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1. INTRODUCTION

Let f(x) and g(x) be the probability density functions (pdfs) of the failure
times of two systems X and Y , with distribution functions F (x) = P (X ≤ x) and
G(x) = P (Y ≤ x) respectively. Kerridge’s [12] measure of inaccuracy between X
and Y is given by

(1.1) I(X,Y ) = −
∫ ∞

0
f(x) log g(x)dx.

It has been known for a long time as a helpful tool for determining the degree of
error in experimental results. It can also be interpreted as an error that occurred
when an experiment’s true density function, f(x), was assigned to g(x) by the
experimenter. Kerridge [12] discussed the application of inaccuracy measures in
statistical inference. This measure is also applied in the field of economics. In-
ternational demand or cross-country demand analysis estimates the demand for
goods or services for a group of countries. James and Anita [10] address the out-
lier problem in the international demand analysis, which can be remedied using
inaccuracy measures. Kayal and Sunoj [11] introduced a generalized dynamic
conditional Kerridge’s inaccuracy measure, which can be represented as the sum
of conditional Renyi’s divergence and Renyi’s entropy. Rajesh et al. [17] and
Sathar et al. [20] suggested nonparametric estimator for inaccuracy measure in
the reliability context, such as residual life distributions and past life distribu-
tions, respectively, and found their properties under some regularity conditions.

Hooda and Tuteja [9] defined some nonadditive measures of relative infor-
mation and inaccuracy. Using reversible symmetry, Bhatia and Taneja [2] defined
the quantitative-qualitative measure of inaccuracy. Straightforwardly, Gur Dial
[8] established the noiseless coding theorems for subjective probability codes for
nonadditive measures of inaccuracy. Goel et al. [7] introduce and discuss a mea-
sure of inaccuracy between the distributions of nth record value. Although this
measure is inapplicable when the random variables’ pdfs are void, Kundu et al.
[16] proposed an alternative measure of inaccuracy called dynamic cumulative
past inaccuracy between random variables X and Y , which is represented as

(1.2) C̄I(X,Y ) = −
∫ ∞

0
F (x) logG(x)dx.

Kundu et al. [16] investigated general results for this measure. Relying on vari-
ous applications of stochastic classes in reliability and information theory fields,
Khorashadizadeh [13] studied new classes of the lifetime in terms of cumulative
inaccuracy along with their relations with other famous aging classes. Also, some
characterization results are obtained under the proportional reversed hazard rate
model. Di Crescenzo and Longobardi [4] defined the empirical expression of cu-
mulative inaccuracy in connection with empirical cumulative entropy.

In many realistic situations, if a system is found to be down at time t, the
random variable [t−X|X ≤ x] describes the time elapsed between the failure of
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a system and the time. Based on this idea, the cumulative inaccuracy measure
between two past lifetimes, analogous to the measure, (1.2), is defined by Kumar
and Taneja [15] and Kundu et al. [16] independently as

(1.3) C̄I(X,Y, t) = −
∫ t

0

F (x)

F (t)
log

[
G(x)

G(t)

]
dx,

and so called dynamic cumulative past inaccuracy measure. Clearly when t = 0,
(1.3) becomes (1.2). (1.3) equivalently can be written as

C̄I(X,Y, t) = − 1

F (t)

∫ t

0
F (x) logG(x)dx+

logG(t)

F (t)

∫ t

0
F (x).

= Āt + B̄t,(1.4)

where

Āt = − 1

F (t)

∫ t

0
F (x) logG(x)dx and B̄t =

logG(t)

F (t)

∫ t

0
F (x)dx.

Ghosh and Kundu [6] introduced the notion of cumulative past inaccuracy
of order α and study the proposed measure for conditionally specified models of
two components failed at different time instants, called generalized conditional
cumulative past inaccuracy, and their properties are discussed.

Example 1.1. Let the random variables X and Y have the following
distribution functions F (x) = 2x − x2, and G(x) = xλ respectively, x ∈ [0, 1].
Then for t ∈ [0, 1], the dynamic cumulative past inaccuracy measure, C̄In(t) is
obtained as

C̄In(t) =
λt(2t− 9)

18(t− 2)
.

Figure 1 depicts the dynamic cumulative past inaccuracy measure for for
t ∈ [0, 1] and for λ ∈ {4, 6, . . . , 12}. According to the graph, the dynamic
cumulative past inaccuracy measure is an increasing function in λ and t.

From a practical standpoint, it appears more reasonable to forego inde-
pendence in favour of some dependency. For example, if a family’s income is
exclusively dependent on the salary of one of its members, an accident or the
death of that individual will have a negative influence on the family’s perfor-
mance. However, this will not be the case when examined from the perspective
of society as a whole. Random variables are derived from specific types of mix-
ing conditions that have already been defined in the literature. Alpha-mixing is
a strong mixing condition with many practical applications among the various
mixing conditions used in the literature.

Censorship is either desirable or unavoidable in life testing and can take
several forms. Withdrawals from a clinical trial, death unrelated to the condition



4 Viswakala K V and E I Abdul Sathar

4= λ

6= λ

8= λ

10 = λ

12 = λ

0.2 0.4 0.6 0.8 1.0
t

1

2

3

4

Dynamic cumulative past inaccuracy Measure

Figure 1: Plot of C̄I(X,Y, t) against t ∈ [0, 1] for different parameter λ.

under study, and a person still alive at the end of the follow-up period are all
examples of random censoring. Right censorship is one of the most common types
of censorship. Right censoring is appropriate in studies of electrical equipment
failure, the occurrence of a specific disease, and so on.

Motivated by the emerging work and the importance of (1.3), we intend to
develop a kernel function-based estimation technique for this measure in practical
situations. This paper considers the nonparametric estimation of (1.3) under
right censoring and discusses some of its properties. Throughout this paper, we
assume that the random variables are alpha-mixing (Rosenblatt [19]).

This paper’s outline is as follows: In Section 2, we present a nonparametric
estimator for (1.4) in censored samples. Section 3 looks into the asymptotic prop-
erties of the estimator. Section 4 contains a simulation study to demonstrate the
estimator’s behaviour and a comparison to an empirical estimator. Furthermore,
they are compared to two different real-world data sets.

2. KERNEL ESTIMATION

In this section, we propose a nonparametric estimator for the cumula-
tive past inaccuracy measure for right censored data sets. Consider {Xi}, {Yi},
i = 1, 2, . . . , n be identically distributed random samples have distribution func-
tions be F (x) = Pr(Xi ≤ x) and G(x) = Pr(Yi ≤ x) respectively. We use
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independent and identically distributed random variable R1i and R2i with corre-
sponding distribution functions P1(x) and P2(x) for creating right-censored data
from Xi and Yi respectively. Note that R1i and R2i are independent of Xi and
Yi respectively. Let Ci = min(Xi, R1i), C

∗
i = min(Yi, R2i), δi = I(Xi ≤ R1i)

and δ∗i = I(Yi ≤ R2i). Then the kernel density estimator of (1.4) under right
censoring is as follows.

C̄In(t) = Ānt + B̄nt,

= − 1

Fn(t)

∫ t

0
Fn(x) logGn(x)dx+

logGn(t)

Fn(t)

∫ t

0
Fn(x)dx,(2.1)

where

Fn(t) =

∫ t

0

1

nh

n∑
i=1

K
(
x−Ci
h

)
δidx

1− P1(Ci)
and Gn(t) =

∫ t

0

1

nh

n∑
i=1

K
(
x−C∗

i
h

)
δ∗i dx

1− P2(C∗
i )

,

respectively are the nonparametric density estimator for F (t) and G(t) under
censoring and K(.) be the kernel function. For the positive integers, i and j
h → 0, nh → ∞ and the following assumptions hold

(i) f (k)(x), 1 ≤ k ≤ 2j, exists and f (2j)(x) is bounded

and if K(.) satisfies,

(ii) K(s) ≥ 0, −∞ < s < ∞ ,
∫
R+ K(s)ds = 1,

∫
R+ saKi(s)ds = 0 for positive

odd integer a,
∫
R+ sbKi(s)ds < ∞ for positive even integer b.

Denote Q∗(t) = P (C1 ≤ t, δ1 = 1) the sub distribution function for the uncen-
sored observations, and q∗(t) = [1 − P1(t)]f(t) the corresponding density, then
a reasonable estimate of f(t) can be obtained from Cai [3] as q∗(t)/[1 − P1(t)].
Consider the transformation α = x−Ci

h , then we get

E

[
1

h

K
(
x−Ci
h

)
δi

1− P1(Ci)

]
=

1

h

∫
R+

K
(
x−Ci
h

)
1− P1(Ci)

q∗(Ci)dCi

=

∫
R+

K(α)f(x− αh)dα,

=

∫
R+

K(α)

[
f(x)− f (1)(x)αh+

f (2)(x)

2!
α2h2 − . . .

]
,

= f(x) +
h2

2

∫
R+

α2K(α)dαf (2)(x) +O(h2n),(2.2)

and using Lemma 2 in Elias Masry [5], we get

E

[
1

h

K
(
x−Ci
h

)
δi

1− P1(Ci)

]2
=

Ck

h

f(x)

1− P1(x)
,(2.3)
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where Ck =
∫
R+ K2(α)dα. Let K1 =

K
(

x−Ci
h

)
δi

1−P1(Ci)
, then using (2.2) and (2.3), we

get

Bias[Fn(t)] =

∫ t

0
E

(
K1

h

)
dx− F (x),

=
h2

2

∫
R+

α2K(α)dα

∫ t

0
f (2)(x)dx+O(h4),

V ar[Fn(t)] ≈
1

n

{∫ t

0
E

(
K1

h

)2

dx−
∫ t

0

[
E

(
K1

h

)]2
dx

}
+

{∫ t

0
E

(
K1

h

)
dx− F (x)

}2

,

=
Ck

nh

∫ t

0

f(x)

1− P1(x)
dx.

2.1. Estimation of Āt and B̄t

Using Taylor’s series expansion, we have

logGn(x) = logG(x) +
Gn(x)−G(x)

G(x)
+Rn,

where

Rn =

1∫
0

2(1− τ)

{G(x) + τ [Gn(x)−G(x)]}2
[Gn(x)−G(x)]2 dτ.

Hence,

Fn(x) logGn(x)− F (x) logG(x)

= logG(x)[Fn(x)− F (x)] +
1

G(x)
[Fn(x)− F (x)][Gn(x)−G(x)]

+
F (x)

G(x)
[Gn(x)−G(x)] +Rn[Fn(x)− F (x)] + F (x)Rn.(2.4)

Next, we need to find E|Rn|j , for any positive integer j. For this, consider

V1 =
{
x : |Gn(x)−G(x)| ≤ G(x)

2

}
and V c

1 is the compliment of V1. Clearly, for

θ ∈ V1 and for every 0 ≤ ϵ ≤ 1, we have

0 < G(x)
(
1− ϵ

2

)
≤ G(x) + ϵ[Gn(x)−G(x)] < G(x)

(
1 +

ϵ

2

)
.
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Equivalently, we get

0 <
(1− ϵ) [Gn(x)−G(x)]2

{G(x) + ϵ[Gn(x)−G(x)]}2
≤ (1− ϵ) [Gn(x)−G(x)]2[(

1− ϵ
2

)
G(x)

]2 .

Let I(.) denotes the indicator function, since
1∫
0

(1− ϵ)(
1− ϵ

2

)2dϵ < 1, then for every

positive integer j we get

E|Rn|jI(V1) ≤ 1

[G(x)]2j
E [G∗

n(x)−G(x)]2j .

Also, we have

E|Rn|jI(V c
1 ) ≤ E

[∣∣∣∣ 1

Gn(x)
− 1

G(x)
− Gn(x)−G(x)

G(x)

∣∣∣∣j I(V c
1 )

]
.

For 1 ≤ i ≤ n, we have K(x− Yi) ̸= 0 and m < K(α) < N so that Gn(x) ≥
m

nh
,

or equivalently,
1

Gn(x)
≤ nh

m
. Also, Gn(x) ≤ N

h and nh2 → ∞ implies for suffi-

ciently large n,

E|Rn|jI(V c
1 ) ≤

∣∣∣∣nh2m
+ h− h

G(x)
− N

G(x)

∣∣∣∣j 1

hj
E [I(V c

1 )] ,

= O(njhj)P

[
|G∗

n(x)−G(x)| ≥ G(x)

2

]
,

≤ O(njhj)

{
P

[
|G∗

n(x)− E[G∗
n(x)]| ≥

G(x)

4

]
+

P

[
|E[G∗

n(x)]−G(x)| ≥ G(x)

4

]}
.

For sufficiently large n,

P

[
|E[G∗

n(x)]−G(x)| ≥ G(x)

4

]
= 0,

and

P

[
|Gn(x)− E[Gn(x)]| ≥

G(x)

4

]
≤ 2 exp{−Cnh},

for some constant C, (see Rao [18]), we obtain for sufficiently large n

E|Rn|jI(V c
1 ) ≤ 2 exp{−Cnh}.
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Also, we have

E|Rn|j = E|Rn|jI(V1) + E|Rn|jI(V c
1 ),

≤ 1

[G(x)]2j
E [Gn(x)−G(x)]2j +O(njhj) exp{−Cnh}.

In particular for j = 1, 2 in the above inequality, we get

E|Rn| ≤
1

[G(x)]2
E [Gn(x)−G(x)]2 +O(nh) exp{−Cnh},

= O

(
1

nh

)
+O(h4) +O(nh),(2.5)

and

E|Rn|2 ≤ 1

[G(x)]4
E [Gn(x)−G(x)]4 +O(n2h2) exp{−Cnh},

= O

(
h3

n

)
+O

(
1

n2h2

)
+O(h8) +O(n2h2),(2.6)

since nh goes to infinity, O(nh) exp{−Cnh} andO(n2h2) exp{−Cnh} have smaller
orders than that of E [Gn(x)−G(x)] and E [Gn(x)−G(x)]2 respectively.

In order to simplify the notation define hn(t) =
∫ t
0 Fn(x) logGn(x)dx, gn(t) =∫ t

0 Fn(x)dx, h(t) =
∫ t
0 F (x) logG(x)dx and g(t) =

∫ t
0 F (x)dx so that we can easily

prove that,

hn(t)

Fn(t)
− h(t)

F (t)
≈

hn(t)−
h(t)

F (t)
Fn(t)

F (t)
,(2.7)

and

logGn(t)gn(t)

Fn(t)
− logG(t)g(t)

F (t)
≈

logGn(t)gn(t)−
logG(t)g(t)

F (t)
Fn(t)

F (t)
.(2.8)

Hence using (2.4)-(2.8), we get the following.

Bias[Ānt] = −Bias

[
hn(t)

Fn(t)
− h(t)

F (t)

]
,

=
−h2

2

∫
R+

α2K(α)dα

{
1

F (t)

∫ t

0

[
logG(x)

∫ x

0
f (2)(y)dy

+
F (x)

G(x)

∫ x

0
g(2)(y)dy

]
dx− h(t)

F 2(t)

∫ t

0
f (2)(x)dx

}
+O(h4),(2.9)

and

Bias[B̄nt]
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=
1

F (t)
Bias [gn(t) logGn(t)]−

logG(t)g(t)

F 2(t)
Bias [Fn(t)] ,

=
h2

2

∫
R+

α2K(α)dα

{
logG(t)

F (t)

∫ t

0

∫ x

0
f (2)(y)dydx+

g(t)

F (t)G(t)

∫ t

0
g(2)(x)dx

− logG(t)g(t)

F 2(t)

∫ t

0
f (2)(x)dx

}
+O(h4).(2.10)

Moreover,

V ar[Ānt] = V ar

[
hn(t)

Fn(t)
− h(t)

F (t)

]
,

≈ Ck

nh

1

F 2(t)

{∫ t

0
log2G(x)

∫ x

0

f(y)

1− P1(y)
dydx

+

∫ t

0

[
F (x)

G(x)

]2 ∫ x

0

g(y)

1− P2(y)
dydx+

h2(t)

F 2(t)

∫ t

0

f(x)

1− P1(x)
dx

}
,(2.11)

and

V ar[B̄nt] =
1

F 2(t)
V ar [gn(t) logGn(t)] +

[
logG(t)g(t)

F 2(t)

]2
V ar [Fn(t)] ,

≈ Ck

nh

log2G(t)

F 2(t)

{∫ t

0

∫ x

0

f(y)

1− P1(y)
dydx+

g2(t)

F 2(t)

∫ t

0

f(x)

1− P1(x)
dx

}
+
Ck

nh

g2(t)

G2(t)F 2(t)

∫ t

0

g(x)

1− P2(x)
dx.(2.12)

The following theorem gives bias and variance of the proposed estimator.

Theorem 2.1. Under the assumptions given in Section 2, bias and vari-
ance of C̄In(t) is given as

Bias
[
C̄In(t)

]

=
h2

2

∫
R+

α2K(α)dα

{
logG(t)

F (t)

∫ t

0

∫ x

0
f (2)(y)dydx+

g(t)

F (t)G(t)

∫ t

0
g(2)(x)dx

− logG(t)g(t)

F 2(t)

∫ t

0
f (2)(x)dx− 1

F (t)

∫ t

0
logG(x)

∫ x

0
f (2)(y)dydx

− 1

F (t)

∫ t

0

F (x)

G(x)

∫ x

0
g(2)(y)dydx+

h(t)

F 2(t)

∫ t

0
f (2)(x)dx

}
,

and

V ar
[
C̄In(t)

]
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≈ Ck

nh

1

F 2(t)

{∫ t

0
log2G(x)

∫ x

0

f(y)

1− P1(y)
dydx+

∫ t

0

[
F (x)

G(x)

]2 ∫ x

0

g(y)

1− P2(y)
dydx

+
h2(t)

F 2(t)

∫ t

0

f(x)

1− P1(x)
dx+ log2G(t)

∫ t

0

∫ x

0

f(y)

1− P1(y)
dydx

+
log2G(t)g2(t)

F 2(t)

∫ t

0

f(x)

1− P1(x)
dx+

g2(t)

G2(t)

∫ t

0

g(x)

1− P2(x)
dx

}
.

Proof: Using the equations (2.9), (2.10), (2.11) and (2.12), the result
follows.

The following example shows the application of Theorem 2.1.

Example 2.1. Consider the two non-negative random variables X and
Y have the pdfs f(x) and g(x) respectively, so that for x ∈ (0, 1)

f(x) = 2x and F (x) = P (X ≤ x) = x2,

g(x) = 3x2 and G(x) = P (Y ≤ x) = x3.

Let the random variables X and Y be right censored by uniform random variables
with parameters (0, 0.5) and (0.5, 1), respectively. Then we get

Bias
[
C̄In(t)

]
=

−2h2

t

∫
R+

α2K(α)dα,

and

V ar
[
C̄In(t)

]

≈ Ck

nh

1

t4

{∫ t

0

9 log2 x

2
[log(1− 2x)− 2x]dx− 3(t− 2)t+ 6(t− 1) log(1− t)

4t

− t2

18
[(3 log t− 1)2 + 9 log2 t][2t+ log(1− 2t)]− 1

12
[t(2 + t) + 2 log(1− t)]

+
9 log2 t

2
[t− t2 − (t− 1

2
) log(1− 2t)]

}
.

3. ASYMPTOTIC PROPERTIES

In this section, we discuss some asymptotic properties of (1.4). The follow-
ing theorem reveals the consistency property of the estimator.
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Theorem 3.1. Under the assumptions given in Section 2, C̄In(t) is a
consistent estimator of C̄I(X,Y, t).

Proof: We have,

C̄In(t) =
logGn(t)gn(t)

Fn(t)
− hn(t)

Fn(t)
.

MSE [hn(t)] → 0, MSE [gn(t)] → 0, MSE [Fn(t)] → 0, MSE [logGn(t)] → 0,
when n → ∞, and using Slutsky’s theorem we obtain desired result.

In the following theorem, we check the asymptotic nature of the estimator’s
mean integrated squared error (MISE).

Theorem 3.2. Under the assumptions given in Section 2, the MISE of
C̄In(t) is tends to zero as n → ∞.

Proof:

MISE[C̄In(t)] = E

∫ [
C̄In(t)− C̄I(X,Y, t)

]2
dt,

= MISE[Ānt] +MISE[B̄nt] + 2E

∫ [
Ānt − Āt

] [
B̄nt − B̄t

]
dt.

Also

MISE[Ānt] ≤
∫

1

F 2(t)

{
MSE[hn(t)] +

[
h(t)

F (t)

]2
MSE[Fn(t)]

−2
h(t)

F (t)
MSE

1
2 [hn(t)]MSE

1
2 [Fn(t)]

}
dt → 0,

as n → ∞. Using similar steps and applying Holder’s inequality, we get the
proof.

The following theorem states the asymptotic normal distribution of the
proposed estimator.

Theorem 3.3. Let C̄In(t) be nonparametric estimator of C̄I(X,Y, t),
K(x) be a kernel and h satisfying the conditions for bandwidth. Then for fixed t

(nh)
1
2

[
C̄In(t)− C̄I(X,Y, t)

σC̄In

]
follows normal distribution with mean zero and variance 2, as n → ∞ with

σ2
C̄In
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=
Ck

F 2(t)

{∫ t

0
log2G(x)

∫ x

0

f(y)

1− P1(y)
dydx+

∫ t

0

[
F (x)

G(x)

]2 ∫ x

0

g(y)

1− P2(y)
dydx

+
h2(t)

F 2(t)

∫ t

0

f(x)

1− P1(x)
dx+ log2G(t)

∫ t

0

∫ x

0

f(y)

1− P1(y)
dydx

+
log2G(t)g2(t)

F 2(t)

∫ t

0

f(x)

1− P1(x)
dx+

g2(t)

G2(t)

∫ t

0

g(x)

1− P2(x)
dx

}
.

Proof: We have

Ānt − Āt = − hn(t)

Fn(t)
+

h(t)

F (t)
,

= − [hn(t)− h(t)]

Fn(t)
+

h(t)[Fn(t)− F (t)]

F (t)Fn(t)
,

= − 1

Fn(t)

∫ t

0

{
logG(x)

[
Fn(x)− F (x)

]
+

F (x)

G(x)

[
Gn(x)−G(x)

]}
dx

+
h(t)

F (t)Fn(t)

[
Fn(x)− F (x)

]
.

Using asymptotic normality and almost sure convergence properties of of Fn(t)
given in Cai [3], we get

(nh)
1
2

[
Ānt − Āt

σĀ

]
asymptotically follows standard normal distribution with

σ2
Ā =

Ck

F 2(t)

{∫ t

0
log2G(x)

∫ x

0

f(y)

1− P1(y)
dydx+

∫ t

0

[
F (x)

G(x)

]2 ∫ x

0

g(y)

1− P2(y)
dydx

+
h2(t)

F 2(t)

∫ t

0

f(x)

1− P1(x)
dx

}
.

Similarly, we get

(nh)
1
2

[
B̄nt − B̄t

σB̄

]
asymptotically follows standard normal distribution with

σ2
B̄ =

Ck

F 2(t)

{
log2G(t)

[∫ t

0

∫ x

0

f(y)

1− P1(y)
dydx+

g2(t)

F 2(t)

∫ t

0

f(x)

1− P1(x)
dx

]

+
g2(t)

G2(t)

∫ t

0

g(x)

1− P2(x)
dx

}
.

Hence the proof.

In the following theorem, we check the almost sure convergence property of the
suggested estimator.
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Theorem 3.4. Let C̄In(t) be a nonparametric estimator of C̄I(X,Y, t),
suppose that F (.), G(.), f(.) and g(.) satisfy the Lipschitz conditions and the ker-
nel K(.) satisfies the requirements and for 0 < τ < ∞, the marginal distribution
function of R satisfies L(τ) < 1 (see Cai [3]) then

sup
0≤t≤τ

∣∣∣C̄In(t)− C̄I(X,Y, t)
∣∣∣→ 0 almost surely.

Proof: We have,∣∣∣C̄In(t)− C̄I(X,Y, t)
∣∣∣ ≤ ∣∣∣Ānt − Āt

∣∣∣+ ∣∣∣B̄nt − B̄t

∣∣∣.
Also,∣∣∣Ānt − Āt

∣∣∣ = ∣∣∣∣ hn(t)Fn(t)
− h(t)

F (t)

∣∣∣∣ ,
≤
∣∣∣∣hn(t)− h(t)

Fn(t)

∣∣∣∣+
∣∣∣∣∣ h(t)

Fn(t)F (t)

∣∣∣∣∣∣∣∣Fn(t)− F (t)
∣∣∣,

≤ 1

Fn(t)

∫ t

0

{
|logG(x)| |Fn(x)− F (x)|+

∣∣∣∣F (x)

G(x)

∣∣∣∣ |Gn(x)−G(x)|
}
dx

+

∣∣∣∣∣ h(t)

Fn(t)F (t)

∣∣∣∣∣∣∣∣Fn(t)− F (t)
∣∣∣.

Similarly, we get

|B̄nt − B̄t| ≤
logG(t)

Fn(t)

{∫ t

0
|Fn(x)− F (x)| dx+

∣∣∣∣ g(t)F (t)

∣∣∣∣ ∣∣∣Fn(t)− F (t)
∣∣∣}

+
g(t)

G(t)Fn(t)
|Gn(t)−G(t)| .

By using the almost sure convergence of Gn(t), Fn(t) given in Cai [3], the proof
immediately follows.

4. NUMERICAL ANALYSIS

In this section, we simulate to evaluate the performance of the proposed
estimators. We are interested in random variables of the form U =

√
(1− ρ)|V |,

where V are generated from the AR(1) model to obtain dependent samples.

We generate two sets of 2000 simulated samples with white noise distributed
as normal density and parameters of (0, 1) and (0, 2), respectively, to test the
proposed estimator’s asymptotic normality. Exponential distributions with pa-
rameters 1 and 2 are used for right censoring observations. The kernel function,
in this case, is Epanechnikov, and it has the form 0.75(1 − u2)I(|u| < 1). The
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process is repeated 250 times, and the estimator’s histogram with a normal curve
is shown in Figure 2 for t=1.5, 1.6, 1.7, and 1.8. We passed the AIC and BIC
tests, indicating that the estimator has asymptotic normality.

Table 1 shows the MISE of the estimator for varying parameter ρ, and the
table values show that as sample size increases, the MISE approaches zero. In
Table 1, we also compute the estimator’s 95% confidence interval when t = 0.6
and ρ varies. We can conclude from the table values that the confidence interval
width for these data sets decreases as the sample size increases.

Figure 3 shows the proposed estimator’s value and its upper and lower
confidence bounds when t = 1.5 and ρ = 0.5. It is observed that C̄In(1.5)
is not monotone for n for fixed values t = 1.5 and ρ = 0.5. Also, as sample
size n increases, the width of the confidence intervals narrows, and both bounds
approach the kernel estimator, which means the kernel estimator is more precise
when the sample size becomes large.

4.1. Comparison with an empirical estimator

Consider {Xi}, {Yi}, i = 1, 2, . . . , n be identically distributed random sam-
ples have survival functions be F (x) = Pr(Xi ≥ x) and G(x) = Pr(Yi ≥ x)
respectively. We use independent and identically distributed random variable
R1i and R2i with corresponding distribution functions P1(x) and P2(x) for cre-
ating right censored data from Xi and Yi respectively. Note that R1i and R2i

are independent of Xi and Yi respectively. Let Ci = min(Xi, R1i) and C∗
i =

min(Yi, R2i). In this censoring scheme one can observe (Ci, δi) and (C∗
i , δ

∗
i ),

where δi = I(Xi ≤ R1i) and δ∗i = I(Yi ≤ R2i). Denote {Ci:n}1≤i≤n and
{C∗

i:n}1≤i≤n, be the sample order statistics, where ties within lifetimes or within
censoring times are ordered arbitrarily and ties among lifetimes and censoring
times are treated as if the former precedes the latter. {δi:n}1≤i≤n and {δ∗i:n}1≤i≤n

are the concomitant of ith order statistic of each sample. Let

(4.1) Zj =
n∑

r=1

I(Ci ≤ C∗
j:n), i = 1, 2, . . . , n,

the number of random variables of the first censored sample that are less than or
equal to jth order statistics of the second censored sample. Also we rename by
C(j,1) < C(j,2) < . . . the random sample of the first censored sample belonging to
(C∗

j:n, C
∗
(j+1):n], if any. Then in the context of right censoring, we get the estimator

of cumulative inaccuracy measure owing to Di Crescenzo and Longobardi (2013),
as follows.

C̄I
cen
n (t)
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n 50 100

ρ MISE 95% CI MISE 95% CI

-0.9 0.27742 (0.26248, 0.89153) 0.18867 (0.45588, 0.54162)
-0.6 0.17139 (0.41373, 0.60759) 0.12089 (0.48320, 0.57749)
-0.3 0.25134 (0.41558, 0.71311) 0.17854 (0.43049, 0.64481)
0 0.24360 (0.37707, 0.73257) 0.19241 (0.47052, 0.59493)
0.3 0.24152 (0.44217, 0.66990) 0.19816 (0.46348, 0.55320)
0.6 0.19935 (0.47671, 0.54945) 0.17724 (0.48481, 0.53651)
0.9 0.24180 (0.48576, 0.62959) 0.20584 (0.49064, 0.56981)

n 200 300

ρ MISE 95% CI MISE 95% CI

-0.9 0.09656 (0.48291, 0.53108) 0.00513 (0.48801, 0.51252)
-0.6 0.08262 (0.49566, 0.55799) 0.00476 (0.49782, 0.53547)
-0.3 0.08787 (0.45501, 0.55358) 0.00449 (0.48234, 0.54069)
0 0.09106 (0.48313, 0.54717) 0.00346 (0.48922, 0.53103)
0.3 0.10085 (0.49187, 0.53199) 0.00132 (0.49807, 0.52636)
0.6 0.07573 (0.48991, 0.52993) 0.00648 (0.49629, 0.51122)
0.9 0.10222 (0.49436, 0.55430) 0.00670 (0.49809, 0.54510)

Table 1: Comparison of MISE of C̄In(x) and 95% confidence interval of
C̄In(0.6).

= − 1

n

n−1∑
j=1

[
Zj+1C

∗
(j+1):n

−ZjC
∗
j:n−

Zj+1−Zj∑
k=1

C(j,k)

F∗(t)
n∑

r=1
I(R1r>C∗

j:n
)

]
ln

(
j

G∗(t)
n∑

r=1
I(R2r>Y2j:n)

)
I(Y1j:n≤t),

(4.2)

where F∗(t) and G∗(t) are the Kaplan-Meier estimators of distribution functions
F (t) and G(t) respectively defined as
(4.3)

F∗(x) = 1−
∏

1≤i≤n

(
1− δi:n

n−i+1

)I(Ci:n≤t)

and G∗(x)= 1−
∏

1≤i≤n

(
1− δ∗i:n

n−i+1

)I(C∗
i:n≤t)

.

Table 2 shows the results of comparing the proposed estimator with the
empirical estimator using bias and MSE for varying t. We can conclude from
these data sets that bias and MSE decrease with increasing sample size n and are
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Figure 2: Histogram of C̄In(t) with normal density curve from sample of
size 250.

Confidence bounds

50 100 150 200 250 300
n

0.36
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0.40

0.42

0.44

0.46

Figure 3: C̄In(1.5) and confidence bounds when ρ = 0.5.
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|Bias|

n 100 200 300

x ξ̄+
n
(x) ξ̄

n

cen(x) ξ̄+
n
(x) ξ̄

n

cen(x) ξ̄+
n
(x) ξ̄

n

cen(x)

1.1 0.17026 0.33860 0.09752 0.28616 0.02315 0.10148
1.3 0.19966 0.56255 0.11951 0.34930 0.03831 0.13926
1.5 0.22769 0.79647 0.14579 0.41002 0.05833 0.16947
1.7 0.28286 1.03660 0.16794 0.46752 0.08318 0.19762
1.9 0.29928 1.27998 0.18381 0.52152 0.11240 0.21901

MSE

n 100 200 300

x ξ̄+
n
(x) ξ̄

n

cen(x) ξ̄+
n
(x) ξ̄

n

cen(x) ξ̄+
n
(x) ξ̄

n

cen(x)

1.1 0.02933 0.11467 0.01043 0.09070 0.00157 0.01826
1.3 0.04012 0.31647 0.01442 0.13500 0.00350 0.05177
1.5 0.05189 0.63436 0.02134 0.18629 0.00552 0.08249
1.7 0.08305 1.07454 0.02827 0.24301 0.00761 0.11512
1.9 0.09261 1.63838 0.03387 0.30381 0.00973 0.13043

Table 2: Comparison of Mean and MSE of the estimators C̄In(t) and
C̄I

cen
n (t)

inversely proportional to t.

4.1.1. Real data Analysis

Example 4.1. We use 101 data points from Andrews and Herzberg [1],
representing the stress-rupture life of kevlar 49/epoxy strands subjected to con-
stant sustained pressure at 90% stress until all fail, giving us complete data with
exact failure times. The fitting details for this data set are given in Table 3. We
generated 100 bootstrap samples from the data sets, which were right censored
by exponential models with parameters 0.09 and 0.03, respectively. Under the
assumption that F (x) is distributed as an Extreme value and G(x) is distributed
as a Weibull model, we plotted the mean values of the kernel and empirical es-
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Distribution Parameters AIC BIC

Example 4.1:
Extreme value (0.60869, 0.70011) -2.48095 -2.49513
Weibull (0.94876, 1.12481, -0.07909) -2.23536 -2.25600
Pareto (7, 5.61164,1.19461,-0.07909) -2.13630 -2.16296
Frechet (2.50547, 1.36598, -0.89583) -2.05503 -2.07566

Example 4.2:
Exponential 0.19053 -5.25114 -5.19792
Weibull (0.74337, 4.36222, 0.13999) -4.86134 -4.66002
Pareto (7, 1.86990, 2.96583, 0.14000) -4.402009 -4.11923
Gamma (0.83604, 6.27797) -4.39639 -4.27688

Table 3: Fitting details of real data.

timators in Figure 4 using the Epanechnikov kernel. We also find the kernel
estimator’s relative efficiencies compared to the empirical estimator, which is
plotted in Figure 6 (a).

Example 4.2. We consider the 20 failure times of equal-load share sam-
ples from Table 1’s sample 1, as investigated by Kim and Kvam [14]. We discov-
ered better models for the data sets using AIC and BIC, shown in Table 3. We
assumed that F (x) is an exponential distribution and G(x) is a Weibull distribu-
tion. We generated 100 bootstrap samples from the data sets, right censored by
exponential models with parameters of 0.2 and 0.1, respectively. The Epanech-
nikov kernel is used as the kernel form. The mean values of empirical and kernel
estimators are calculated and plotted in Figure 5. The relative efficiencies of the
kernel estimator to the empirical estimator are also determined and plotted in
Figure 6 (b).

In Figures 4 and 5, we plot C̄I(X,Y, t), C̄In(t) and C̄I
cen
n (t) with respect

to Examples 4.1 and 4.2 respectively. We can observe from Figure 4, C̄I(X,Y, t)
and C̄In(t) are non decreasing and monotonic, while C̄I

cen
n (t) is non increasing

in t. In Figure 5, C̄I(X,Y, t) and C̄In(t) are monotonic. Furthermore, in both
cases, the kernel estimator outperforms the empirical estimator. We can conclude
from Figures 6 that the relative efficiencies of kernel estimators in comparison to
empirical estimators are decreasing functions in t. Furthermore, the graph shows
that relative efficiencies are greater than one, indicating that the kernel estimator
outperforms the empirical estimator in the Examples 4.1 and 4.2.
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Figure 4: Comparison of C̄I(X,Y, t), C̄In(t) and C̄I
cen
n (t) for the stress-

rupture lives of kevlar 49/epoxy strands.
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Figure 5: Comparison of C̄I(X,Y, t), C̄In(t) and C̄I
cen
n (t) for the 20 fail-

ure times of equal-load share samples.
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(a) Example 4.1 (b) Example 4.2.

Figure 6: Comparison of C̄In(t)’s relative efficiency with respect to
C̄I

cen
n (t).
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