1, 2, 3, 4}, and we write F ∈
D(p)(Vi;β(x)).

2. BOOTSTRAPPING INTERMEDIATE ORDER STATISTICS

In this section, we investigate the strong consistency of the bootstrap distribution
Hn,m(amx+ bm) = P (Xkm:m ≤ amx+ bm|Xn), where kn is the Chibisov rank sequence, which
satisfies the condition (1.5), and the condition (1.4) is satisfied with U(x) = Ui;β(x), i ∈
{1, 2, 3}, for some suitable normalizing constants an > 0 and bn.

2.1. Almost sure consistency of bootstrapping intermediate for known normal-
izing constants

Barakat et al. [16] proved the weak limit relation sup
x∈R

|Hn,m(amx+bm)−N(Ui;β(x))| p−−→
n

0,

if m = o(n), where “
p−−→
n

” stands for convergence in probability, as n →∞. The following
theorem extends this result.

Theorem 2.1. Let m be chosen such that
∑∞

n=1 λ
√

n
m < ∞, for each λ ∈ (0, 1). Then,

sup
x∈R

|Hn,m(amx + bm)−N (Ui;β(x))| w.p.1−−−→
n

0,

where the symbol “
w.p.1−−−→

n
” denotes the convergence with probability one (almost surely con-

vergence) as n →∞.
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Proof: Let k̄n = kn
n . Then, we have

mFn(amx + bm)− km√
km

=
√

m
Fn(amx + bm)− k̄m√

k̄m

=
√

m

n

(
nFn(amx + bm)− nk̄m√

nk̄m

)

=
√

m

n

(
nFn(amx+bm)−nF (amx + bm)√

nk̄m

)
+

mF (amx+bm)−km√
km

.

On the other hand, from the assumptions of the theorem, we get

mF (amx + bm)− km√
km

−−→
n

Ui;β(x), i ∈ {1, 2, 3}.

Thus, to prove the theorem, we only need to show that√
m

n

(
nFn(amx + bm)− nF (amx + bm)√

nk̄m

)
w.p.1−−−→

n
0.

By Borel–Cantelli lemma, it is enough to prove that
∞∑

n=1

P

(√
m

n

∣∣∣∣∣nFn(amx + bm)− nF (amx + bm)√
nk̄m

∣∣∣∣∣ > ε

)
< ∞,

for every ε > 0. Now for each θ > 0 we get√
m

n
log P

(√
m

n

(
nFn(amx + bm)− nF (amx + bm)√

nk̄m

)
> ε

)
=

√
m

n
log P

(
nFn(amx + bm)− nF (amx + bm)√

nk̄m

>

√
n

m
ε

)
=
√

m

n
log P

(
eθTn,m > eθ

√
n
m

ε
)
,

where
Tn,m =

nFn(amx + bm)− nF (amx + bm)√
nk̄m

.

By using the Markov inequality, we get√
m

n
log P

(
eθTn,m > eθ

√
n
m

ε
)
≤
√

m

n
log

(
e−θ

√
n
m

εE
(
eθTn,m

))
=√

m

n

(
−
√

n

m
θε + log ϕm(θ)

)
= −θε +

√
m

n
log ϕm(θ) −−→

n
−θε,

where ϕm(θ) is the moment generating function for the standard normal DF. Therefore, for
sufficiently large n, we get the following relation:

∞∑
n=1

P

(√
m

n

(
nFn(amx + bm)− nF (amx + bm)√

nk̄m

)
> ε

)
=

∞∑
n=1

exp

{
log P

(√
m

n

(
nFn(amx + bm)− nF (amx + bm)√

nk̄m

)
> ε

)}
≤

∞∑
n=1

e−θε
√

n
m < ∞,

for every ε > 0, since the condition
∑∞

n=1 λ
√

n
m < ∞, for each λ ∈ (0, 1), guarantees the

convergence of the infinite series
∑∞

n=1 exp
{
−θε

√
n
m

}
, for every ε > 0. By similar reasoning

we can show that
∞∑

n=1

P

(√
m

n

(
nFn(amx + bm)− nF (amx + bm)√

nk̄m

)
< −ε

)
< ∞,

for every ε > 0. The theorem is proved.
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2.2. Almost sure consistency of bootstrapping intermediate for unknown nor-
malizing constants

If the DF F is unknown, the normalizing constants am and bm need to be estimated
from the sample data for Hn,m( ·) to be of use. Let âm and b̂m be estimators of am and
bm based on Xn = (X1, X2, ..., Xn). Define the bootstrap distribution for the normalized
intermediate order statistic a−1

n (Xkn:n − bn) with the estimated normalizing constants by

Ĥn,m(âmx + b̂m) = P
(
Ykm:m ≤ âmx + b̂m|Xn

)
.

Fukuchi [24] provided some sufficient conditions for the bootstrap distribution of the maxi-
mum order statistics to be consistent. The following theorem extends the Fukuchi’s result by
providing sufficient conditions for Ĥn,m(âmx + b̂m) to be consistent.

Theorem 2.2. Let m = m(n). Then,

sup
x∈R

|Ĥn,m(âmx + b̂m)−N (Ui;β(x))| w.p.1−−−→
n

0, i = 1, 2, 3,

if (i) Hn,m(x)
w.p.1−−−→

n
N (Ui;β(x)),

(ii)
âm

am

w.p.1−−−→
n

1,

and

(iii)
b̂m − bm

am

w.p.1−−−→
n

0.

Moreover, this theorem holds if “
w.p.1−−−→

n
” is replaced by “

p−−→
n

”.

Proof: First, we note that (i) is equivalent to

√
m

Fn(amx + bm)− k̄m√
k̄m

w.p.1−−−→
n

Ui;β(x).

Moreover, for every ε > 0, the relations (ii) and (iii) imply

(2.1) (1− ε)am < âm < (1 + ε)am

and

(2.2) bm − εam < b̂m < bm + ε am,

respectively. Now, fix x > 0, the relations (2.1) and (2.2) yield

lim sup
n→∞

√
m

Fn(âmx + b̂m)− k̄m√
k̄m

≤ lim sup
n→∞

√
m

Fn((1 + ε)x + ε)am + bm)− k̄m√
k̄m

≤ Ui;β((1 + ε)x + ε).

By a similar way we can prove that

lim inf
n→∞

√
m

Fn(âmx + b̂m)− k̄m√
k̄m

≥ Ui;β((1− ε)x− ε).
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Since Ui;β(x) is continuous, we get

lim
n→∞

√
m

Fn(âmx + b̂m)− k̄m√
k̄m

= Ui;β(x).

By a similar argument, the same limit relation can easily be proved for x < 0. Thus,
Hn,m(âmx + b̂m)

w.p.1−−−→
n

N (Ui;β(x)). Now, suppose that the conditions (i), (ii), and (iii) hold

in probability. Then, for any subsequence {ni}
∞
i=1 of {n}∞n=1, there exists a further subse-

quence {n?
i }

∞
i=1 such that (i), (ii), and (iii) hold w.p.1. Then, by applying the first part of the

theorem, we get

sup
x∈R

|Ĥn?
i ,m(n?

i )(âm(n?
i )x + b̂m(n?

i ))−N (Ui;β(x))| w.p.1−−−→
n

0.

The theorem is established.

Now, for the bootstrap distribution Ĥn,m(âmx+ b̂m) to be consistent, we need to choose
âm and b̂m satisfying the conditions (ii) and (iii) in Theorem 2.2. Since am and bm are
functionals of F then, the natural choices of âm and b̂m are the empirical counter parts of am

and bm. In the next theorem, we give appropriate choices for âm and b̂m for each domain of
attraction of N (Ui;β(x)), i = 1, 2, 3.

Theorem 2.3. Let k
′
n = n

mkm, k
′′
n = n

m(km +
√

km), and x0 be the left endpoint of F

(i.e., x0 = inf{x : F (x) > 0). Then,

(i) if F (anx + bn) ∈ D(l,α)(N (U1;β(x))), âm = F−1
n

(
km
m

)
− x̂0 = Xk′n:n −Xkn:n, and

b̂m = Xkn:n, where x̂0 = Xkn:n is an estimator for x0;

(ii) if F (anx + bn) ∈ D(l,α)(N (U2;β(x))), âm = −F−1
n

(
km
m

)
= −Xk′n:n, and b̂m = 0;

(iii) if F (anx + bn) ∈ D(l,α)(N (U3(x))), âm = F−1
n

(
km+

√
km

m − km
m

)
= Xk′′n :n −Xk′n:n,

and b̂m = F−1
n

(
km
m

)
= Xk′n:n.

If m = o(n), then

(2.3) sup
x∈R

∣∣∣Ĥn,m(âmx + b̂m)−N (Ui;β(x))
∣∣∣ p−−→

n
0.

Moreover, if
∑∞

n=1 λ
√

n
m < ∞, for each λ ∈ (0, 1), then (2.3) holds w.p.1.

Proof: First, let F (anx + bn) ∈ D(l,α)(N (U1;β(x))). Therefore, in view of the result of
Chibisov [18], we have bn = bm = x0 > −∞. In order to apply Parts (ii) and (iii) in Theorem
2.2, it suffices to show that

(2.4)
âm

am
=

Xk′n:n −Xkn:n

am
−−→

n
1

and

(2.5)
b̂m − bm

am
=

Xkn:n − x0

am
−−→

n
0,

both in probability or w.p.1. First, let us focus on the case of convergence in probability.
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Now, we have

âm

am
=

Xk′n:n − x0

am
− an

am
× Xkn:n − x0

an
,

b̂m − bm

am
=

an

am
× Xkn:n − x0

an
,

and P (Xkn:n−x0

an
≤ x) w−−→

n
N (U1;β(x)), where N (U1;β(x)) is a non-degenerate DF. Therefore,

to prove (2.4) and (2.5), it is sufficient to show that

(2.6)
Xk′n:n − x0

am

p−−→
n

1
and

(2.7)
an

am
−−→

n
0.

First we prove (2.6). Clearly,

(2.8)
nF (amx + bm)− k

′
n√

k′n
=
√

n

m

(
√

m
F (amx + bm)− k̄m√

k̄m

)
−−→

n

{
∞, if x > 1,

−∞, if x < 1.

Thus, from (2.8), we get

P

(
Xk′n:n − x0

am
< ε + 1

)
−−→

n
N (∞) = 1,

which in turn implies

(2.9) P

(
Xk′n:n − x0

am
> ε + 1

)
−−→

n
0.

Similarly we have

(2.10) P

(
Xk′n:n − x0

am
< −ε + 1

)
−−→

n
N (−∞) = 0.

From (2.9) and (2.10), we get

P

(∣∣∣∣Xk′n:n − x0

am
− 1
∣∣∣∣ > ε

)
−−→

n
0.

Hence (2.6) is proved. Turning now to prove (2.7). By using Lemma 1.2 and the condition
m = o(n), we get

an

am
∼ L

−l
β (kn)

L
−l
β (km)

=
e
−l
β

n
α
2

e
−l
β

m
α
2

= e
−l
β

n
α
2

�
1−(m

n )
α
2
�
−−→

n
0,

which proves (2.7). Finally, in order to switch from convergence in probability to convergence
w.p.1, we argue by the same way as in the end of the proof of Theorem 2.1. This completes
the proof of Part (i). Now, assume that F (anx+ bn) ∈ D(l,α)(N (U2;β(x))). Therefore, in view
of the result of Chibisov [18], we have x0 = −∞ and bn = bm = 0 (this legitimates the choice
b̂m = 0). On the other hand, by Theorem 2.3 in order to prove Part (ii) of the theorem, it
suffices to show that

(2.11)
âm

am
=
−Xk′n:n

am
−−→

n
1

and

(2.12)
b̂m − bm

am
−−→

n
0,

both in probability or w.p.1. First, let us focus on the case of convergence in probability.
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It is clear that (2.12) is satisfied (actually b̂m−bm
am

= 0, for all m). Therefore, we have only to
prove (2.11). Clearly, we have

(2.13)
nF (amx + bm)− k

′
n√

k′n
=
√

n

m

(
√

m
F (amx)− k̄m√

k̄m

)
−−→

n

{
−∞, if x < −1,

∞, if x > −1.

Thus, from (2.13), we get

P

(
Xk′n:n

am
< −(ε + 1)

)
−−→

n
N (−∞) = 0,

which implies to

(2.14) P

(−Xk′n:n

am
> ε + 1

)
−−→

n
0.

Similarly we have

P

(
Xk′n:n

am
< −(1− ε)

)
−−→

n
N (∞) = 1,

which in turn is equivalent to

(2.15) P

(−Xk′n:n

am
< 1− ε

)
−−→

n
0.

From (2.14) and (2.15), we get P

(∣∣∣∣−X
k
′
n:n

am
− 1
∣∣∣∣ > ε

)
−−→

n
0, which proves (2.11), as well as

Part (ii), when the convergence in the probability. In order to switch to the convergence
w.p.1, we again argue by the same way as in the end of the proof of Theorem 2.1. Finally,
assume that F (anx + bn) ∈ D(l,α)(N (U3(x))). By Theorem 2.2, in order to prove Part (iii),
it suffices to show that

(2.16)
âm

am
=

Xk′′n :n −Xk′n:n

am
−−→

n
1

and

(2.17)
b̂m − bm

am
=

Xk′n:n − bm

am
−−→

n
0,

both in probability or w.p.1. First, let us again focus on the case of convergence in probability
and write

âm

am
=

Xk′′n :n −Xk′n:n

am
=

Xk′′n :n − bm

am
−

Xk′n
− bm

am
.

Hence, to prove (2.16) and (2.17), it is sufficient to show that

(2.18)
Xk

′′
n :n − bm

am

p−−→
n

1

and

(2.19)
Xk′n:n − bm

am

p−−→
n

0.

First, we prove (2.18). One can write

nF (amx + bm)− k
′′
n√

k′′n
=

nF (amx + bm)− n
m(km +

√
km)√

n
m(km +

√
km)
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=
√

n

m

(
mF (amx + bm)− (km +

√
km)√

(km +
√

km)

)
=
√

n

m

mF (amx + bm)− (km +
√

km)√
km(1 + 1√

km
)


=
√

n

m

(
mF (amx + bm)−(km +

√
km)√

km(1 + o(1))

)
=
√

n

m

(
mF (amx + bm)−km√

km(1 + o(1))
−

√
km√

km(1 + o(1))

)
.

On the other hand, the assumption of the theorem yields

mF (amx + bm)− km√
km(1 + o(1))

−−→
n

x.

Therefore, we get

(2.20)
nF (amx + bm)− k

′′
n√

k′′n
−−→

n

{
∞, if x > 1,

−∞, if x < 1.

Thus, for every ε > 0, we get

P

(
Xk′′n :n − bm

am
< ε + 1

)
−−→

n
N (∞) = 1,

which implies

(2.21) P

(
Xk′′n :n − bm

am
> ε + 1

)
−−→

n
0.

Moreover, by the same way we get

(2.22) P

(
Xk′′n :n − bm

am
< 1− ε

)
−−→

n
N (−∞) = 0.

Thus, (2.21) and (2.22) lead to

P

(∣∣∣∣∣Xk′′n :n − bm

am
− 1

∣∣∣∣∣ > ε

)
−−→

n
0,

which proves (2.18). Next, we prove (2.19). We have

nF (amx + bm)− k
′
n√

k′n
=

nF (amx + bm)− n
mkm√

n
mkm

(2.23) =
√

n

m

(
√

m
F (amx + bm)− k̄m√

k̄m

)
−−→

n

{
∞, if x > 0,

−∞, if x < 0.

Thus, (2.23) yields P

(
X

k
′
n:n
−bm

am
< ε

)
−−→

n
N (∞) = 1, which implies that

(2.24) P

(
Xk′n:n − bm

am
> ε

)
−−→

n
0.

Similarly we have

(2.25) P

(
Xk′n:n − bm

am
< −ε

)
−−→

n
N (−∞) = 0.
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Therefore, the relations (2.24) and (2.25) imply

P

(∣∣∣∣∣Xk′n:n − bm

am

∣∣∣∣∣ > ε

)
−−→

n
0,

and this proves (2.19). In order to switch to the convergence w.p.1, we argue by the same
way as in the end of the proof of Theorem 2.1. This completes the proof of the theorem.

3. BOOTSTRAPPING CENTRAL ORDER STATISTICS

In this section, we discuss the strong consistency of the bootstrap distribution
H?

n,m(cmx + dm) = P (Xkm:m ≤ cmx + dm|Xn), where kn is the central rank sequence, which
satisfies the condition kn ∼ pn+o(

√
n), and (1.6) is satisfied with V (x) = Vi;β(x), i = 1, 2, 3, 4,

for some suitable normalizing constants cn > 0 and dn.

3.1. Almost sure consistency of bootstrapping central for known normalizing
constants

Barakat et al. [16] proved the weak limit relations sup
x∈R

|H?
n,m(cmx + dm)−N (Vi;β(x))|

p−−→
n

0, i = 1, 2, 3, 4, if m = o(n). The following theorem extends this result.

Theorem 3.1. If
∑∞

n=1 λ
√

n
m < ∞, for each λ ∈ (0, 1), then

sup
x∈R

|H?
n,m(cmx + dm)−N (Vi;β(x))| w.p.1−−−→

n
0, i = 1, 2, 3, 4.

Proof: On one hand, we have

√
m

Fn(cmx + dm)− p

Cp
=
√

m

n

(
nFn(cmx + dm)− nF (cmx + dm)√

np(1− p)

)
+
√

m
F (cmx + dm)− p

Cp
.

On the other hand, the assumption of the theorem guarantees that F (cmx + dm) ∼ p, as
n →∞, and

√
m

F (cmx + dm)− Cp

Cp
−−→

n
Vi;β(x).

Thus, to prove
√

m
Fn(cmx + dm)− Cp

Cp

w.p.1−−−→
n

Vi;β(x),

we need only to show that√
m

n

(
nFn(cmx + dm)− nF (cmx + dm)√
nF (cmx + dm)(1− F (cmx + dm))

)
w.p.1−−−→

n
0.
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By Borel–Cantelli lemma, it is enough to prove that

∞∑
n=1

P

(√
m

n

∣∣∣∣∣ nFn(cmx + dm)− nF (cmx + dm)√
nF (cmx + dm)(1− F (cmx + dm))

∣∣∣∣∣ > ε

)
< ∞,

for every ε > 0. Now, for each θ > 0 we have√
m

n
log P

(√
m

n

nFn(cmx + dm)− nF (cmx + dm)√
nF (cmx + dm)(1− F (cmx + dm))

> ε

)
=

√
m

n
log P

(
nFn(cmx + dm)− nF (cmx + dm)√
nF (cmx + dm)(1−F (cmx + dm))

>

√
n

m
ε

)
=
√

m

n
log P

(
eθTn,m >eθ

√
n
m

ε
)
,

where Tn,m is defined as

Tn,m =
nFn(cmx + dm)− nF (cmx + dm)√
nF (cmx + dm)(1− F (cmx + dm))

.

By using Markov inequality we get√
m

n
log P

(
eθTn,m > eθ

√
n
m

ε
)
≤
√

m

n
log

(
e−θ

√
n
m

εE
(
eθTn,m

))
= −θε +

√
m

n
log ϕm(θ) −−→

n
−θε.

Therefore, for sufficiently large n, we get

∞∑
n=1

P

(√
m

n

(
nFn(cmx + dm)− nF (cmx + dm)√
nF (cmx + dm)(1− F (cmx + dm))

)
> ε

)
=

∞∑
i=1

exp

{
log P

(√
m

n

(
nFn(cmx + dm)−nF (cmx + dm)√
nF (cmx + dm)(1−F (cmx + dm))

)
>ε

)}
≤

∞∑
i=1

e−θε
√

n
m <∞,

for every ε > 0, since the condition
∑∞

n=1 λ
√

n
m < ∞, for each λ ∈ (0, 1), guarantees the

convergence of the infinite series
∑∞

n=1 exp
{
−θε

√
n
m

}
, for every ε > 0. By similar reasoning

we can show that
∞∑

n=1

P

(√
m

n

(
nFn(cmx + dm)− nF (cmx + dm)√
nF (cmx + dm)(1− F (cmx + dm))

)
< −ε

)
< ∞,

for every ε > 0. The theorem is proved.

3.2. Limits of bootstrap distribution for central order statistics when normalizing
constants are unknown

Let ĉm and d̂m be estimators of cm and dm based on Xn = (X1, X2, ..., Xn), respectively.
Define the bootstrap distribution for the normalized central order statistic c−1

n (Xkn:n − dn)
with the estimated normalizing constants by Ĥ?

n,m(ĉmx+ d̂m) = P (Ykm:m ≤ ĉmx+ d̂m|Xn). In
order to study the limit of bootstrap distribution for central order statistics when normalizing
constants are unknown, we start with the following essential theorem.
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Theorem 3.2. Let m = m(n). Then, for all the continuity points of Vi;β(x), i = 1, 2, 3
(see Remark 3.1), we have

sup
x∈R

∣∣∣Ĥ?
n,m(ĉmx + d̂m)−N (Vi;β(x))

∣∣∣ w.p.1−−−→
n

0,

if (i) H?
n,m(x)

w.p.1−−−→
n

N (Vi;β(x)),

(ii)
ĉm

cm

w.p.1−−−→
n

1,

and

(iii)
d̂m − dm

cm

w.p.1−−−→
n

0.

Moreover, this theorem holds if “
w.p.1−−−→

n
” is replaced by “

p−−→
n

”.

Proof: The proof of the theorem is similar to the proof of Theorem 2.2.

Remark 3.1. A quick look at the possible non-degenerate limit laws N (Vi;β(x)),
i = 1, 2, 3, reveals that each of these limit laws has at most one discontinuity point.

For the bootstrap distribution Ĥ?
n,m(ĉmx + d̂m) to be consistent, we need to choose

ĉm and d̂m satisfying the conditions (ii) and (iii) in Theorem 3.2. In the next theorem, we
suggest choices for ĉm and d̂m as a functional of the empirical distribution for the domains
of attraction F (cnx + dn) ∈ D(p)N (Vi;β(x)), i = 1, 2, 3.

Theorem 3.3. Let k
′
n = [pn] + 1, k

′′
n = [ n√

m
+ pn] + 1, and k

′′′
n = [pn− n√

m
] + 1. Then,

1. if F (cnx+dn) ∈ D(p)(N (V1;β(x))), ĉm = F−1
n

(
p + 1√

m

)
−F−1

n (p) = Xk′′n :n−Xk′n:n,

and d̂m = F−1
n (p) = Xk′n:n;

2. if F (cnx+dn) ∈ D(p)(N (V2;β(x))), ĉm = F−1
n (p)−F−1

n

(
p− 1√

m

)
= Xk′n:n−Xk′′′n :n,

and d̂m = F−1
n (p) = Xk′n:n;

3. if F (cnx+dn) ∈ D(p)(N (V3;β(x))), ĉm = F−1
n

(
p + 1√

m

)
−F−1

n (p) = Xk′′n :n−Xk′n:n,

and d̂m = F−1
n (p) = Xk′n:n.

If m = o(n), then

(3.1) sup
x∈R

∣∣∣Ĥ?
n,m(ĉmx + d̂m)−N (Vi;β(x))

∣∣∣ p−−→
n

0.

Moreover, if
∑∞

n=1 λ
√

n
m < ∞ for each λ ∈ (0, 1) then (3.1) holds w.p.1.

Proof: Let F (cnx + dn) ∈ D(p)(N (V1;β(x))). From Theorem 3.2, it suffices to show
that

(3.2)
ĉm

cm
=

Xk′′n :n −Xk′n:n

cm
−−→

n
1

and

(3.3)
d̂m − dm

cm
=

Xk
′
n:n − dm

cm
−−→

n
0,

both in probability or w.p.1. First, let us focus on the case of convergence in probability.
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We start with
ĉm

cm
=

Xk′′n :n −Xk′n:n

cm
=

Xk′′n :n − dm

cm
−

Xk′n:n − dm

cm
.

Thus, to prove (3.2) and (3.3), it is sufficient to show that

(3.4)
Xk′′n :n − dm

cm

p−−→
n

1

and

(3.5)
Xk′n:n − dm

cm

p−−→
n

0.

We start with the proof of (3.4). By using the relations [ n√
m

+ pn] = n√
m

+ pn− δ, where

0 ≤ δ < 1, and 1√
m

+ p + 1−δ
n ∼ p, as n →∞, we get

nF (cmx + dm)− k
′′
n√

k′′n(1− k′′n
n )

=
√

n
F (cmx + dm)−

(
1√
m

+ p + 1−δ
n

)
√(

1√
m

+ p + 1−δ
n

)(
1−

(
1√
m

+ p + 1−δ
n

))

(3.6) ∼
√

n

m

(
√

m
F (cmx + dm)− p

Cp
−

1 +
√

m
n (1− δ)
Cp

)
−−→

n

{
∞, if x > 1,

−∞, if x < 1.

Relation (3.6) follows from the two obvious relations

1 +
√

m
n (1− δ)
Cp

−−→
n

1
Cp

= c and
√

m
F (cmx + dm)− p

Cp
−−→

n
cxβ.

The relation (3.6) yields P (
X

k
′′
n :n
−dm

cm
< ε + 1) −−→

n
N (∞) = 1, which is equivalent to

(3.7) P

(
Xk′′n :n − dm

cm
> ε + 1

)
−−→

n
0.

Similarly we have

(3.8) P

(
Xk′′n :n − dm

cm
< −ε + 1

)
−−→

n
N (−∞) = 0.

From (3.7) and (3.8) we get P (|
X

k
′′
n :n
−dm

cm
− 1| > ε) −−→

n
0, which proves (3.4). Now, we prove

(3.5). One can easily deduce that

(3.9)
√

n
F (cmx + dm)− p

Cp
=
√

n

m

(√
m

F (cmx + dm)− p

Cp

)
−−→

n

{
∞, if x > 0,

−∞, if x < 0.

Thus, from (3.9), we have P (
X

k
′
n:n
−dm

cm
< ε) −−→

n
N (∞) = 1, which is equivalent to

(3.10) P

(
Xk′n:n − dm

cm
> ε

)
−−→

n
0.
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Similarly we obtain

(3.11) P

(
Xk′n:n − dm

cm
< −ε

)
−−→

n
0.

Therefore, by combining the relations (3.10) and (3.11), we get P (|
X

k
′
n:n
−dm

cm
| > ε) −−→

n
0,

which proves (3.5). In order to switch to convergence w.p.1, we proceed as in the end of the
proof of Theorem 2.1. This completes the proof of Part (i).

Now, let F (cnx + dn) ∈ D(p)(N (V2;β(x))). From Theorem 3.2, it suffices to show that

(3.12)
ĉm

cm
=

Xk′n:n −Xk′′′n :n

cm
−−→

n
1

and

(3.13)
d̂m − dm

cm
=

Xk′n:n − dm

cm
−−→

n
0,

both in probability or w.p.1. Again, we first focus on the case of the convergence in probability
and we start with

ĉm

cm
=

Xk′n:n −Xk′′′n :n

cm
=

Xk′n:n − dm

cm
−

Xk′′′n :n − dm

cm
.

Hence, to prove (3.12) and (3.13), it is sufficient to show that

(3.14)
Xk′′′n :n − dm

cm

p−−→
n

−1

and

(3.15)
Xk′n:n − dm

cm

p−−→
n

0.

We prove (3.14). By applying the relations [pn− n√
m

] = pn− n√
m
− δ, 0 ≤ δ < 1, and

p− 1√
m

+ 1−δ
n ∼ p, as n →∞, we can deduce that

nF (cmx + dm)− k
′′′
n√

k′′′n (1− k′′′n
n )

=
√

n
F (cmx + dm)−

(
p− 1√

m
+ 1−δ

n

)
√(

p− 1√
m

+ 1−δ
n

)(
1−

(
p− 1√

m
+ 1−δ

n

))
(3.16) ∼

√
n

m

(
√

m
F (cmx + dm)− p

Cp
−
−1 +

√
m
n (1− δ)
Cp

)
−−→

n

{
−∞, if |x| > 1,

∞, if |x| < 1.

Thus, on account (3.16), we get P (
X

k
′′′
n :n

−dm

cm
< ε− 1) −−→

n
N (∞) = 1, which is equivalent to

(3.17) P

(
Xk′′′n :n − dm

cm
> ε− 1

)
−−→

n
0.

In the same manner, we have

(3.18) P

(
Xk′′′n :n − dm

cm
< −ε− 1

)
−−→

n
N (−∞) = 0.

From (3.17) and (3.18), we get P (|
X

k
′′′
n :n

−dm

cm
+ 1| > ε) −−→

n
0. Hence (3.14) is proved.
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We turn now to prove (3.15). We start with the obvious limit relation

(3.19)
√

n
F (cmx + dm)− p

Cp
=
√

n

m

(√
m

F (cmx + dm)− p

Cp

)
−−→

n

{
∞, if x > 0,

−∞, if x < 0,

which in turn implies that P (
X

k
′
n:n
−dm

cm
< ε) −−→

n
N (∞) = 1 and hence

(3.20) P

(
Xk′n:n − dm

cm
> ε

)
−−→

n
0.

Moreover, the limit relation (3.19) yields

(3.21) P

(
Xk′n:n − dm

cm
< −ε

)
−−→

n
0.

By combining (3.20) and (3.21), we get P (|
X

k
′
n:n
−dm

cm
| > ε) −−→

n
0, which proves (3.15). Finally,

the fact that the convergence in (3.14) and (3.15) is w.p.1 can be easily proved by the same
way as in the end of the proof of Theorem 2.1. This completes the proof of Part (ii).

Finally, consider the case F (cnx + dn) ∈ D(p)(N (V3;β(x))). From Theorem 3.2, it suf-
fices to show that

(3.22)
ĉm

cm
=

Xk′′n :n −Xk′n:n

cm
−−→

n
1

and

(3.23)
d̂m − dm

cm
=

Xk′n:n − dm

cm
−−→

n
0,

both in probability or w.p.1. We first focus on the case of the convergence in probability and
we start with

ĉm

cm
=

Xk′′n :n −Xk′n:n

cm
=

Xk′′n :n − dm

cm
−

Xk′n:n − dm

cm
.

Therefore, to prove (3.22) and (3.23), it is sufficient to show that

(3.24)
Xk′n:n − dm

cm

p−−→
n

1

and

(3.25)
Xk′′n :n − dm

cm

p−−→
n

0.

By proceeding as we did in Parts (i) and (ii), we can easily show that

(3.26)
nF (cmx + dm)− k

′′
n√

k′′n(1− k′′n
n )

−−→
n

{
∞, if x > 1,

−∞, if x < 1.

Again, by proceeding as we did in Parts (i) and (ii), the relation (3.26) yields P (|
X

k
′′
n :n
−dm

cm
−

1| > ε) −−→
n

0, which in turn proves (3.24). On the other hand, the proof of the relation

(3.25) follows also by proceeding as we did in Parts (i) and (ii). Finally, we can prove that
the convergence in both the relations (3.24) and (3.25) is w.p.1, by the same way as in the
end of the proof of Theorem 2.1. The proof is complete.
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3.3. Bootstrapping sample quantiles when the DFs of these quantiles weakly
converge to N (x) and F is unknown

It has been known for a long time that the DF of the sample quantile Xkn:n = X[pn]+1:n,
0 < p < 1, based on a continuous DF F (x) with positive probability density (PDF) f(x) in a
neighborhood of the p-th population quantile xo = F−1(p), weakly converges to the standard
normal DF (e.g., see [35]). In the present subsection, we will study the limit bootstrapping
sample quantiles when the PDF f is unknown. We start with a classical result; its proof can
be found in many known references among them [35].

Lemma 3.1. Let Xkn:n = X[pn]+1:n, 0 < p < 1, be a sample quantile, which is based

on a continuous DF F (x) with a positive PDF f(x) in a neighborhood of the p-th population

quantile x0 = F−1(p). Then,

(3.27) P (Xkn:n < cnx + dn) = P

(
√

nf(F−1(p))
Xkn:n − F−1(p)√

p(1− p)
≤ x

)
w−−→
n

N (x).

where cn =
√

p(1−p)√
nf(x0)

and dn = x0 = F−1(p).

It is known (cf. [34]) that Xkn:n is a consistent estimator of F−1(p). Moreover, the
relation (3.27) can be used to construct an approximate confidence interval for F−1(p), if
either the form of f is completely specified around F−1(p) or a good estimator for f(F−1(p))
is available. Siddiqui [34] proposed an estimator for 1

f(x0) = 1
f(F−1(p))

in the form Srn =
n
2r (X[np]+r:n −X[np]−r+1:n). Moreover, Siddiqui [34] showed that this estimator is asymptoti-
cally normal DF, when r is chosen to be of order n

1
2 . Bloch and Gastwirth [17] showed that,

if r = o(n) and r −−→
n

∞ then, Srn is a consistent estimator for 1
f(F−1(p))

. Now, we study

the bootstrap distribution of Xkm:m, km = [mp] + 1, which defined for unknown normaliz-
ing constants by H∗

n,m(ĉmx + d̂m) = P (Xkm:m < ĉmx + d̂m |Xn), where ĉm and d̂m are some
estimators of cm and dm, respectively.

Theorem 3.4. Let ĉm =
√

p(1−p)√
m

Srm, d̂m = X[np]+1:n, where r = o(m). Then,

sup
x∈R

|H∗
n,m(ĉmx + d̂m)−N (x))| p−−→

n
0, if m = o(n).

Moreover, if there exist λ ∈ (0, 1) such that
∑∞

n=1 λ
√

n
m < ∞ then

sup
x∈R

|H∗
n,m(ĉmx + d̂m)−N (x))| w.p.1−−−→

n
0.

Proof: In order to the bootstrap distribution H∗
n,m(ĉmx + d̂m) to be consistent, we

have to prove that ĉm and d̂m satisfy the conditions (ii) and (iii) in Theorem 3.2, respectively.
Since Srm is a consistent estimator for 1

f(x0) (cf. [17]), we get

ĉm

cm
=

√
p(1− p)/

√
mSrm√

p(1− p)/
√

mf(xo)
= Srmf(x0)

p−−→
n

1.



Bootstrapping order statistics with variable rank 563

On the other hand, we have cn
cm

=
√

p(1−p)/
√

nf(x0)√
p(1−p)/

√
mf(x0)

=
√

m
n −−→

n
0. Thus, on account of

Lemma 3.1, we get
d̂m − dm

cm
=

X[np]+1:n − F−1(p)
cn

cn

cm

p−−→
n

0.

Therefore, the conditions (ii) and (iii) in Theorem 3.2 are proved when the convergence is in
probability. The proof of these conditions when the convergence is w.p.1 is achieved by the
same way as in the end of the proof of Theorem 2.1. The proof is complete.

4. SIMULATION STUDY

In this section, we address two applications of the earlier theoretical findings. Firstly, we
provide a p-value-based method for choosing m. We present a simulation study in Example 4.1
that is carried out using Mathematica 11 to explain how we choose numerically the values of m

to give the best approximation of the bootstrapping DFs for the central and intermediate
quantiles. In Example 4.1, we choose normality to highlight the key issue that pertains to the
selection of m. On the other hand, under typical circumstances, the majority of the practical
issues that any researcher faces result in the asymptotic normality of the quantiles (e.g., see
Lemma 3.1). Consequently, based on the Kolmogorov–Smirnov test of normality and the
corresponding p-values, the best value of m (that corresponds to the largest p-value) should
be chosen such that

∑∞
n=1 λ

√
n
m < ∞, for each λ ∈ (0, 1) (see Remark 4.1). Although this

method is applied when the quantiles being bootstrapped are asymptotically normal, other
possible asymptotically laws given in Theorems 2.1, 2.2, 3.1, and 3.2 can be considered by
applying a similar algorithm. Secondly, in Example 4.2, based on several large samples from a
logistic distribution, we construct confidence intervals for the median using the bootstrapping
methodology and the approach provided in Example 4.1. Additionally, predicted coverage
probabilities are included with each computed confidence interval.

4.1. Examples

Example 4.1. This example relies on the fact that the sample median S1;n = X[n
2
+1]:n,

and the sample intermediate quantiles S2;n = X[2
√

n]:n, S3;n = X[
√

n]:n, S4;n = X2[ 3√n]:n, and
S5;n = X[ 3√n]:n based on the standard normal DF weakly converge to the normal DF. Let
Ŝi;m, i = 1, 2, ..., 5, be the corresponding bootstrapping statistics of Si;n, i = 1, 2, ..., 5, respec-
tively, where each of these bootstrapping statistics is based on a sub-sample with replacement
of size m (a bootstrap sample of size m). According, to the results of Sections 2 and 3, we
expect that the bootstrapping DFs of the statistics Ŝi;m, i = 1, 2, ..., 5, converge to the normal
DF provided that m � n (i.e., m = o(n)).

This study, shown in Table 1, is achieved via the following algorithm:

(i) Generate a random sample (parent sample) of size n = 100, 000 from N ( ·);

(ii) Determine a value of m (100, 200, ..., 5000, as shown in Table 1) and generate a
sub-sample with a replacement of size m (a bootstrap sample) from the parent
sample;
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(iii) Determine each of the sample bootstrapping statistics Ŝi;m, i = 1, 2, ..., 5;

(iv) Repeat the steps (ii) and (iii) 1000 times to obtain the observed sample boot-
strapping statistics Ŝij;m, i = 1, 2, ..., 5; j = 1, 2, ..., 1000;

(v) By using the Kolmogorov–Smirnov test, check the normality of the data sets
{Ŝij;m, i = 1, 2, ..., 5; j = 1, 2, ..., 1000} and determine the corresponding p-values
(see Remark 4.2);

(vi) Repeat the steps (ii)–(v) 100 times for each chosen m and compute the average
p-values (denoted by p) for each chosen m and each of the five statistics. These
averages, p, are written as entries in Table 1, where the best p is distinguished
by an asterisk.

It is noted that for n = 100, 000, the best choice of m falls in the interval [200, 400], i.e.,
the values 200 to 400 are 0.2–0.4% of the value of n (see Remark 4.1). Moreover, the p

for the central case are higher than those for the intermediate case.

Table 1: p corresponding to the checking normality of different bootstrap central
and intermediate quantiles for various values of m.

kn → Central Intermediate

m ↓ kn = [n
2
] + 1 kn = [

√
n] kn = 2[

√
n] kn = [ 3

√
n] kn = 2[ 3

√
n]

100 0.424534 0.241040 0.374819 0.0471849 0.221942
200 0.445344 0.35888? 0.354039 0.0759685 0.136431
300 0.47536? 0.326927 0.422355 0.135734 0.28982?

400 0.461186 0.294167 0.43096? 0.18197? 0.213884
500 0.415695 0.254239 0.396061 0.160607 0.229961
600 0.413815 0.145734 0.231875 0.171207 0.206003
700 0.423271 0.165254 0.275231 0.141310 0.206607
800 0.447738 0.095997 0.249245 0.140825 0.154863
900 0.396874 0.104246 0.248103 0.082727 0.137661

1000 0.416074 0.136514 0.134745 0.094409 0.099289
2000 0.388266 0.104154 0.135125 0.020539 0.149453
3000 0.389145 0.002338 0.207131 0.001534 0.009307
4000 0.356465 0.003308 0.113068 0.000084 0.050480
5000 0.338578 0.024744 0.014881 0.000383 0.049058

Remark 4.1. According, to the results of Sections 2 and 3, the best performance of
the bootstrapping DFs of the central and intermediate order statistics occurs at the values
of m for which

∑∞
n=1 λ

√
n
m < ∞, for each λ ∈ (0, 1). On the other hand, according, to [1] the

condition
√

m = o( 2
√

n
log n) is a sufficient condition for

∑∞
n=1 λ

√
n
m < ∞, which implies that the

best performance of the bootstrapping DFs of the central and intermediate order statistics
occurs when m � 3000. Therefore, the simulation output endorses this anticipated result.

Remark 4.2. In the earlier version of this paper, in order to implement Part (v) of the
given algorithm, we fitted the data sets {Ŝij;m, i = 1, 2, ..., 5; j = 1, 2, ..., 1000} to the normal
DF by using the Kolmogorov–Smirnov test after calculating the sample mean and standard
deviation. However, one referee point out to an important issue that the Kolmogorov–Smirnov
test can be used to fit the normal DF only when parameters are not estimated from the data
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(cf. [29]). Since our focus here is only on checking the normality of the bootstrap samples, we
apply the Kolmogorov–Smirnov test to check the normality of the given sample bootstrap-
ping statistics without estimating any parameters. Namely, in Mathematica 11, there are two
ways to fit any data to the normal DF. The first is to provide the mean and variance values;
if not, estimate them based on the data. The second choice is to examine the data’s normal-
ity without figuring out what the fitted normal distribution’s parameter values should be.
The second choice was adopted.

Example 4.2. In this example, we generate three samples of sizes n = 100, 000, n =
50, 000, and n = 30, 000, from the logistic distribution with location and scale parameters
0 =mean=median and 1, respectively. We construct a confidence interval for each median,
which pertains to the three samples, using the bootstrapping technique. We first apply the
p-value-based method for choosing m, which is given in Example 4.1, where 100 bootstrap
runs are taken into consideration. In Table 2, the three best values of m and the correspond-
ing best average values of p-values are given. We currently have a sample of 100 observed
medians for each of the three initial samples. These median samples follow a normal DF
with unknown parameters. Use these median samples to estimate these unknown param-
eters. Finally, construct a 99% confidence interval of each median pertaining to the three
original samples (of sizes 100,000, 50,000, and 30,000). For each of these three samples, we
get one constructed confidence interval. Therefore, according to the algorithm given below,
we have 10000 confidence intervals to be checked whether each of them contains zero. Due
to the use of the bootstrapping technique and also estimating the unknown parameters, we
anticipate that the significant levels (SL) of these confidence intervals are smaller than 99%.
We estimate the average lower limit (L), average upper limit (U), and coverage probability
(CP) of the estimated confidence intervals. By doing this, we can estimate the quality of
these confidence intervals and subsequently the quality of the suggested approaches. These
findings are presented in Table 2, which demonstrates that the SL is not less than 96%, which
endorses the results of Theorems 3.3 and 3.4. Moreover, the results presented in Table 2 is
achieved via the following algorithm:

(i) Generate a random sample (parent sample) of size n (n = 100, 000; n = 50, 0000,
and n = 30, 000) from the standard logistic distribution;

(ii) Apply the p-value-based method which is given in Example 4.1 and choose the
best m corresponding to the largest p-value (e.g., for the n = 100, 000 case, we
have m = 300);

(iii) Generate M (M = 100) sub-samples of size m with replacement from the parent
sample and calculate the median for each sample;

(iv) Calculate the mean µB and standard deviation σB for the set of the sample
medians (100 medians) in step (iii). In addition, calculate a 99% confidence
interval for the population median according to the usual law µB ± zα/2

σB√
M

,
where α = 0.01, and zp is the p-th quantile of the standard normal DF;

(v) Repeat steps (iii) and (iv) 100 times. Determine how many times (say 0 ≤ n1 ≤
100), the population median (i.e., zero ) falls within the constructed confidence
intervals.

(vi) Repeat steps (i)–(v) 100 times. In each of those times, we get in step (v),
0 ≤ ni ≤ 100, i = 1, 2, ..., 100;

(vii) Compute L, U , and CP=
P100

i=1 ni

10000 .
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Table 2: The average p-values, L, U , and CP for median for three different samples
from logistic distribution.

n ↓ m ↓ p-value L U CP

n = 100, 000 300 0.480606 −0.03 0.03 97.21

n = 50, 000 200 0.435146 −0.04 0.03 96.69

n = 30, 000 150 0.420365 −0.04 0.04 96.39

4.2. Discussion

In the light of the preceding simulation study given in Examples 4.1 and 4.2, we consider
a virtual case study to show how the developed bootstrap technique in this paper saves time
and cost. Suppose our purpose is modeling (i.e., to detect its asymptotic distribution) the
sample median of some random phenomenon that is governed by a DF that satisfies the
conditions given in Lemma 3.1 (i.e., the sample median from this DF weakly converges to
the normal DF).

The usual way to achieve this purpose is to get a large number N of independent
random samples, and from each of them, we determine the median. By finding a suitable
DF (a normal DF with specified mean and variance) that fits this median-data set (the set
of the collected sample medians) we can achieve our aim. As an example, if N = 1000 and
each sample has a size of 200, we will need 200,000 observations. On the other hand, if we
had one large sample of size 100,000 (say) and apply the bootstrap technique, we can achieve
our aim by choosing m ∈ [200, 400] (as the simulation study shows). In this case, bearing
in mind that obtaining a large number of independent samples, even of moderated sample
sizes, is more difficult and costly than obtaining one sample of a large size, we find that the
bootstrap technique is very beneficial. Moreover, regarding the natural question that which of
the usual way and bootstrap technique allows us to make better inference on the population
median, the theoretical results concerning the bootstrap technique, and especially the result
of this paper, guarantees both ways are asymptotically the same. Therefore, one of the most
important advantages of the given bootstrap technique is that it enables us to model the
different quantiles via one large sample instead of a large number of independent samples.

Undoubtedly the cornerstone of the bootstrap technique given in this section is deter-
mining the best value of m. The theoretical result of the paper stipulates that m is small
concerning n. One reviewer of this paper provided an elegant intuition about why one wants
m to be small, namely, “it is because of discreteness. When m is big, the bootstrap distri-
bution will have big chunks of probability, which can make the distribution less normal than
when m is small”. The given algorithm to determine m depends on four determinants, which
are the parent DF of the given large sample, the sample size n, the number of replications of
the p-value, and the number of bootstrap runs. Of course, when any researcher applies the
given algorithm he should consider his determinants. However, we repeated the preceding
simulation study with different determinants to shed some light on the influence of these
determinants on the choice of m.
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1. Figures 1–4 suggest that one essentially wants to make m as small as possible, with
respect to n, as long as the sufficient condition given in Remark 4.1 is satisfied (and
of course, we preserve the necessary requirements that m −−→

n
∞ and m

n −−→
n

0).

2. When the sample size n becomes smaller than 100,000 (with fixing the other de-
terminants), the range of m (the ratio of the best value of m to n) changes by a
small amount as shown in Figures 1 and 2. Namely, at n = 50, 000, the best value
of m is about 200 with p=0.45, while at n = 30, 000, the best value of m is about
150 with p=0.43.

3. The change in the number of bootstrap runs (with fixing the other determinants)
does not influence the range of the choice of m ( 0.2− 0.4% of the value of n). On
the other hand, increasing this number makes p decrease and become more stable,
see Figure 3.

4. The change in the number of replications of the p-value (with fixing the other
determinants) has no influence on the choice of m. On the other hand, increasing
this number makes p more stable, see Figure 4.
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Figure 1: p vs. m at n = 50, 000.

0 1000 2000 3000 4000 5000
0.0

0.1

0.2

0.3

0.4

m

P

Figure 2: p vs. m at n = 30, 000.
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Figure 3: p vs. m at different values of the bootstrap runs.
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Figure 4: p vis m at different values of p-value replications.

5. CONCLUDING REMARKS

The bootstrap is an extremely flexible technique that can be applied to a wide variety
of problems. One of the desired properties of the bootstrapping method is consistency, which
guarantees that the limit of the bootstrap distribution is the same as that of the distribution
of the given statistic.

In this paper, we investigated the strong consistency of bootstrapping central and in-
termediate order statistics for an appropriate choice of re-sample size for known and unknown
normalizing constants. Consequently, inference concerning quartiles can now be performed
by applying the bootstrap technique. For central order statistics, one can use the bootstrap
to obtain a confidence interval for the p-th population quantile. On the other hand, it is well
known that the asymptotic behavior of intermediate quantiles is one of the pillar factors in
choosing a suitable value of threshold in the peak over threshold (POT) approach and the
constructing related estimators (the Hill estimators) of the tail index (cf. [10, 14, 15, 26].
Therefore, the study of bootstrapping intermediate order statistics will pave the way to use
and improve the modeling of extreme values via the POT approach. This potential applica-
tion of the bootstrapping intermediate order statistics will be the subject of future studies.

The implemented simulation study in this paper aims to show how we choose numeri-
cally the values of m to give the best approximation (performance) of the bootstrapping DF
for the central and intermediate quantiles. To our best knowledge, there is no such study was
done in the literature even for extreme order statistics.
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