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1. INTRODUCTION

Let f(x) and g(x) be the probability density functions (pdfs) of the failure times of
two systems X and Y , with distribution functions F (x) = P (X ≤ x) and G(x) = P (Y ≤ x)
respectively. Kerridge’s [12] measure of inaccuracy between X and Y is given by

(1.1) I(X, Y ) = −
∫ ∞

0
f(x) log g(x)dx.

It has been known for a long time as a helpful tool for determining the degree of error in
experimental results. It can also be interpreted as an error that occurred when an experi-
ment’s true density function, f(x), was assigned to g(x) by the experimenter. Kerridge [12]
discussed the application of inaccuracy measures in statistical inference. This measure is also
applied in the field of economics. International demand or cross-country demand analysis
estimates the demand for goods or services for a group of countries. James and Anita [10]
address the outlier problem in the international demand analysis, which can be remedied
using inaccuracy measures. Kayal and Sunoj [11] introduced a generalized dynamic condi-
tional Kerridge’s inaccuracy measure, which can be represented as the sum of conditional
Renyi’s divergence and Renyi’s entropy. Rajesh et al. [17] and Sathar et al. [20] suggested
nonparametric estimator for inaccuracy measure in the reliability context, such as residual
life distributions and past life distributions, respectively, and found their properties under
some regularity conditions.

Hooda and Tuteja [9] defined some nonadditive measures of relative information and
inaccuracy. Using reversible symmetry, Bhatia and Taneja [2] defined the quantitative-
qualitative measure of inaccuracy. Straightforwardly, Gur Dial [8] established the noiseless
coding theorems for subjective probability codes for nonadditive measures of inaccuracy.
Goel et al. [7] introduce and discuss a measure of inaccuracy between the distributions of nth

record value. Although this measure is inapplicable when the random variables’ pdfs are void,
Kundu et al. [16] proposed an alternative measure of inaccuracy called dynamic cumulative
past inaccuracy between random variables X and Y , which is represented as

(1.2) C̄I(X, Y ) = −
∫ ∞

0
F (x) log G(x)dx.

Kundu et al. [16] investigated general results for this measure. Relying on various applications
of stochastic classes in reliability and information theory fields, Khorashadizadeh [13] studied
new classes of the lifetime in terms of cumulative inaccuracy along with their relations with
other famous aging classes. Also, some characterization results are obtained under the pro-
portional reversed hazard rate model. Di Crescenzo and Longobardi [4] defined the empirical
expression of cumulative inaccuracy in connection with empirical cumulative entropy.

In many realistic situations, if a system is found to be down at time t, the random
variable [t−X|X ≤ x] describes the time elapsed between the failure of a system and the
time. Based on this idea, the cumulative inaccuracy measure between two past lifetimes,
analogous to the measure, (1.2), is defined by Kumar and Taneja [15] and Kundu et al. [16]
independently as

(1.3) C̄I(X, Y, t) = −
∫ t

0

F (x)
F (t)

log
[
G(x)
G(t)

]
dx,
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and so called dynamic cumulative past inaccuracy measure. Clearly when t = 0, (1.3) becomes
(1.2). (1.3) equivalently can be written as

C̄I(X, Y, t) = − 1
F (t)

∫ t

0
F (x) log G(x)dx +

log G(t)
F (t)

∫ t

0
F (x)dx

= Āt + B̄t,(1.4)

where

Āt = − 1
F (t)

∫ t

0
F (x) log G(x)dx and B̄t =

log G(t)
F (t)

∫ t

0
F (x)dx.

Ghosh and Kundu [6] introduced the notion of cumulative past inaccuracy of order α

and study the proposed measure for conditionally specified models of two components failed
at different time instants, called generalized conditional cumulative past inaccuracy, and their
properties are discussed.

Example 1.1. Let the random variables X and Y have the following distribution
functions F (x) = 2x− x2, and G(x) = xλ respectively, x ∈ [0, 1]. Then for t ∈ [0, 1], the
dynamic cumulative past inaccuracy measure, C̄In(t) is obtained as

C̄In(t) =
λt(2t− 9)
18(t− 2)

.

Figure 1 depicts the dynamic cumulative past inaccuracy measure for for t ∈ [0, 1] and
for λ ∈ {4, 6, ..., 12}. According to the graph, the dynamic cumulative past inaccuracy
measure is an increasing function in λ and t.
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Figure 1: Plot of C̄I(X, Y, t) against t ∈ [0, 1] for different parameter λ.

From a practical standpoint, it appears more reasonable to forego independence in
favour of some dependency. For example, if a family’s income is exclusively dependent on the
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salary of one of its members, an accident or the death of that individual will have a negative
influence on the family’s performance. However, this will not be the case when examined from
the perspective of society as a whole. Random variables are derived from specific types of
mixing conditions that have already been defined in the literature. Alpha-mixing is a strong
mixing condition with many practical applications among the various mixing conditions used
in the literature.

Censorship is either desirable or unavoidable in life testing and can take several forms.
Withdrawals from a clinical trial, death unrelated to the condition under study, and a person
still alive at the end of the follow-up period are all examples of random censoring. Right
censorship is one of the most common types of censorship. Right censoring is appropriate in
studies of electrical equipment failure, the occurrence of a specific disease, and so on.

Motivated by the emerging work and the importance of (1.3), we intend to develop
a kernel function-based estimation technique for this measure in practical situations. This
paper considers the nonparametric estimation of (1.3) under right censoring and discusses
some of its properties. Throughout this paper, we assume that the random variables are
alpha-mixing (Rosenblatt [19]).

This paper’s outline is as follows: In Section 2, we present a nonparametric estimator
for (1.4) in censored samples. Section 3 looks into the asymptotic properties of the estima-
tor. Section 4 contains a simulation study to demonstrate the estimator’s behaviour and
a comparison to an empirical estimator. Furthermore, they are compared to two different
real-world data sets.

2. KERNEL ESTIMATION

In this section, we propose a nonparametric estimator for the cumulative past inac-
curacy measure for right censored data sets. Consider {Xi}, {Yi}, i = 1, 2, ..., n be iden-
tically distributed random samples have distribution functions be F (x) = Pr(Xi ≤ x) and
G(x) = Pr(Yi ≤ x) respectively. We use independent and identically distributed random
variable R1i and R2i with corresponding distribution functions P1(x) and P2(x) for creating
right-censored data from Xi and Yi respectively. Note that R1i and R2i are independent
of Xi and Yi respectively. Let Ci = min(Xi, R1i), C∗i = min(Yi, R2i), δi = I(Xi ≤ R1i) and
δ∗i = I(Yi ≤ R2i). Then the kernel density estimator of (1.4) under right censoring is as
follows:

C̄In(t) = Ānt + B̄nt,

= − 1
Fn(t)

∫ t

0
Fn(x) log Gn(x)dx +

log Gn(t)
Fn(t)

∫ t

0
Fn(x)dx,(2.1)

where

Fn(t) =
∫ t

0

1
nh

n∑
i=1

K
(

x−Ci
h

)
δidx

1− P1(Ci)
and Gn(t) =

∫ t

0

1
nh

n∑
i=1

K
(

x−C∗i
h

)
δ∗i dx

1− P2(C∗i )
,

respectively are the nonparametric density estimator for F (t) and G(t) under censoring and
K(·) be the kernel function. For the positive integers, i and j h → 0, nh →∞ and the
following assumptions hold:
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(i) f (k)(x), 1 ≤ k ≤ 2j, exists and f (2j)(x) is bounded

and if K(·) satisfies,

(ii) K(s) ≥ 0, −∞ < s < ∞ ,
∫

R+ K(s)ds = 1,
∫

R+ saKi(s)ds = 0 for positive odd
integer a,

∫
R+ sbKi(s)ds < ∞ for positive even integer b.

Denote Q∗(t) = P (C1 ≤ t, δ1 = 1) the sub distribution function for the uncensored observa-
tions, and q∗(t) = [1− P1(t)]f(t) the corresponding density, then a reasonable estimate of
f(t) can be obtained from Cai [3] as q∗(t)/[1−P1(t)]. Consider the transformation α = x−Ci

h ,
then we get

E

[
1
h

K
(

x−Ci
h

)
δi

1− P1(Ci)

]
=

1
h

∫
R+

K
(

x−Ci
h

)
1− P1(Ci)

q∗(Ci)dCi,

=
∫

R+

K(α)f(x− αh)dα,

=
∫

R+

K(α)

[
f(x)− f (1)(x)αh +

f (2)(x)
2!

α2h2 − ...

]
,

= f(x) +
h2

2

∫
R+

α2K(α)dαf (2)(x) + O(h2
n),(2.2)

and using Lemma 2 in Elias Masry [5], we get

E

[
1
h

K
(

x−Ci
h

)
δi

1− P1(Ci)

]2

=
Ck

h

f(x)
1− P1(x)

,(2.3)

where Ck =
∫

R+ K2(α)dα. Let K1 =
K
�

x−Ci
h

�
δi

1−P1(Ci)
, then using (2.2) and (2.3), we get

Bias[Fn(t)] =
∫ t

0
E

(
K1

h

)
dx− F (x),

=
h2

2

∫
R+

α2K(α)dα

∫ t

0
f (2)(x)dx + O(h4),

Var[Fn(t)] ≈ 1
n

{ ∫ t

0
E

(
K1

h

)2

dx−
∫ t

0

[
E

(
K1

h

)]2

dx

}
+

{ ∫ t

0
E

(
K1

h

)
dx− F (x)

}2

,

=
Ck

nh

∫ t

0

f(x)
1− P1(x)

dx.

2.1. Estimation of Āt and B̄t

Using Taylor’s series expansion, we have

log Gn(x) = log G(x) +
Gn(x)−G(x)

G(x)
+ Rn,
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where

Rn =

1∫
0

2(1− τ)
{G(x) + τ [Gn(x)−G(x)]}2 [Gn(x)−G(x)]2dτ.

Hence,

Fn(x) log Gn(x)− F (x) log G(x) =

= log G(x)[Fn(x)− F (x)] +
1

G(x)
[Fn(x)− F (x)][Gn(x)−G(x)]

+
F (x)
G(x)

[Gn(x)−G(x)] + Rn[Fn(x)− F (x)] + F (x)Rn.(2.4)

Next, we need to find E|Rn|j , for any positive integer j. For this, consider V1 ={
x : |Gn(x)−G(x)| ≤ G(x)

2

}
and V c

1 is the compliment of V1. Clearly, for θ ∈ V1 and for
every 0 ≤ ε ≤ 1, we have

0 < G(x)
(
1− ε

2

)
≤ G(x) + ε[Gn(x)−G(x)] < G(x)

(
1 +

ε

2

)
.

Equivalently, we get

0 <
(1− ε)[Gn(x)−G(x)]2

{G(x) + ε[Gn(x)−G(x)]}2 ≤
(1− ε)[Gn(x)−G(x)]2[(

1− ε
2

)
G(x)

]2 .

Let I(·) denotes the indicator function, since
1∫
0

(1− ε)(
1− ε

2

)2 dε < 1, then for every positive integer

j we get

E|Rn|jI(V1) ≤
1

[G(x)]2j
E[G∗n(x)−G(x)]2j .

Also, we have

E|Rn|jI(V c
1 ) ≤ E

[∣∣∣∣ 1
Gn(x)

− 1
G(x)

− Gn(x)−G(x)
G(x)

∣∣∣∣jI(V c
1 )

]
.

For 1 ≤ i ≤ n, we have K(x− Yi) 6= 0 and m < K(α) < N so that Gn(x) ≥ m

nh
, or equiva-

lently,
1

Gn(x)
≤ nh

m
. Also, Gn(x) ≤ N

h and nh2 →∞ implies for sufficiently large n,

E|Rn|jI(V c
1 ) ≤

∣∣∣∣nh2

m
+ h− h

G(x)
− N

G(x)

∣∣∣∣j 1
hj

E[I(V c
1 )],

= O(njhj)P
[
|G∗n(x)−G(x)| ≥ G(x)

2

]
,

≤ O(njhj)
{

P

[
|G∗n(x)− E[G∗n(x)]| ≥ G(x)

4

]
+ P

[
|E[G∗n(x)]−G(x)| ≥ G(x)

4

]}
.
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For sufficiently large n,

P

[
|E[G∗n(x)]−G(x)| ≥ G(x)

4

]
= 0,

and

P

[
|Gn(x)− E[Gn(x)]| ≥ G(x)

4

]
≤ 2 exp{−Cnh},

for some constant C, (see Rao [18]), we obtain for sufficiently large n

E|Rn|jI(V c
1 ) ≤ 2 exp{−Cnh}.

Also, we have

E|Rn|j = E|Rn|jI(V1) + E|Rn|jI(V c
1 ),

≤ 1
[G(x)]2j

E[Gn(x)−G(x)]2j + O(njhj) exp{−Cnh}.

In particular for j = 1, 2 in the above inequality, we get

E|Rn| ≤
1

[G(x)]2
E[Gn(x)−G(x)]2 + O(nh) exp{−Cnh},

= O

(
1

nh

)
+ O(h4) + O(nh),(2.5)

and

E|Rn|2 ≤
1

[G(x)]4
E[Gn(x)−G(x)]4 + O(n2h2) exp{−Cnh},

= O

(
h3

n

)
+ O

(
1

n2h2

)
+ O(h8) + O(n2h2),(2.6)

since nh goes to infinity, O(nh) exp{−Cnh} and O(n2h2) exp{−Cnh} have smaller orders
than that of E[Gn(x)−G(x)] and E[Gn(x)−G(x)]2 respectively.

In order to simplify the notation define hn(t) =
∫ t
0 Fn(x) log Gn(x)dx, gn(t) =

∫ t
0 Fn(x)dx,

h(t) =
∫ t
0 F (x) log G(x)dx and g(t) =

∫ t
0 F (x)dx so that we can easily prove that

hn(t)
Fn(t)

− h(t)
F (t)

≈
hn(t)−

h(t)
F (t)

Fn(t)

F (t)
,(2.7)

and

log Gn(t)gn(t)
Fn(t)

− log G(t)g(t)
F (t)

≈
log Gn(t)gn(t)−

log G(t)g(t)
F (t)

Fn(t)

F (t)
.(2.8)

Hence using (2.4)–(2.8), we get the following:

Bias[Ānt] = −Bias
[

hn(t)
Fn(t)

− h(t)
F (t)

]
,

=
−h2

2

∫
R+

α2K(α)dα

{
1

F (t)

∫ t

0

[
log G(x)

∫ x

0
f (2)(y)dy

+
F (x)
G(x)

∫ x

0
g(2)(y)dy

]
dx− h(t)

F 2(t)

∫ t

0
f (2)(x)dx

}
+ O(h4),(2.9)
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and

Bias[B̄nt] =
1

F (t)
Bias[gn(t) log Gn(t)]− log G(t)g(t)

F 2(t)
Bias[Fn(t)],

=
h2

2

∫
R+

α2K(α)dα

{
log G(t)

F (t)

∫ t

0

∫ x

0
f (2)(y)dydx +

g(t)
F (t)G(t)

∫ t

0
g(2)(x)dx

− log G(t)g(t)
F 2(t)

∫ t

0
f (2)(x)dx

}
+ O(h4).(2.10)

Moreover,

Var[Ānt] = Var
[

hn(t)
Fn(t)

− h(t)
F (t)

]
,

≈ Ck

nh

1
F 2(t)

{∫ t

0
log2 G(x)

∫ x

0

f(y)
1− P1(y)

dydx

+
∫ t

0

[
F (x)
G(x)

]2 ∫ x

0

g(y)
1− P2(y)

dydx +
h2(t)
F 2(t)

∫ t

0

f(x)
1− P1(x)

dx

}
,(2.11)

and

Var[B̄nt] =
1

F 2(t)
Var[gn(t) log Gn(t)] +

[
log G(t)g(t)

F 2(t)

]2

Var[Fn(t)],

≈ Ck

nh

log2 G(t)
F 2(t)

{∫ t

0

∫ x

0

f(y)
1− P1(y)

dydx +
g2(t)
F 2(t)

∫ t

0

f(x)
1− P1(x)

dx

}
+

Ck

nh

g2(t)
G2(t)F 2(t)

∫ t

0

g(x)
1− P2(x)

dx.(2.12)

The following theorem gives bias and variance of the proposed estimator.

Theorem 2.1. Under the assumptions given in Section 2, bias and variance of C̄In(t)
is given as

Bias
[
C̄In(t)

]
=

h2

2

∫
R+

α2K(α)dα

{
log G(t)

F (t)

∫ t

0

∫ x

0
f (2)(y)dydx +

g(t)
F (t)G(t)

∫ t

0
g(2)(x)dx

− log G(t)g(t)
F 2(t)

∫ t

0
f (2)(x)dx− 1

F (t)

∫ t

0
log G(x)

∫ x

0
f (2)(y)dydx

− 1
F (t)

∫ t

0

F (x)
G(x)

∫ x

0
g(2)(y)dydx +

h(t)
F 2(t)

∫ t

0
f (2)(x)dx

}
,

and

Var
[
C̄In(t)

]
≈ Ck

nh

1
F 2(t)

{∫ t

0
log2 G(x)

∫ x

0

f(y)
1− P1(y)

dydx +
∫ t

0

[
F (x)
G(x)

]2 ∫ x

0

g(y)
1− P2(y)

dydx

+
h2(t)
F 2(t)

∫ t

0

f(x)
1− P1(x)

dx + log2 G(t)
∫ t

0

∫ x

0

f(y)
1− P1(y)

dydx

+
log2 G(t)g2(t)

F 2(t)

∫ t

0

f(x)
1− P1(x)

dx +
g2(t)
G2(t)

∫ t

0

g(x)
1− P2(x)

dx

}
.

Proof: Using the equations (2.9), (2.10), (2.11) and (2.12), the result follows.
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The following example shows the application of Theorem 2.1.

Example 2.1. Consider the two non-negative random variables X and Y have the
pdfs f(x) and g(x) respectively, so that for x ∈ (0, 1)

f(x) = 2x and F (x) = P (X ≤ x) = x2,

g(x) = 3x2 and G(x) = P (Y ≤ x) = x3.

Let the random variables X and Y be right censored by uniform random variables with
parameters (0, 0.5) and (0.5, 1), respectively. Then we get

Bias
[
C̄In(t)

]
=
−2h2

t

∫
R+

α2K(α)dα,

and

Var
[
C̄In(t)

]
≈ Ck

nh

1
t4

{∫ t

0

9 log2 x

2
[log(1− 2x)− 2x]dx− 3(t− 2)t + 6(t− 1) log(1− t)

4t

− t2

18
[(3 log t− 1)2 + 9 log2 t][2t + log(1− 2t)]− 1

12
[t(2 + t) + 2 log(1− t)]

+
9 log2 t

2
[t− t2 − (t− 1

2
) log(1− 2t)]

}
.

3. ASYMPTOTIC PROPERTIES

In this section, we discuss some asymptotic properties of (1.4). The following theorem
reveals the consistency property of the estimator.

Theorem 3.1. Under the assumptions given in Section 2, C̄In(t) is a consistent esti-

mator of C̄I(X, Y, t).

Proof: We have
C̄In(t) =

log Gn(t)gn(t)
Fn(t)

− hn(t)
Fn(t)

.

MSE[hn(t)] → 0, MSE[gn(t)] → 0, MSE[Fn(t)] → 0, MSE[log Gn(t)] → 0, when n →∞, and
using Slutsky’s theorem we obtain desired result.

In the following theorem, we check the asymptotic nature of the estimator’s mean
integrated squared error (MISE).

Theorem 3.2. Under the assumptions given in Section 2, the MISE of C̄In(t) tends

to zero as n →∞.

Proof:

MISE[C̄In(t)] = E

∫ [
C̄In(t)− C̄I(X, Y, t)

]2
dt,

= MISE[Ānt] + MISE[B̄nt] + 2E

∫ [
Ānt − Āt

][
B̄nt − B̄t

]
dt.
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Also

MISE[Ānt] ≤
∫

1
F 2(t)

{
MSE[hn(t)] +

[
h(t)
F (t)

]2

MSE[Fn(t)]

−2
h(t)
F (t)

MSE
1
2 [hn(t)]MSE

1
2 [Fn(t)]

}
dt → 0,

as n →∞. Using similar steps and applying Holder’s inequality, we get the proof.

The following theorem states the asymptotic normal distribution of the proposed esti-
mator.

Theorem 3.3. Let C̄In(t) be nonparametric estimator of C̄I(X, Y, t), K(x) be a ker-

nel and h satisfying the conditions for bandwidth. Then for fixed t

(nh)
1
2

[
C̄In(t)− C̄I(X, Y, t)

σC̄In

]

follows normal distribution with mean zero and variance 2, as n →∞ with

σ2
C̄In

=
Ck

F 2(t)

{∫ t

0
log2 G(x)

∫ x

0

f(y)
1− P1(y)

dydx +
∫ t

0

[
F (x)
G(x)

]2 ∫ x

0

g(y)
1− P2(y)

dydx

+
h2(t)
F 2(t)

∫ t

0

f(x)
1− P1(x)

dx + log2 G(t)
∫ t

0

∫ x

0

f(y)
1− P1(y)

dydx

+
log2 G(t)g2(t)

F 2(t)

∫ t

0

f(x)
1− P1(x)

dx +
g2(t)
G2(t)

∫ t

0

g(x)
1− P2(x)

dx

}
.

Proof: We have

Ānt − Āt = − hn(t)
Fn(t)

+
h(t)
F (t)

,

= − [hn(t)− h(t)]
Fn(t)

+
h(t)[Fn(t)− F (t)]

F (t)Fn(t)
,

= − 1
Fn(t)

∫ t

0

{
log G(x)

[
Fn(x)− F (x)

]
+

F (x)
G(x)

[
Gn(x)−G(x)

]}
dx

+
h(t)

F (t)Fn(t)

[
Fn(x)− F (x)

]
.

Using asymptotic normality and almost sure convergence properties of of Fn(t) given in
Cai [3], we get

(nh)
1
2

[
Ānt − Āt

σĀ

]
asymptotically follows standard normal distribution with

σ2
Ā =

Ck

F 2(t)

{∫ t

0
log2 G(x)

∫ x

0

f(y)
1− P1(y)

dydx +
∫ t

0

[
F (x)
G(x)

]2 ∫ x

0

g(y)
1− P2(y)

dydx

+
h2(t)
F 2(t)

∫ t

0

f(x)
1− P1(x)

dx

}
.
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Similarly, we get

(nh)
1
2

[
B̄nt − B̄t

σB̄

]
asymptotically follows standard normal distribution with

σ2
B̄ =

Ck

F 2(t)

{
log2 G(t)

[ ∫ t

0

∫ x

0

f(y)
1− P1(y)

dydx +
g2(t)
F 2(t)

∫ t

0

f(x)
1− P1(x)

dx

]

+
g2(t)
G2(t)

∫ t

0

g(x)
1− P2(x)

dx

}
.

Hence the proof.

In the following theorem, we check the almost sure convergence property of the sug-
gested estimator.

Theorem 3.4. Let C̄In(t) be a nonparametric estimator of C̄I(X, Y, t), suppose that

F (·), G(·), f(·) and g(·) satisfy the Lipschitz conditions and the kernel K(·) satisfies the re-

quirements and for 0 < τ < ∞, the marginal distribution function of R satisfies L(τ) < 1 (see

Cai [3]) then

sup
0≤t≤τ

∣∣∣C̄In(t)− C̄I(X, Y, t)
∣∣∣ → 0 almost surely.

Proof: We have∣∣∣C̄In(t)− C̄I(X, Y, t)
∣∣∣ ≤ ∣∣∣Ānt − Āt

∣∣∣ +
∣∣∣B̄nt − B̄t

∣∣∣.
Also, ∣∣∣Ānt − Āt

∣∣∣ =
∣∣∣∣ hn(t)
Fn(t)

− h(t)
F (t)

∣∣∣∣
≤

∣∣∣∣hn(t)− h(t)
Fn(t)

∣∣∣∣ +

∣∣∣∣∣ h(t)
Fn(t)F (t)

∣∣∣∣∣∣∣∣Fn(t)− F (t)
∣∣∣

≤ 1
Fn(t)

∫ t

0

{
|log G(x)||Fn(x)− F (x)|+

∣∣∣∣F (x)
G(x)

∣∣∣∣|Gn(x)−G(x)|
}

dx

+

∣∣∣∣∣ h(t)
Fn(t)F (t)

∣∣∣∣∣∣∣∣Fn(t)− F (t)
∣∣∣.

Similarly, we get

|B̄nt − B̄t| ≤
log G(t)
Fn(t)

{∫ t

0
|Fn(x)− F (x)|dx +

∣∣∣∣ g(t)
F (t)

∣∣∣∣∣∣∣Fn(t)− F (t)
∣∣∣}

+
g(t)

G(t)Fn(t)
|Gn(t)−G(t)|.

By using the almost sure convergence of Gn(t), Fn(t) given in Cai [3], the proof immediately
follows.
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4. NUMERICAL ANALYSIS

In this section, we simulate to evaluate the performance of the proposed estimators.
We are interested in random variables of the form U =

√
(1− ρ)|V |, where V are generated

from the AR(1) model to obtain dependent samples.

We generate two sets of 2000 simulated samples with white noise distributed as normal
density and parameters of (0, 1) and (0, 2), respectively, to test the proposed estimator’s
asymptotic normality. Exponential distributions with parameters 1 and 2 are used for right
censoring observations. The kernel function, in this case, is Epanechnikov, and it has the form
0.75(1−u2)I(|u| < 1). The process is repeated 250 times, and the estimator’s histogram with
a normal curve is shown in Figure 2 for t = 1.5, 1.6, 1.7, and 1.8. We passed the AIC and
BIC tests, indicating that the estimator has asymptotic normality.
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(a) C̄In(1.5) (b) C̄In(1.6)
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Figure 2: Histogram of C̄In(t) with normal density curve from sample of size 250.

Table 1 shows the MISE of the estimator for varying parameter ρ, and the table values
show that as sample size increases, the MISE approaches zero. In Table 1, we also compute
the estimator’s 95% confidence interval when t = 0.6 and ρ varies. We can conclude from the
table values that the confidence interval width for these data sets decreases as the sample
size increases.
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Table 1: Comparison of MISE of C̄In(x) and 95% confidence interval of C̄In(0.6).

n 50 100

ρ MISE 95% CI MISE 95% CI

−0.9 0.27742 (0.26248, 0.89153) 0.18867 (0.45588, 0.54162)
−0.6 0.17139 (0.41373, 0.60759) 0.12089 (0.48320, 0.57749)
−0.3 0.25134 (0.41558, 0.71311) 0.17854 (0.43049, 0.64481)

0 0.24360 (0.37707, 0.73257) 0.19241 (0.47052, 0.59493)
0.3 0.24152 (0.44217, 0.66990) 0.19816 (0.46348, 0.55320)
0.6 0.19935 (0.47671, 0.54945) 0.17724 (0.48481, 0.53651)
0.9 0.24180 (0.48576, 0.62959) 0.20584 (0.49064, 0.56981)

n 200 300

ρ MISE 95% CI MISE 95% CI

−0.9 0.09656 (0.48291, 0.53108) 0.00513 (0.48801, 0.51252)
−0.6 0.08262 (0.49566, 0.55799) 0.00476 (0.49782, 0.53547)
−0.3 0.08787 (0.45501, 0.55358) 0.00449 (0.48234, 0.54069)

0 0.09106 (0.48313, 0.54717) 0.00346 (0.48922, 0.53103)
0.3 0.10085 (0.49187, 0.53199) 0.00132 (0.49807, 0.52636)
0.6 0.07573 (0.48991, 0.52993) 0.00648 (0.49629, 0.51122)
0.9 0.10222 (0.49436, 0.55430) 0.00670 (0.49809, 0.54510)

Figure 3 shows the proposed estimator’s value and its upper and lower confidence
bounds when t = 1.5 and ρ = 0.5. It is observed that C̄In(1.5) is not monotone for n for
fixed values t = 1.5 and ρ = 0.5. Also, as sample size n increases, the width of the confidence
intervals narrows, and both bounds approach the kernel estimator, which means the kernel
estimator is more precise when the sample size becomes large.

Confidence bounds

50 100 150 200 250 300
n

0.36

0.38

0.40

0.42

0.44

0.46

Figure 3: C̄In(1.5) and confidence bounds when ρ = 0.5.
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4.1. Comparison with an empirical estimator

Consider {Xi}, {Yi}, i = 1, 2, ..., n be identically distributed random samples have sur-
vival functions be F (x) = Pr(Xi ≥ x) and G(x) = Pr(Yi ≥ x) respectively. We use indepen-
dent and identically distributed random variable R1i and R2i with corresponding distribution
functions P1(x) and P2(x) for creating right censored data from Xi and Yi respectively. Note
that R1i and R2i are independent of Xi and Yi respectively. Let Ci = min(Xi, R1i) and
C∗i = min(Yi, R2i). In this censoring scheme one can observe (Ci, δi) and (C∗i , δ∗i ), where
δi = I(Xi ≤ R1i) and δ∗i = I(Yi ≤ R2i). Denote {Ci:n}1≤i≤n and {C∗i:n}1≤i≤n, be the sample
order statistics, where ties within lifetimes or within censoring times are ordered arbitrarily
and ties among lifetimes and censoring times are treated as if the former precedes the latter.
{δi:n}1≤i≤n and {δ∗i:n}1≤i≤n are the concomitant of ith order statistic of each sample. Let

(4.1) Zj =
n∑

r=1

I(Ci ≤ C∗j:n), i = 1, 2, ..., n,

the number of random variables of the first censored sample that are less than or equal to
jth order statistics of the second censored sample. Also we rename by C(j,1) < C(j,2) < ... the
random sample of the first censored sample belonging to (C∗j:n, C∗(j+1):n], if any. Then in the
context of right censoring, we get the estimator of cumulative inaccuracy measure owing to
Di Crescenzo and Longobardi (2013), as follows:

C̄I
cen
n (t) = − 1

n

n−1∑
j=1


Zj+1C

∗
(j+1):n − ZjC

∗
j:n −

Zj+1−Zj∑
k=1

C(j,k)

F∗(t)
n∑

r=1
I(R1r > C∗j:n)



× ln

 j

G∗(t)
n∑

r=1
I(R2r > Y2j:n)

 I(Y1j:n ≤ t),(4.2)

where F∗(t) and G∗(t) are the Kaplan–Meier estimators of distribution functions F (t) and
G(t) respectively defined as

(4.3) F∗(x) = 1−
∏

1≤i≤n

(
1− δi:n

n− i + 1

)I(Ci:n≤t)

and G∗(x) = 1−
∏

1≤i≤n

(
1− δ∗i:n

n− i + 1

)I(C∗i:n≤t)

.

Table 2 shows the results of comparing the proposed estimator with the empirical
estimator using bias and MSE for varying t. We can conclude from these data sets that bias
and MSE decrease with increasing sample size n and are inversely proportional to t.



Kernel estimation of the dynamic cumulative past inaccuracy measure... 541

Table 2: Comparison of |Bias| and MSE of the estimators C̄In(t) and C̄I
cen
n (t).

|Bias|

n 100 200 300

t C̄In(t) C̄I
cen
n (t) C̄In(t) C̄I

cen
n (t) C̄In(t) C̄I

cen
n (t)

1.1 0.17026 0.33860 0.09752 0.28616 0.02315 0.10148
1.3 0.19966 0.56255 0.11951 0.34930 0.03831 0.13926
1.5 0.22769 0.79647 0.14579 0.41002 0.05833 0.16947
1.7 0.28286 1.03660 0.16794 0.46752 0.08318 0.19762
1.9 0.29928 1.27998 0.18381 0.52152 0.11240 0.21901

MSE

n 100 200 300

t C̄In(t) C̄I
cen
n (t) C̄In(t) C̄I

cen
n (t) C̄In(t) C̄I

cen
n (t)

1.1 0.02933 0.11467 0.01043 0.09070 0.00157 0.01826
1.3 0.04012 0.31647 0.01442 0.13500 0.00350 0.05177
1.5 0.05189 0.63436 0.02134 0.18629 0.00552 0.08249
1.7 0.08305 1.07454 0.02827 0.24301 0.00761 0.11512
1.9 0.09261 1.63838 0.03387 0.30381 0.00973 0.13043

4.1.1. Real data Analysis

Example 4.1. We use 101 data points from Andrews and Herzberg [1], representing
the stress-rupture life of kevlar 49/epoxy strands subjected to constant sustained pressure
at 90% stress until all fail, giving us complete data with exact failure times. The fitting
details for this data set are given in Table 3. We generated 100 bootstrap samples from the
data sets, which were right censored by exponential models with parameters 0.09 and 0.03,
respectively. Under the assumption that F (x) is distributed as an Extreme value and G(x)
is distributed as a Weibull model, we plotted the mean values of the kernel and empirical
estimators in Figure 4 using the Epanechnikov kernel. We also find the kernel estimator’s
relative efficiencies compared to the empirical estimator, which is plotted in Figure 6(a).

Example 4.2. We consider the 20 failure times of equal-load share samples from
Table 1’s sample 1, as investigated by Kim and Kvam [14]. We discovered better models for
the data sets using AIC and BIC, shown in Table 3. We assumed that F (x) is an exponential
distribution and G(x) is a Weibull distribution. We generated 100 bootstrap samples from the
data sets, right censored by exponential models with parameters of 0.2 and 0.1, respectively.
The Epanechnikov kernel is used as the kernel form. The mean values of empirical and kernel
estimators are calculated and plotted in Figure 5. The relative efficiencies of the kernel
estimator to the empirical estimator are also determined and plotted in Figure 6(b).

In Figures 4 and 5, we plot C̄I(X, Y, t), C̄In(t) and C̄I
cen
n (t) with respect to Exam-

ples 4.1 and 4.2 respectively. We can observe from Figure 4, C̄I(X, Y, t) and C̄In(t) are non
decreasing and monotonic, while C̄I

cen
n (t) is non increasing in t. In Figure 5, C̄I(X, Y, t)

and C̄In(t) are monotonic. Furthermore, in both cases, the kernel estimator outperforms the
empirical estimator. We can conclude from Figures 6 that the relative efficiencies of kernel
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estimators in comparison to empirical estimators are decreasing functions in t. Furthermore,
the graph shows that relative efficiencies are greater than one, indicating that the kernel
estimator outperforms the empirical estimator in the Examples 4.1 and 4.2.

Table 3: Fitting details of real data.

Distribution Parameters AIC BIC

Example 4.1:
Extreme value (0.60869, 0.70011) −2.48095 −2.49513
Weibull (0.94876, 1.12481, −0.07909) −2.23536 −2.25600

Pareto (7, 5.61164,1.19461,−0.07909) −2.13630 −2.16296
Frechet (2.50547, 1.36598, −0.89583) −2.05503 −2.07566

Example 4.2:
Exponential 0.19053 −5.25114 −5.19792
Weibull (0.74337, 4.36222, 0.13999) −4.86134 −4.66002

Pareto (7, 1.86990, 2.96583, 0.14000) −4.402009 −4.11923
Gamma (0.83604, 6.27797) −4.39639 −4.27688

2 4 6 8
t

0.2

0.4

0.6

0.8

Dynamic cumulative past inaccuracy Measure

Figure 4: Comparison of C̄I(X, Y, t), C̄In(t) and C̄I
cen
n (t) for the stress-rupture lives

of kevlar 49/epoxy strands.
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Figure 5: Comparison of C̄I(X, Y, t), C̄In(t) and C̄I
cen
n (t) for the 20 failure times of

equal-load share samples.
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Figure 6: Comparison of C̄In(t)’s relative efficiency with respect to C̄I
cen
n (t).
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