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1. INTRODUCTION

When examining any problem, more than one independent variable may be related to
the dependent variable. In order to explain the relationship between such variables, linear
regression analysis is the most frequently used technique in statistical models. On the basis of
the technique; while evaluating an observed event, it is essential to investigate which events
are affected. These events may be one or more, as well as indirectly or directly affected. The
technique expresses to what extent the observation values and the affected events are related
with the help of a function. Generally, what percentage of the total change in an observed
event can be explained by the affected event is evaluated according to the coefficient of
determination. However, due to the occurrence of diagnostic procedures related to events in
health services (disease, birth, death, etc.) at several levels, complex clinical uncertainties
may arise in the relationships due to the insufficiency and uncertainty of information due to
the nature of the data and various measurement methods used. In addition, as the sources
of uncertainties in clinical relationships, reasons such as the subjective nature of medical
history information, objectivity in the examination method, the fact that patient information
may contain falsehood, measurement errors in the results of laboratory and other diagnostic
tests, due to various restrictive factors, reasons such as the formation of sample sizes in
the form of small data sets is shown [21]. In these situations involving uncertainties of
medical applications, general facts are that the decisions made by experts can often cause
contradictions since valid and reliable sampling and analysis techniques are not preferred. In
this case, the calculations made have become questionable.

Various estimation techniques have been developed in order to solve these problems.
These techniques are the bootstrap resampling method developed by Efron [21] and fuzzy least
squares regression (FLSR) analysis technique by Tanaka et al. [59], [24]. The techniques can
also be used as a correction method in cases where the assumptions about the error values of
the regression model are not realized [55]. These can ensure that there is no difference between
the actual observation value and the estimated values or that the difference is minimal. Fuzzy
regression analysis is a valid and reliable technique for investigating and predicting data sets
by measuring a concept that contains some degree of ambiguity or uncertainty [56]. In
models where the data are insufficient or imperfect, caused by the imprecision or vagueness,
it has been proven to be useful to use fuzzy models [9], [64]. The importance of using the
bootstrap resampling technique and fuzzy regression technique in analysis for estimating
model parameters has been increasingly recognized in recent years. Bootstrap resampling
technique and fuzzy least squares technique are alternative techniques used in many areas
such as time series and simulation in estimating linear and non-linear regression parameters.

This study aims to give illustration and application of bootstrap resampling technique
in fuzzy least squares regression analysis in examining the clinical relationships between vari-
ables. Because classical least-squares technique is influenced by the outliers, therefore the
presents of outliers may distort the estimates. Accordingly, bootstrap fuzzy regression meth-
ods have been created to modify least-squares methods so that the outliers have much less
influence on the final estimates. We proposed the bootstrap fuzzy least squares regression
technique as the estimation approach. The proposed model fitting approach is highly ro-
bust to the presence of outliers and properly determines outlier points and neutralizes the
negative influence of outliers in the estimation procedure. In addition, we can provide more
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general approaches that can consider different estimation scenarios. Some hierarchical algo-
rithms concerning bootstrap technique in OLS and fuzzy least squares regression analysis are
demonstrated. The basics of the bootstrap resampling technique and their applications to
the clinic numerical example that can be described by fuzzy least squares regression model
were discussed and compared the results with ordinary least squares regression technique
results. It was also aimed to estimate the bias, standard error and confidence interval of
the regression coefficients calculated by the techniques and to compare the performance of
bootstrap ordinary least squares technique (BOLS) with the related estimates using some
comparison criteria. The expectation for the future research topic on fuzzy regression is that
many other new proposals and applications will appear in this context. The extension of the
proposed procedure to the case of fuzzy input-fuzzy output observations, potential subjects
for future researches. It turns out that traditional/common methods in the literature, as well
as several other robust methods of fuzzy regression, can be formulated as special instances of
bootstrap fuzzy regression.

2. BOOTSTRAP RESAMPLING TECHNIQUE

One of the most important purposes of statistical analysis is that the sample taken
from the population must represent the population. The bootstrap resampling technique
was developed by Efron [20] as a general technique for assessing the statistical accuracy of an
estimator. The main purpose of the technique is to calculate the predictive θ value by choosing
random samples with width n volumes, independent of a certain unknown distribution f(x; θ)
and accept it as the predictor of the parameter θ. The bootstrap resampling technique is
theoretically used to estimate values associated with the sampling distribution of estimators
and test statistics.

The ordinary sampling techniques use some assumptions related to the form of the esti-
mator distribution. These are the cases where standard assumptions are invalid, e.g. n volume
is small, data contains uncertainty, data shows non-standard twist. In these situations, the
use of these standard techniques may not give reliable and valid results. When these assump-
tions are doubtful or when the calculation of standard errors is necessary when parametric
inference is impossible, the bootstrap resampling technique makes calculations without the
need for these distributive assumptions because the sample population is considered [21]. The
results calculated by the estimators can be used as an experimental distribution for statistics
[11], [20]. The technique has been rarely used, although it is used to generate the estimation
of the standard error of a statistic, confidence intervals and distributions by repeated use of
the observed data [21], [23], [24], [53].

With the application of the in 4.1. bootstrap algorithm, the bias between population
parameters and estimators will be reduced without increasing the sample size, and by obtain-
ing the sampling distributions of the estimators, it will be provided to calculate the standard
error of the estimators more accurately [10], [15], [16].
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3. FUZZY LEAST SQUARES REGRESSION (FLSR) ANALYSIS

Fuzzy regression analysis is a fuzzy (or possibility) type of ordinary regression analysis.
Fuzzy regression analysis studies the relationships between a response variable and a set of
explanatory variables in complex systems involving imprecise data. The approach is one of
the most widely used statistical techniques for evaluating the functional relationship between
dependent and independent variables in uncertainty situations. In fuzzy regression analysis,
the relationship between dependent variables and independent variables is not as precise as in
ordinary regression analysis [64]. In these uncertain cases, fuzzy techniques can explain the
effects of independent variables in a more realistic way. A commonly used technique of the
parameter estimation of the fuzzy regression model is the least-squares method. The fuzzy
least squares (FLS) technique, which is an extension of the least squares technique to fuzzy
set theory, was used by to estimate fuzzy parameters [9], [17], [64]. These methods are very
important because sometimes even a single observation can change the value of the parameter
estimates, and omitting this observation from the data may lead to totally different estimates
[12], [19], [31].

The approach is based on blurring the coefficients. Blurring can be done in two ways.
It is possible by 1) blurring the model coefficients estimated by the ordinary least squares
technique at a specified “h level”, or 2) estimating the coefficients as fuzzy numbers [29],
[45], [48]. However, in 1988, Diamond [18] concluded that “Tanaka et al. [61] used linear
programming techniques to develop a model superficially resembling linear regression, but
it is unclear what the relation is to a least squares concept, or that any measure of best fit
by residuals is present”. Most of the researches on fuzzy regression analysis focuses on the
possibilistic regression [59], [61] and on the fuzzy Least-Squares (LS) regression [8], [18]. Re-
cently, robust approaches to fuzzy regression have been considered as alternative approaches
to fuzzy regression analysis [13], [15]. The bootstrap resampling technique using fuzzy data is
developed in different approaches [46], [58] have considered the problem of hypothesis testing
about the mean of a fuzzy random variable. Akbari and Rezaei [1] present a bootstrap fuzzy
test for variance. Ferraro et al. (2010) [27] “International Journal of Approximate Reasoning
51 (2010) 759–770” proposed to use of a bootstrap procedure to evaluate the accuracy of the
estimators in FLS regression. This idea is also investigated and proposed by many authors
like “Akbari et al. (2012) [2], [24]. In this regard, Peters (1994) [51] considered outliers in
Tanaka’s possibilistic approach [59] with crisp input-output data which was later extended
by Chen (2001) [10] to the model with fuzzy output-crisp input data. Hung and Yang (2006)
[31] proposed an omission approach for Tanaka’s approach [59] which had the ability to con-
sider the effect of each observation while omitted on the value of the objective function of
the model. Nasrabadi et al. (2007) [49] proposed an LP-based approach to outliers detection
in fuzzy regression analysis. Varga (2007) [63] presented robust estimation approaches to
fuzzy and non-fuzzy regression models. Nasrabadi and Hashemi (2008) [50] suggested a ro-
bust nonlinear fuzzy regression model using multilayered feedforward neural networks. Kula
and Apaydin (2008) [36] proposed a robust fuzzy regression analysis based on the ranking
of fuzzy sets. D’Urso and Massari (2013) [19] proposed weighted least-squares and least-
median squares estimation for fuzzy linear regression analysis. Yang, Yin and Chen (2013)
[66] present a robustified fuzzy varying coefficient model for fuzzy input-fuzzy output vari-
ables. Shakouri and Nadimi (2013) [57] investigated a method for outlier detection in fuzzy
linear regression problems. Ferraro and Giordani (2013) [28] dealt with robustness in the
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field of regression analysis for imprecise information managed in terms of fuzzy sets. Leski
and Kotas (2015) [41], by introducing an objective function based on Huber’s M-estimators
and Yager’s OWA operators, proposed a robust fuzzy-regression model. Chachi (2019) [12]
introduced a weighted objective function to overcome the disadvantages of the LS fuzzy re-
gression approaches in the presence of outliers. Arefi (2020) [5] investigated a quantile fuzzy
regression based on fuzzy outputs and fuzzy parameters. Akbari and Hesamian (2019) [3]
investigated a partial-robust-ridge-based regression model with fuzzy predictors-responses.
Bootstrap fuzzy resampling technique tests for the mean and variance with Dp, q-distance
[52]. They proposed bootstrap fuzzy linear regression model (BFLRM), a linear regression
model with fuzzy dependent, crisp explanatory and fuzzy coefficients [59], [60]. Most of these
developed fuzzy regression models are evaluated with fuzzy outputs and fuzzy parameters but
non-fuzzy (net) inputs. Fuzzy least squares regression (FLSR) analysis technique, which is
generally based on linear programming (LP), is proposed in order to minimize the fuzziness
of the analyzed data and the total spread of the output (see, for example [12], [17] [29]).
Hesamian and Akbari (2020) [32] proposed a robust varying coefficient approach to fuzzy
multiple regression model. Hesamian and Akbari (2021) [33] adopted a two-stage robust pro-
cedure to propose and estimate the components of a robust multiple regression model with
fuzzy intercepts and crisp coefficients. Khammar et al. (2020) [37], Khammar et al. (2021)
[38], Khammar et al. (2021) [39] presented general approaches to fit fuzzy regression models
crisp/fuzzy input and fuzzy output. Asadolahi et al. (2021) [6] proposed a robust support
vector regression with exact predictors and fuzzy responses. Taheri and Chachi (2021) [62]
investigated a robust variable-spread fuzzy regression model. Chachi and Chaji (2021) [14]
considered quantile fuzzy regression using OWA operators. In the context of multi-attribute
decision-making problems, Chachi et al. (2021) [13] developed a multi-objective two-stage
optimization and decision technique for fuzzy regression modeling problems in order to han-
dle both of the weak performances analysis of fuzzy regression models and their sensitivity
to outliers. As mentioned above, during the last years, considerable attention was given to
robust estimation problems in fuzzy environments, and several methodologies were developed
in the literature [15].

According to the FLSR approach, it is assumed that the deviations between the ob-
served values and the predicted values are caused by the uncertainty of the system structure
or the blurring of the regression coefficients, not from measurement and observation errors,
contrary to the OLSR analysis method [9]. That is, it assumes that the coefficients of the
regression analysis model are related to its blur. For this purpose, the formula below is
employed to estimate parameters of FLSR:

(3.1) f = X × β̃ → Ỹi, Ỹi = f
(
β̃, X

)
It is given by the function 1. Here, Ỹi, denotes the fuzzy dependent variable in the

symmetric triangular property structure estimated and is shown as Ỹi = (ỹc, ẽs), ỹc denotes
the mean value (center), and ẽs denotes the spread value.

In the case of fuzzy observations, consider a fuzzy linear regression for crisp explanatory
and fuzzy response observations as follows:

(3.2.a) Ỹ i = f
(
β̃, X

)
= β̃

0
+ β̃1Xi1 + ... + β̃p−1Xi(p−1) = β̃0 +

n∑
i=1

β̃iXi
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(3.2.b) Ỹi = {c0, s0}+ {c1, s1}Xi1 + {c2, s2}Xi2 + ... + {cp−1, sp−1}Xi(p−1)

in which β̃j =
[
β̃0 and β̃1, β̃2, β̃3, ...β̃j ......, β̃p−1

]t
are the coefficient values of the independent

variables in the function and it is a set of dependent and independent variables formed
in the form of

{
Yi, Xi1, Xi2, X i3, ..., X(p−1)n

}
= {Yi, Xij }, and each dependent variable

observation is expressed as xεX (i = 1, ..., n, j = 1, 2, ..., p− 1). That is, they are crisp
values of the explanatory variables. It is defined by (i = 1, 2, 3, ..., n). In the fuzzy least
squares regression model, the data of the dependent Ỹi variable can be real numbers or fuzzy
numbers. It is generally assumed that the data for the dependent Yi variable are symmetrical
fuzzy numbers of interval type [35].

β̃j =
[
β̃0 ve β̃1, β̃2, β̃3, ...β̃j ......, β̃p−1

]t
are fuzzy regression coefficients vectors with a

symmetric triangular fuzzy number structure and they are fuzzy numbers in the form of
β̃j = (cj , sj)β̃j , (j : 0, 1, 2, 3, ..., p− 1).cj , is the µ

eβi
(cj) = 1 value representing the midpoint

of the coefficients, that is, the center value, and has the form cj = [c1, c2c3, ..., cn]t. sj , shows
the spread of the coefficients belonging to the fuzzy regression analysis model and is sj =
[s1, s2, s3, ..., sn ]t shaped [64].

Each coefficient value β̃i = {cj , sj} =
{

β̃i : cj − sj ≤ β̃i ≤ cj + sj

}
has a symmetric

triangular property structure and is β̃i(j : 0, 1, 2, 3, ..., p− 1) [59].

The β̃i = {cj , sj} value of the fuzzy coefficients was estimated by the minimum blur
method proposed by Tanaka. The method is given in the following equation. In least squares
regression analysis proposed by Tanaka and Watada (1988) [60], the linear programming
(LP) formulation considers triangular membership functions (not necessarily symmetric).
The spreads of the calculated fuzzy coefficients are calculated with the help of equation. The
LP formulation is as follows (3):

(3.3) min Z(x) st|Xi| =
min
c, s

[
s0 +

n∑
j=0

sj |Xij |

]

min
c, s

J = c1, c2, .., cn , cj ≥ 0, ∀i, i = 1, 2, ..,m and

min
c, s

J = s
1

, s2, ..., sn, sj ≥ 0 ∀i, j = 0, 1, 2, ..., n

n∑
j=0

cjXij + (1− h)

[
n∑

j=0
sj |Xij |

]
≥ ỹc + (1− h)ẽs ∀i, i = 1, 2, ..., n

n∑
j=0

cjXij − (1− h)

[
n∑

j=0
sj |Xij |

]
≤ ỹc − (1− h)ẽs ∀i, i = 1, 2, ..., n

Here Z(x) : function shows the total blur in the model. m: is the number of observations
regarding the dependent variable. j : the number of independent variable xij : is the i-th
observation value of the j-th independent variable. For each predicted Ỹi observation value,
the constraint number must be 2xn [43]. In order to minimize the total spread, the level
h, Ỹi, the predictor of each observation value Yi, is assumed to have a turbidity tolerance



Bootstrap fuzzy regression method 417

µ
eYi

(Yi) ≥ h i = 1, 2, ..,m [30]. In Equation 3, the objective function is weighted with the
absolute values of the measurements of the distributions of the independent variables. The
application of bootstrap resampling technique in fuzzy least squares regression analysis is
given below.

4. BOOTSTRAP FUZZY REGRESSION ANALYSIS

In this section, we introduce bootstrap resampling technique procedure. In general,
regression technique for bootstrap is divided into two approaches: the first is based on the re-
sampling observations approach and the second is based on the resampling errors. Bootstrap
technique based on resampling errors is known as more suitable for the case of deterministic,
whereas bootstrap resampling technique based on the drawing i.i.d. sample from the obser-
vations pairs is more appropriate for the case of random. However, bootstrap resampling
technique pairs can also be used for deterministic [1]. The bootstrap is a “model-dependent”
technique in terms of its implementation and performance although the bootstrap requires
no theoretical formula for the quantity to be estimated and is less model-dependent than
the traditional approach. In this paper, we use bootstrap technique based on the resampling
errors. The bootstrap fuzzy regression analysis procedure is as follows:

Method: To describe the resampling methods we start with an n sized sample wi =
(Yi, Xji)

′ and assume that wi′s are drawn independently and identically from a distribution
of F, where Yi = (y1, y2, .., yn)′ contains the responses, Xji = (xj1, xj2, ..., xjn)′ is a matrix of
dimension nxk, where j = 1, 2, ...k, i = 1, 2, 3, ..., n.

4.1. Bootstrapping Regression Algorithm

Here, two approaches for bootstrapping regression methods were given. The choice of
either methods depends upon the regressors are fixed or random. If the regressors are fixed,
the bootstrap uses resampling of the error term. If the regressors are random, the bootstrap
uses resampling of observation sets wi [55].

4.2. Bootstrap Based On The Resampling Errors

If the regressors are fixed, as in desing experiment, then the bootstrap resampling must
preserve that structure. The bootstrap procedure based on the resampling errors as follows
[55]:

1(e). Fit the full-sampling least-squares regression equation to estimate the regression coeffi-
cients of the model (6.a).

2(e). Calculate the ei values
(
ei = Y i − Ŷi

)
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3(e). Draw an n sized bootstrap random sample with replacement e
(b)
1 , e

(b)
2 , e

(b)
3 , ..., e

(b)
n from

the ei values calculated in step 2(e) giving 1/n probability each ei values and Calculate the
centered residual of ¯̂

ie
(b) [42] [53] [65]:

4(e). Compute the bootstrap Y
(b)
i values by adding resampled residuals onto the ordinary

least squares regression fit, holding the regression desing fixed [16] [55].

(4.1) Y
(b)
i = Xβ̂ + ¯̂

ie
(b)

5(e). Obtain least squares estimates from the 1-th bootstrap sample:

(4.2) β̃(b1) = (X ′X)−1X ′Y (b) (we need Y ∗)

(4.3) β̃(b1) = β̂(X ′X)−1X ′e(b) (we do not need Y ∗)

6(e). Repeat steps 3(e), 4(e) and 5(e) for r = 1, 2, ..., B, and proceed as in resampling with
random regressors 7(e) and 8(e).

An illustrative example that presents how the regression parameters are estimated from
the bootstrap based on the resampling observations was given in Table 1.

By resampling residuals and randomly reattaching them to fitted values, the procedure
implicitly assumes that the errors are identically distributed. Bootstrapping draws an analogy
between the fitted value Ŷi in the sample and Y in the population, and between the residual
ei in the sample and the error εi in the population [21]. In bootstrap resampling technique
principle, the sample represents the population as the bootstrap samples. According to the
weak law of large numbers, the empirical distribution function converges in probability to the
true distribution function [42]. Note that define the bootstrap observation Y

(b)
i , by treating

β̂ as the “true” parameter and e
(b)
i as the “population” of errors [54].

7(e). Obtain the probability distribution
(
F

(
β̃(b)

))
of bootstrap estimates β̃(b1), β̃(b2), ..., β̃(bB)

and use the
(
F

(
β̃(b)

))
to estimate regression coefficients, variances and confidence intervals

as follows. The bootstrap estimate of regression coefficient is the mean of the distribution(
F

(
β̃(b)

))
[25] [55].

(4.4) β(b) =
B∑

b=1

β(br)/B = β(br)

8(e). Thus, the bootstrap regression equation is

min
ac, as

J1=

c0 + Xi1 ∗ c1 + Xi2 ∗ c2 + Xi3 ∗ c3 + Xi4 ∗ c4− s0−Xi1 ∗ s1−Xi2 ∗ s2−Xi3 ∗ s3−Xi4 ∗ s4 <= Y1

c0 + Xi1 ∗ c1 + Xi2 ∗ c2 + Xi3 ∗ c3 + Xi4 ∗ c4− s0 + Xi1 ∗ s1 + Xi2 ∗ s2 + Xi3 ∗ s3 + Xi4 ∗ s4 >= Y1



min
ac, as

Jn=

c0 + Xi150 ∗ c1 + Xi150 ∗ c2 + Xi150 ∗ c3 + Xi150 ∗ c4− s0−Xi150 ∗ s1−Xi150 ∗ s2−Xi150 ∗ s3−Xi150 ∗ s4 <= Y1

c0 + Xi150 ∗ c1 + Xi150 ∗ c2 + Xi150 ∗ c3 + Xi150 ∗ c4− s0 + Xi150 ∗ s1 + Xi150 ∗ s2 + Xi150 ∗ s3 + Xi150 ∗ s4 >= Y1



(4.5) Ỹi = f
(
β̃, x

)
= β̃

(b)
0 + β̃

(b)
1 x

(b)
j1 + β̃

(b)
2 x

(b)
j2 + ... + β̃

(b)
s x

(b)
jn

where β̃
(b)
0 is unbiased estimator of β [40].
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4.3. The bootstrap bias, variance, confidence and percentile interval. The bootstrap
bias equals,

(4.6) biasb = β̃(b) − β̃

Further discussion are described in Efron and Tibshirani (1998) [23]. The bootstrap
variance from the distribution

(
F

(
β̃(b)

))
are calculated by [53] [55].

(4.7) var
(
β̃(b)

)
=

B∑
i=1

[(
β̃(br) − β̃(b)

)(
β̃(br) − β̃(b)

)′
]/

(B − 1), r = 1, 2, ..., B

The bootstrap confidence interval by normal approach is obtained by

(4.8)
(
β̃(b) − tn−p, α

2
∗ Se

(
β̃(b)

)
< β < β̃(b) + tn−p, α

2
∗ Se(β̃(b))

)
= 1− α

where tn−p, α
2

is the critical value of t with probability α/2 the right for n− p degrees of

freedom, and Se

(
β̃(b)

)
is the standard error of the β̃(b). If the sample size is n ≥ 30, then Z

distribution values are used instead of t in estimation of confidence intervals [22].

A non-parametric confidence interval named percentile Interval can be constructed from
the quantiles of the bootstrap sampling distribution of β̃(b). The (α/2)% and (1− α/2)%
percentile interval is

(4.9) β̃
(br)
(lower) < β < β̃

(br)
(upper)

where β̃(br) is the ordered bootstrap estimates of regression coefficient from Equation 9 or 10,
lower=(α/2)B and upper=(1− α/2)B.

5. ILLUSTRATIVE EXAMPLE

Numerical examples are used to illustrate the fuzzy regression model that are summa-
rized in previous sections. This example focuses on illustration and application of bootstrap
technique in fuzzy regression analysis. Rapidly changing scientific and technological devel-
opments in recent years have negatively affected the health status of individuals by changing
their nutritional habits. One of the main indicators of a healthy life is to have a stabile body
composition. In recent years, along with the increasing prevalence of overweight and obesity
worldwide, it has become even more crucial how to have a stabile body composition. In ad-
dition to overweight and obese individuals, it has become important to maintain the stability
of body composition in the elderly, athletes and individuals with certain diseases. For such
cases, anthropo-plyometric measurements can be used to evaluate the development-growth
and nutritional status of individuals on body composition. In addition, the effects of dietary
patterns of different diseases can be monitored and body composition can be determined.

In this study, in order to estimate total fat (DEXATF ) calculated according to DEXA
method (Y ) values with minimum error, Triceps values of independent variables such as
Body Mass Index (BMI)(kg/m2)(X1), age (Y EAR) (X2) waist circumference fat percentage
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(WCFP ) (X3) were used as material in the model. These values were used in the classical
bootstrap regression analysis method (BOLSR) and fuzzy linear bootstrap regression analysis
methods (BFLSR), and the results were compared by calculating the estimated values of
the coefficients and statistical values. The sample size was determined as 50 participants in
order to determine whether more reliable results can be calculated in a shorter time with
small data sets in cases where the constraints of the classical bootstrap regression analysis
method cannot be met and the uncertainties in the datasets are not minimized.

The data used in the current study was obtained by the permissions of Drug Re-
searches Local Ethics Committee of Erciyes University Faculty of Medicine (Date: 02.12.2008,
Number: 2008/613) and Human Researches Ethics Committee of Kocaeli University (Date:
10.03.2009, Number: 2009/48) and the support of Scientific Research Project Coordination
Unit of Erciyes University (Project code: TSY-09-772). The study was conducted in accor-
dance with the principles of the Declaration of Helsinki. The study sample was consisted
of randomly selected 137 voluntary participants, aged between 18-65 years and admitted to
Kocaeli University, Faculty of Medicine, Department of Nuclear Medicine from May to July
2009. Of the participants, 67 (50%) were females and 67 (50%) were males, respectively.
Women with pregnancy/suspected pregnancy and in the menstruation period, participants
with metabolic and endocrine diseases and with any systemic diseases (liver, kidney, heart)
and participants prescribed with hormonal drugs and anti-oedematous drugs were excluded.

The data pairs wi = (Yi, Xji)
′ of Table 1 population, (i = 1, ..., 50) are used to demon-

strate the proposed procedure in case where the crisp input X and crisp output Y i .

Table 1: n = 50 volume original data set.

No DEXATF (Y) BMI (X1) YEAR (X2) WCFP (X3)

1 31.20 28.30 44.00 34.82

2 26.50 21.30 26.00 44861

3 34.80 28.40 54.00 39.12

. . . . .

48 53.40 40.30 54.00 58.16

49 37.00 36.60 37.00 35.07

50 24.50 44859 24.00 19.07

DEXATF: total fat (DEXATF) calculated according to DEXA method; BMI: Body Mass Index (kg/m2); YEAR;

WCFP: Waist Circumference Fat Percentage.

The bootstrap algorithm based on error terms has been applied to the data in Table 1
as follows:

1(e). First, the ordinary least squares regression (OLSR) model was fitted to data given in
and the results of the ordinary least squares regression was summarized in Table 2.

All of the regressions in Table 2 are significant (p<0.01) and the determination of
coefficients R2 = 0.933 , respectively. The regression of total fat calculated according to
DEXA method on the Body Mass Index (kg/m2 ), YEAR and waist circumference Fat
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Percentage is significant as result of variance analysis (P<0.01**). According to the t-tests for
significance of regression coefficients, all of the regression coefficients are significant (P<0.01).
Therefore, BOLSR can be substituted as an alternative modelling approach. The illustration
of the bootstrap (B = 1000 bootstrap samples, each of size n = 30) regression procedure, from
the data given in Table 1, calculation the bootstrap estimates of the regression parameters
for each sample are shown in Table 3.

Table 2: The summary statistics of regression coefficients for OLS regression.

Variables β̂ S.E.(β̂) t Sig 95%Confidence Interval

Constant −6.973 3.031 −2.300 .026 (−13.074)–(−0.871)

BMI (X1) 0.984 0.149 6.612 .000 (0.685)–(1.284)

YEAR (X2) −0.111 0.061 −1.809 .07 (−2.234)–(0.013)

WCFP (X3) 0.399 0.125 3.177 .003 (0.146)–(0.651)

R2=0.933, N = 50, SSE = 3.720, F = 103.853**

DEXATF: total fat (DEXATF) calculated according to DEXA method; BMI: Body Mass Index BMI: Body Mass

Index (kg/m2); YEAR: WCFP: Waist Circumference Fat Percentage; SSE: sum of squares of error.

2(e). The values in Table 3 are obtained by calculating the values of ei with ei = Y i − Ŷi.

Table 3: Bootstrap residual instances created by assigning the probability 1/n
to each ei value.

No Yi Ŷi ei 1/50 r e
(b)
1 e

(b)
2 e

(b)
3 e

(b)
4 . e

(b)
48 e

(b)
49 e

(b)
50 ē

(b)
i

1 31.20 29.88 1.32 0.03 1 0.02 −0.11 −0.08 0.03 . −0.05 −0.02 −0.11 −0.07

2 26.50 21.91 4.59 0.09 2 −0.06 −0.05 −0.10 −0.05 . −0.05 −0.08 −0.05 −0.04

3 34.80 30.59 4.21 0.08 3 0.11 0.07 −0.11 0.10 . −0.12 −0.05 −0.05 −0.02

4 31.30 28.92 2.38 0.05 4 −0.04 −0.08 −0.05 −0.05 . −0.01 0.02 −0.10 −0.03

5 20.40 26.02 −5.62 −0.11 5 −0.02 0.01 0.10 −0.02 . 0.07 0.07 −0.05 −0.06

6 30.30 29.17 1.13 0.02 6 0.06 0.09 −0.10 −0.05 . 0.05 −0.02 0.02 −0.04

. . . . . . . . . . . . . . .

48 53.40 49.89 3.51 0.07 48 −0.06 −0.02 −0.04 0.09 . −0.02 −0.04 0.01 −0.02

49 37.00 38.93 −1.93 −0.04 49 0.07 −0.01 −0.01 0.05 . 0.02 0.07 0.11 0.00

50 24.50 22.67 1.83 0.04 50 −0.05 −0.05 −0.01 0.03 . −0.11 −0.01 −0.08 0.00

. . . . . . . . . .

997 −0.10 0.18 0.09 0.05 . −0.13 −0.11 0.38 −0.01

998 0.05 −0.10 −0.22 0.09 . −0.11 −0.08 −0.02 −0.04

999 0.18 0.07 −0.07 0.09 . −0.02 −0.03 −0.03 −0.05

1000 −0.10 0.18 0.09 0.05 . −0.13 −0.11 0.38 0.00

¯̂
ie
(b)

=
P1000

b=1 e
(b)
i

1000
−0.001 0.000 −0.004 0.001 −0.002 0.000 −0.001
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3(e). Draw an n sized bootstrap random sample with replacement e
(b)
1 , e

(b)
2 , e

(b)
3 , ..., e

(b)
n from

the ei values calculated in step 2(e) giving 1/n probability each ei values.

4(e). Calculated the bootstrap Yi
∗ values by adding resampled residuals onto the ordinary

least squares regression fit, holding the regression design fixed (Table 4).

Table 4: Bootstrap Y (b) values calculated with resampled residuals.

No Y (b) β̂0 BMI β̂1 YEAR β̂2 WCFP β̂3
¯̂
ie
(b)

1 29.88 −6.973 28.30 0.984 44.00 −0.111 34.82 0.399 −0.001

2 21.92 −6.973 21.30 0.984 26.00 −0.111 27.10 0.399 0.000

3 0.58 −6.973 28.40 0.984 54.00 −0.111 39.12 0.399 −0.004

. . . . . . . . . .

48 9.89 −6.973 40.30 0.984 54.00 −0.111 58.16 0.399 −0.002

49 38.93 −6.973 36.60 0.984 37.00 −0.111 35.07 0.399 0.000

50 22.67 −6.973 25.10 0.984 24.00 −0.111 19.07 0.399 −0.001

5(e). Obtain least squares estimates from the 1th bootstrap sample:

(5.1) Y (b) = −6.973 + 0.984 ∗BMI − 0.111 ∗ Y EAR + 0.399 ∗WCFP + ¯̂
ie
(b)

6(e). Repeat steps 3(e), 4(e) and 5(e) for r =1,2,...,B, and proceed as in resampling with
random regressors 7(e) and 8(e) (Table 5).

Table 5: Some bootstrap descriptive statistics based on the resampling
of the (n = 50) error term of the data in Table 2.

Confidence intervals
Variables Observed β̂∗

ort Se(β̂
∗
) SS(β̂

∗
)

95% Confidence Interval

Constant −6.973 −69.590 31.809 0.0133 −12.977 −13.997

BMI(X1) 0.984 0.9862 0.1246 −0.0020 0.802 12.145

YEAR(X2) −0.111 −0.1129 0.0641 −0.0020 −0.224 −0.0050

WCFP(X3) 0.399 0.3993 0.0974 0.0005 0.250 0.6100

DEXATF: total fat (DEXATF) calculated according to DEXA method; BMI: Body Mass Index BMI: Body Mass

Index (kg/m2); YEAR; WCFP: Waist Circumference Fat Percentage.

7(e). By using the new observation points that have been formed, the parameters are esti-
mated with the FLS regression analysis method:
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MIN = 50*s0+1488.2*s1+1897*s2+1913*s3;

min
ac, as

J1=

c0 + 28.30 ∗ c1 + 44 ∗ c2 + 34.82 ∗ c3 ∗ 0.5 ∗ s0 + 28.30 ∗ 0.5 ∗ s1 + 44 ∗ 0.5 ∗ s2 + 34.82 ∗ 0.5 ∗ s3 ≥ = 29.88;

c0 + 28.30 ∗ c1 + 44 ∗ c2 + 34.82 ∗ c3− 0.5 ∗ s0− 28.30 ∗ 0.5 ∗ s1− 44 ∗ 0.5 ∗ s2− 34.82 ∗ 0.5 ∗ s3 >= 29.88;


(5.2)

min
ac, as

J1=

 c0 + 25.10 ∗ c1 + 24 ∗ c2 + 19.07 ∗ c3 ∗ 0.5 ∗ s0 + 25.10 ∗ 0.5 ∗ s1 + 24 ∗ 0.5 ∗ s2 + 19.07 ∗ 0.5 ∗ s3 ≥ 22.67;

c0 + 25.10 ∗ c1 + 24 ∗ c2 + 19.07 ∗ c3− 0.5 ∗ s0− 25.10 ∗ 0.5 ∗ s1− 24 ∗ 0.5 ∗ s2− 19.07 ∗ 0.5 ∗ s3 ≤ 22.67;


FREE(c0); FREE(c1); FREE(c2); FREE(c3); END

(5.3) Ỹi = (24.461; 12.40)+(0.116; 0.0)∗BMI +(−0.197; 0.0)∗Y EAR+(0.369; 0.0)∗WCFP

The data pairs wi = (Ỹi, Xji)
′

of Table 6, (i = 1,...,50) are used to demonstrate the
proposed procedure in case where the crisp input Xji, risp output Ỹi and fuzzy regression
coefficients.

Table 6: Some Bootstrap Fuzzy Descriptor Statistics Based on the Resampling
of the Error Term Belonging to the Data in Table 1 (n = 50).

Confidence intervals
Variables Observed cj sj

95%Confidence Interval

Constant −6.973 24.461 12.408 −6.988 −6.964

BMI(X1) 0.984 0.116 0.00 0.983 0.984

YEAR(X2) −0.111 −0.197 0.00 −0.111 0.111

WCFP(X3) 0.399 0.369 0.00 0.399 0.400

R2 =1.0, N=50, SSE= 0,0075, F=25142495,53**

DEXATF: total fat (DEXATF) calculated according to DEXA method; BMI: Body Mass Index BMI: Body Mass

Index (kg/m2); YEAR; WCFP: Waist Circumference Fat Percentage.

Estimates of the bootstrap regression coefficients in the form of were calculated. Also,
this model explains response variable using fewer variables although there is no procedure
available in FLR which can be used as variable selection method.

6. DISCUSSION AND CONCLUSIONS

In this study, using the samples obtained by bootstrap resampling technique in ordinary
least squares and fuzzy least squares regression analysis techniques, it has been tried to reveal
which of them is more effective to estimate parameters.

Parameter estimates as well as their standard errors and confidence intervals statis-
tics from bootstrapping ordinary least squares regression and bootstrapping fuzzy regression
coefficients are presented in Table 7 for prediction of DEXATF (Y ) (gr).



424 D. Topuz, V. Özkaya and B. Çiçek

Table 7: BOLS and BFLS regression (n = 50, B = 1000)
parameter estimations and the regression coefficients
statistics for estimation of some DEXATF (gr).

Variables Observed Average S.E. Bias
Confidence intervals

95% Confidence
Interval

B
O

L
S
R

Constant −6.973 −6.959 31.809 0.0133 −12.977 −13.997

BMI(X1) 0.984 0.9862 0.1246 −0.0020 0.802 12.145

YEAR(X2) −0.111 −0.1129 0.0641 −0.0020 −0.224 −0.005

WCFP(X3) 0.399 0.3993 0.0974 0.0005 0.250 0.610

B
F
L
S
R

Constant −6.973 24.461 12.408 −6.988 −6.964

BMI(X1) 0.984 0.116 0.00 0.00 0.983 0.984

YEAR(X2) −0.111 −0.197 0.00 0.00 −0.111 0.111

WCFP(X3) 0.399 0.369 0.00 0.00 0.399 0.400

DEXATF: total fat (DEXATF) calculated according to DEXA method; BMI: Body Mass Index (kg/m2); YEAR;

WCFP: Waist Circumference Fat Percentage

B = 10000 bootstrap samples are generated randomly to reflect the exact behavior of
the bootstrap procedure and the distributions of bootstrap regression parameter estimations
(β̃(b)) are graphed in Figure 2(a), 2(b), 2(c) (Figures 1). The histograms of the bootstrap
estimates conform quite well to the limiting normal distribution for all regression coefficients.
Hence, the confidence intervals should be based on that distribution, where B is sufficiently
large (B = 1000). And, bootstrap fuzzy regressions are generated by putting each one of
the observation sets in place in the model and the regression coefficients are estimated as
β̃(b). To reflect the exact behavior of the bootstrap sample procedure the distributions of
fuzzy regression parameter estimations β̃(b) are graphed in Figures 2(d) (Figures 1). The
histograms of the bootstrap fuzzy estimates are no similar to the normal distribution for
bootstrap OLS regression coefficients.

The fuzzy bootstrap regression standard errors of the BMI and Y EAR coefficients
are substantially small than the estimated asymptotic OLS and bootstrap OLS standard
errors, because of the inadequacy of the bootstrap in small samples. The confidence intervals
based on the bootstrap fuzzy regression standard errors are very similar to the percentile
intervals of the BMI and GS coefficients; however, the confidence intervals based on the
OLS and bootstrap OLS standard errors are quite different from the percentile and confidence
intervals based on the bootstrap standard errors. Comparing the bootstrap fuzzy coefficients

averages ¯̃
β

(br)

0 , ¯̃
β

(br)

1 and ¯̃
β

(br)

2 with the corresponding OLS and bootstrap OLS estimates
β̂

(br)
0 , β̂

(br)
1 , β̂

(br)
2 and β̃

(br)
0 , β̃

(br)
1 , β̃

(br)
2 and β shows that there is a little bias in the

bootstrap coefficients.

The shape of these graphs show that a histogram of the replicates with an overlaid
smooth density estimate and the skewness of the distribution of regression parameter estimate
from the OLS bootstrap and fuzzy bootstrap replicate. The shape of these graphs show that a
histogram of the replicates with an overlaid smooth density estimate and the skewness of the
distribution of regression parameter estimate from the OLS bootstrap and fuzzy bootstrap
replicate.
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 Figure 1: Histogram of bootstrap (B=1000, (a), (b), (c),(d)) regression 
parameter estimates.

The shape of these graphs show that a histogram of the replicates with an
overlaid smooth density estimate and the skewness of the distribution of regres-
sion parameter estimate from the OLS bootstrap and fuzzy bootstrap replicate.
The shape of these graphs show that a histogram of the replicates with an over-
laid smooth density estimate and the skewness of the distribution of regression
parameter estimate from the OLS bootstrap and fuzzy bootstrap replicate.

Figure 1: Histogram of bootstrap (B = 1000, (a), (b), (c), (d))
regression parameter estimates.

To examine the appearence of the distribution
(
F

(
β(b)

))
of the replicates (B=10 000),

the distribution plots of β̃(b) from Equation 4.2 are given in Figures 1. The vertical lines of
these plots give the mean of the B bootstrap parameter estimates (β̃(b)) and show the shape
of distribution of bootstrap parameter estimates. Although, the larger bootstrap replicates
(B) are used, the smoother distribution of β̃(b) could usually be obtained in these plots (Fox,
1997) [25]. The number of bootstrap replications B depends on the application and size of
sample. The bootstrap replications sufficient to be B = 100 for standard error estimates, for
confidence interval estimates B∼=1000, and for standard deviation estimate 50≤ B ≤ 100 were
suggested by Leger et al. (1992) [40] and Efron (1990) [22]. In fact, it is known from the
statistical theory of the bootstrap that a finite total of nn possible bootstrap samples exist.
If it was computed the parameter estimates for each of these nn samples, it would obtain the
true bootstrap estimates of parameters however, such extreme computation is wasteful and
unnecessary [53].
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(B=10 000), the distribution plots of β̃(b) from Equation 4.2 are given in Figures
1. The vertical lines of these plots give the mean of the B bootstrap parame-
ter estimates (β̃(b)) and show the shape of distribution of bootstrap parameter
estimates. Although, the larger bootstrap replicates (B) are used, the smoother
distribution of β̃(b) could usually be obtained in these plots (Fox, 1997) [25]. The
number of bootstrap replications B depends on the application and size of sample.
The bootstrap replications sufficient to be B100 for standard error estimates, for
confidence interval estimates B∼=1000, and for standard deviation estimate 50≤
B ≤ 100 were suggested by Leger et al.(1992) [40] and Efron (1990) [22]. In fact,
it is known from the statistical theory of the bootstrap that a finite total of nn

possible bootstrap samples exist. If it was computed the parameter estimates
for each of these nn samples, it would obtain the true bootstrap estimates of
parameters however, such extreme computation is wasteful and unnecessary [53].

The bootstrap resampling technique is one of the most important concepts
in statistics introduced. In classical techniques, the bootstrap resampling tech-
nique has become a very powerful tool used to estimate quantities associated
with the sampling distribution of estimators and test statistics. In application of
bootstrap resampling technique, there is often some uncertainty about the certain
error structure, and a well-chosen resampling technique can give robust inferences
to the certain error structure of the data. Indeed, it is harmful to pretend that
mere calculation can replace thought about central issues such as the structure
of a problem, the type of answer required, the sampling design and data quality.

Figure 2: Normal Quantile – Quantile.

The bootstrap resampling technique is one of the most important concepts in statistics
introduced. In classical techniques, the bootstrap resampling technique has become a very
powerful tool used to estimate quantities associated with the sampling distribution of esti-
mators and test statistics. In application of bootstrap resampling technique, there is often
some uncertainty about the certain error structure, and a well-chosen resampling technique
can give robust inferences to the certain error structure of the data. Indeed, it is harmful
to pretend that mere calculation can replace thought about central issues such as the struc-
ture of a problem, the type of answer required, the sampling design and data quality. In
these cases, for linear regression with normal random errors εj having constant variance, the
least squares theory of regression estimation and inference provides clean, exact and optimal
methods for analysis.

For generalizations to non-normal errors and non-constant variance, precise methods
seldom exist, and we are faced with approximate techniques based on linear approximations
to estimators and central limit theorems. Bootstrap resampling technique have the potential
to provide more accurate and more valid analysis for modelling in complex problems. With
ordinary least squares linear regression, in ideal conditions resampling essentially not only
reproduces the exact theoretical analysis, but also offers the potential to deal with non-ideal
circumstances such as non-constant variance. Despite its extent and usefulness, resampling
technique should be carefully applied. Unless certain basic ideas are understood, it is all
too easy to produce a wrong solution to the problem. Bootstrap resampling techniques are
intended to help avoid tedious calculations based on questionable assumptions.



Bootstrap fuzzy regression method 427

In conclusion, in this study it is aimed to describe: basic ideas, the standard error of
bootstrap fuzzy regression technique, confidence intervals of the regression coefficients, ap-
plication to bootstrap ordinary least squares technique and bootstrap fuzzy linear regression
technique. The fuzzy regression technique is a new statistical technique that combines the
classical regression technique with the theory of fuzzy logic. When functional relationship is
not known in advance, fuzzy regression technique is introduced as an alternative technique
which helps model crisp/crisp or crisp/fuzzy data. Also, the correct functional relationship
between dependent variable and independent variable is not known. Bootstrap resampling
technique is preferable in fuzzy least squares regression analysis and ordinary least squares
regression techniques because of some theoretical properties like having any distributional
assumptions on the residuals and hence, allows for inference even if the errors do not follow
normal distribution.

The most important advantages of the bootstrap fuzzy least squares regression tech-
nique and bootstrap ordinary least squares technique are:

• they need smallers sample than ordinary least squares technique,

• they can be used when there are doubts about the distribution of the population,

• they can be used in cases of insufficient sample size and parametric assumptions are
not realized,

• they can also be used in cases where the sample selection is not random,

• in cases of very large sample sizes, the methods can be applied by creating subgroups.

The bootstrap fuzzy least squares regression and bootstrap ordinary least squares tech-
niques estimate the variation of a statistic from the variation of that statistic between sub-
samples, rather than from parametric assumptions and may yield similar results in many
situations. However, it is a mistake to expect that bootstrap fuzzy least squares regression
technique and bootstrap ordinary least squares regression technique always give valid and
confident results. The confidence of results depend on the structure of the data and distribu-
tion function. Application of both regression techniques depend on development of statistical
computer packages featured these analyses.

The estimations of the bootstrap standard error and confidence intervals of the regres-
sion coefficients are nearly equal to the standard error of regression coefficient estimates of the
bootstrap fuzzy least squares regression technique. However, bootstrap fuzzy least squares
regression technique gives regression coefficients, which generally have smaller standard errors
and narrow confidence intervals than bootstrap regression technique. If the OLSR model did
not satisfy the related model assumptions, the bootstrap regression technique and bootstrap
fuzzy least squares regression techniques could be used for fitting the model and provide bet-
ter estimates. Because the bootstrap resampling technique and bootstrap fuzzy least squares
regression technique do not require above assumptions [7], [27]. Due to the computation of
the standard errors and since confidence intervals are based on the distribution of bootstrap
samples, not on assumptions about normal distributions. The assumption guessed behind
bootstrap resampling technique is to treat the sample as if it were the entire population [4],
[7].
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In this research, we have presented model of fuzzy least squares regression for the liter-
ature. We have shown that the development of an adequate bootstrap resampling theory in
the fuzzy context would be very profitable because in this context the asymptotic approxi-
mations are, in most cases, difficult to handle and hence, they are useless to make inferences.
A real application to predict DEXATF (Y )(g) in clinical data obtained was shown. BOLS

and BFLS regression were obtained and also as can be seen from the statistical values calcu-
lated from a clinical numerical sample, the error of the BFLS method regarding the estimates
calculated according to the error criteria was detected to be lower than the errors calculated
from the BOLS method. Due to these results, we trust the results obtained with the BFLSR

method more than the results obtained with the BOLSR method. It can be concluded that
BOLSR and BFLSR methods have similar performance. Among these models, the BFLSR

method is proposed to be preferred. Although the bootstrap resampling technique is some-
times mentioned as a replacement for“standard statistics techniques”, it is concluded that this
thought is wrong, since the bootstrap resampling technique depends on the theoric elements
of classic logic.
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