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value principle. Under Bayesian framework, the Bayes estimators are developed based on Lindley’s
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access performance of several proposed methods in this article, and sewer invert trap real data is
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1. INTRODUCTION

Discharge of industrial and domestic effluent wastes, leakage from water tanks, marine
dumping and atmospheric deposition are major causes of pollution. The removal of suspended
solids from any sewer plays an important part in its overall waste treatment program. There
are several methods for separating suspended particles from sewers. One of these methods is
the use of invert traps. Several researcher have obtained experiment and simulation results
on the invert trap.

For instance, Buxton et al. [7] presented the results from a laboratory investigation
comparing the trapping performance of three slot size configurations of a laboratory-scale
invert trap. Thinglas [25] studied flow field prediction and optimization of invert trap config-
uration using three-dimensional computational fluid dynamics (CFD) modeling. Mohsin and
Kaushal [21] considered the experimental and discrete phase modeling for sediment retention
ratio for invert traps. Moreover, in invert trap data analysis, the complete information is
generally difficult to acquire on account of experimental cost and time-consuming of simula-
tion. Therefore, censored data is more common whose censoring schemes are mainly divided
into Type I and Type II censoring.

Furthermore, if Type I and Type II censored schemes are mixed together, it is hybrid
censoring scheme (Epstein [13]). In Type I hybrid censored sample, the experiment stops
at time T ∗ = min{xm:m:n, T}, where Xm:m:n means the m-th failure time from n units, and
T is the predetermined experiment time. Based on this censoring, it is a possibility that very
few failures may occur before time T ∗. So, Childs et al. [10] introduced the Type II hybrid
censoring scheme that would terminate the experiment at T ∗ = max{xm:m:n, T}. Based on
these censoring schemes, many statistical inferences have been carried out by several authors,
see for example, Balakrishnan et al. [5], Banerjee and Kundu [4], Kundu and Howlader [17],
Gupta and Singh [14].

A progressive censoring scheme (PCS) was then proposed to permit more flexibility in
the conduct of the experiment, where individuals can be removed at several stages of the
experiment rather than at the end. It can be classified into progressive Type I (PICS) and
progressive Type II censoring schemes (PIICS). In PICS, let the number of items used in a
life testing experiment be n. In this scheme, R1, R2, ..., Rm items are randomly withdrawn at
pre-specified time points T1, T2, ..., Tm, respectively. The test will be terminated at prefixed
time point Tm in this scheme. Now, we describe PIICS. Consider n number of total units at
initial time on an experiment. We remove randomly R1 number of survival units when first
failure time X1:m:n is observed. This process continues till m-th failure occurs. We assume
that the m-th failure takes place at time Xm:m:n and the remaining number of surviving units
is Rm = n− (m+

∑m−1
i=1 Ri).

Today, due to the high lifespan of many products, the total experimental time can be
very long if PCS is used. Consequently, with the aim of enhancing the experimental efficiency
and accuracy, it was further proposed as a progressive hybrid censoring scheme (PHCS). For
various applications of the progressive hybrid sampling schemes in life testing experiments,
we refer to Panahi [22] and El-Sherpieny et al. [12]. The main limitation of PHCS is that the
number of observed failures is random and it can turn out to be a very small number, thus,
any inference procedure will be invalid or its accuracy will be extremely low.
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To overcome this drawback, a new hybrid censoring scheme has been proposed by Cho
et al. [16] and is referred to generalized progressive hybrid censoring scheme (GPHCS), which
maintains the experimental time in an acceptable range for researchers and guarantees a suf-
ficient number of failed individuals. This scheme provides not only time and cost savings but
also promotes more efficient statistical inference based on more observable data. The proce-
dure of generalized Type II progressive hybrid (GIIPH) censoring scheme can be described
as follows:

Suppose that n units are put on a test and the number of failures m, two time points
T1 and T2 (0 < T1 < T2 <∞) and also the progressive censoring scheme R1, R2, ..., Rm

(
∑m

j=1Rj +m = n) are fixed beforehand. At the first failure time, (say X1:m:n), R1 number
of live items are selected and randomly removed from the experiment. At the second failure
time (X2:m:n), R2 units are removed from the remaining test items and so on, until the ter-
mination time T ∗ = max{T1, min(xm:m:n, T2)} failure observed and then all the remaining
units are removed from the experiment. Let Q1 and Q2 denoted the number of observed
failures up to time T1 and T2, respectively. Therefore,

• If Xm:m:n < T1, then the experiment continue to observe failures until times T1.
In this case the failure times are denoted by x1:m:n, ..., xm:m:n, xm+1:m:n, ..., xq1:n

(say Case I).

• If T1 < Xm:m:n < T2, then the experiment terminate at the m-th failure. In this
case the failure times are represented by x1:m:n, ..., xq1:m:n, ..., xm:m:n (say Case II).

• If Xm:m:n > T2, then the experiment terminate at time T2. In this case the failure
times are denoted by x1:m:n, ..., xq2:m:n, ..., xm:m:n (say Case III).

Where, q1 and q2 are the observed values of Q1 and Q2 respectively.

There are some authors studying this scheme under different lifetime distributions, see
for example, Chan et al. [9], Gorny et al. [15], Koley and Cramer [18]. Based on the observed
GIIPH censored sample, the likelihood function can be written as:

(1.1) L(α, β) =


=i
∏Q1

j=1 f(xj:m:n)[1− F (xj:m:n)]Rj Case I,
=i
∏m

j=1 f(xj:m:n)[1− F (xj:m:n)]Rj Case II,
=i
∏Q2

j=1 f(xj:m:n)[1− F (xj:m:n)]Rj Case III,

=i =


[1− F (T1)]R̃Q1+1

∏Q1
j=1

∑m
k=j(1 +Rk), Case I,∏m

j=1

∑m
k=j(1 +Rk) Case II,

[1− F (T2)]R̃Q2+1
∏Q2

j=1

∑m
k=j(1 +Rk) Case III.

In our work, estimation problems of unknown parameters of the inverse Burr (Burr
III) distribution under GIIPH censoring scheme gets discussed. The Burr III distribution
is one from twelve distributions was explored by using the method of differential equation
(Burr [6]). This distribution has the following probability density function and the cumulative
distribution function as:

(1.2) f(x;α, β) = αβx−β−1(1 + x−β)−(α+1); x > 0, α > 0, β > 0,

and

(1.3) F (x;α, β) = (1 + x−β)−α; x > 0, α > 0, β > 0.
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From Figure 1, it can be noticed that the inverse Burr distribution has two impor-
tant shapes of its hazard rate function: decreasing and upside-down bathtub (or unimodal).
It is worth mentioning that in reliability engineering, biology and several statistical modelling,
different shaped hazard rate functions are used with different interpretations. We would like
to mention that because of various shapes of the hazard rate function of inverse Burr distri-
bution, it can be applied in many areas of research. Further, for fitting various lifetime data,
inverse Burr distribution can be treated as an alternative model to other distributions such
as gamma, Weibull and log-normal. Moreover, there are various real engineering data sets,
for which inverse Burr (Burr III) distribution fits better than Weibull distribution.

Figure 1: Graphs of the hazard rate function of the B-III distribution
for different sets of parameters.

For example, the inverse Burr distribution fits the nano droplet dispersion data set
(see Panahi and Asadi [23]).

The inverse Burr distribution has been studied by many researchers based on different
censoring schemes. Abd-Elfattah and Alharbey [1] discussed the parameter estimations of this
distribution based on a trimmed samples. Singh et al. [24] considered statistical inferences for
the unknown parameters based on Type II progressive censoring scheme. Altindag et al. [2]
studied the estimation and prediction problems for the inverse Burr distribution under Type II
censored data. Panahi and Asadi [23] studied the application of this distribution on the Nano
droplet censored data.

To the best of our knowledge, nobody has considered the inverse Burr distribution for
the purpose of statistical inference based on GIIPH censoring scheme. Thus, our objectives
in this study to close this gap are: First, estimating the parameters of the inverse Burr
distribution using the EM algorithm. Using the Fisher information matrix, the approximate
confidence intervals (ACIs) for unknown parameters are obtained.

Second objective is to obtain the Bayes estimates of the unknown inverse Burr parame-
ters using independent gamma priors. Since the Bayes estimates cannot be obtained in closed
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expressions, Lindley’s approximation and Markov chain Monte Carlo technique are consid-
ered to compute the complex posterior functions and in turn calculating Bayes estimates and
the associated highest posterior density (HPD) credible intervals. Using various choices of
the censoring schemes, the performance of the proposed methods is compared through an ex-
tensive simulation study in terms of their simulated mean squared-error (MSE) and average
confidence lengths.

Also, third objective is to show the practical application of this distribution in sepa-
ration of sewer solids data which are obtained by the authors using the computational fluid
dynamics (CFD) method. The rest of the paper is organized as follows.

In Section 2, it is represented how the EM algorithm is utilized to obtain the maximum
likelihood estimators (MLEs) of the unknown parameters as well as Fisher information matrix
of the inverse Burr distribution under GIIPH censored sample. The existence and uniqueness
properties of the MLEs have also been studied graphically. In Section 3, we derive the
approximate explicit expressions for the Bayesian estimates using Lindley’s approximation
and Markov chain Monte Carlo technique. The Markov chain Monte Carlo samples are also
used to construct the HPD credible intervals of the unknown parameters. Section 4 is devoted
a simulation study to compare the proposed point and interval estimators. One real data set
is analyzed for illustration in Section 5. Conclusions are given in Section 6.

2. MAXIMUM LIKELIHOOD ESTIMATORS

In this Section, the maximum likelihood method is carried out on the model based on
the GIIPH censoring scheme. By (1.2), the likelihood function without additive constant is
presented as follows:

(2.1) L(α, β) =



q1∏
j=1

m∑
k=j

(1 +Rk)(αβ)q1
q1∏

j=1
x−β−1

j:m:nA
−(α+1)
j B

Rj

j DR̃Q1+1 case I

m∏
j=1

m∑
k=j

(1 +Rk)(αβ)m
m∏

j=1
x−β−1

j:m:nA
−(α+1)
j B

Rj

j case II

q2∏
j=1

m∑
k=j

(1 +Rk)(αβ)q2
q2∏

j=1
x−β−1

j:m:nA
−(α+1)
j B

Rj

j DR̃Q2+1 case III,

where Aj = (1 + x−β
j:m:n), Bj = (1− (1 + x−β

j:m:n)
−α

), R̃Q1+1 = n− q1 −
∑m−1

j=1 Rj , R̃Q2+1 =
n− q2 −

∑q2
j=1Rj and

D =

{
1− (1 + T−β

1 )
−α

for case I
1− (1 + T−β

2 )
−α

for case III.
The corresponding log-likelihood function is given by:

l(α, β) = lnL(α, β)

= ι(lnα+ lnβ)− (β+1)
ι∑

j=1

lnxj:m:n − (α+1)
ι∑

j=1

lnAj +
ι∑

j=1

Rj lnBj + (R̃Qj+1) lnD,

where

(ι, R̃Qj+1) =


(q1, R̃Q1+1), Case I,
(m, 0) Case II,
(q2, R̃Q2+1), Case III.
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After differentiating the function l(α, β) with respect to α and β, we have

(2.2) α̂ = ι

(
ι∑

j=1

lnAj −
ι∑

j=1

Rj

A−α
j lnAj

Bj
−$1

)−1

,

(2.3)

β̂ = ι

(
ι∑

j=1

lnxj:m:n +
ι∑

j=1

Rjα
x−β

j:m:n lnxj:m:nA
−α−1
j

Bj
−

ι∑
j=1

(α+ 1)
x−β

j:m:n lnxj:m:n

Aj
+$2

)−1

,

where

(ι,$1) =


(q1, R̃Q1+1

(1 + T−β
1 )−α ln(1 + T−β

1 )
D

), Case I,

(m, 0) Case II,

(q2, R̃Q2+1
(1 + T−β

2 )−α ln(1 + T−β
2 )

D
), Case III,

$2 =


R̃Q1+1

αT−β
1 lnT1(1 + T−β

1 )−α−1

D
, Case I,

0 Case II,

R̃Q2+1
αT−β

2 lnT2(1 + T−β
2 )−α−1

D
, Case III,

respectively. Now, we show the existence and uniqueness of the maximum likelihood estimates
of the parameters of the inverse Burr distribution under GIIPH censored data using the
graphical method (Ateya [3]) as:

• A sample of size 50 from the inverse Burr distribution are generated.

• Based on certain case of censored data (T1 = .8, T2 = 2, m = 30, R15 = 20, Rj = 0,
j 6= 15), the curves of the equations ∂(l(α, β))/∂(α) and ∂(l(α, β))/∂(β) are pre-
sented in Figure 2.

• The curve of l(α̂, β) and l(α, β̂) are also drawn in Figures 2 and 3, respectively.

• It is easy to see from Figure 1 that there exist one intersection point (1.1922,1.6455)
which indicates that the solution of ∂l(α,β)

∂α = 0 and ∂l(α,β)
∂β = 0, exists and is unique.

This concludes that the maximum likelihood estimates of the parameters α and β

exist and are unique.

• The Figure 3 shows that the previous intersection point maximizes the l(α, β̂).

• Similarly from Figure 4, it is observed the intersection point is the maximization
point of the l(α̂, β).

• An important implication is that the maximum likelihood estimates of the param-
eters α and β exist and are unique for other generalized Type II progressive hybrid
censored cases.
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Figure 2: The plot of the ML estimates of α and β graphically.

Figure 3: The curve of the log-likelihood function l(α, β̂).

Figure 4: The curve of the the log-likelihood function l(α̂, β).
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2.1. EM algorithm

It is found that there is no explicit solution of (2.2) and (2.3), making them incredibly
difficult to get the exact form of their solutions, thus utilizing the EM algorithm to work
out these equations. Suppose that X = (X1, X2, ..., Xι) denotes the observed and (Zj ,Z′)
represent the censored data. Where, Zj = (Zj1 , Zj2 , ..., ZjRj

) and

Z′ =

{
(Z1, Z2, ..., ZR̃Q1+1

) Case I

(Z1, Z2, ..., ZR̃Q2+1
) Case III,

The log-likelihood function of (α, β) under the complete data is:

(2.4) lComplete(α, β) =


∆ + {1 Case I
∆ Case II
∆ + {2 Case III,

∆ = n ln(α) + n(lnβ)− (β + 1)
ι∑

j=1

lnxj:m:n − (α+ 1)
ι∑

j=1

ln(1 + x−β
j:m:n)

−(β + 1)
ι∑

j=1

Rj∑
k=1

E[lnZjk|Zjk > xj:m:n]− (α+ 1)
ι∑

j=1

Rj∑
k=1

E[ln(1 + Z−β
jk )|zjk > xj:m:n],

{1 = −(β + 1)
R̃Q1+1∑

p=1

E[ln(Z ′
p)|Z ′

p > T1]− (α+ 1)
R̃Q1+1∑

p=1

E[ln(1 + (Z ′
p)
−β)|Z ′

p > T1],

and

{2 = −(β + 1)
R̃Q2+1∑

p=1

E[lnZ ′
p|Z ′

p > T2]− (α+ 1)
R̃Q2+1∑

p=1

E[ln(1 + (Z ′
p)
−β)|Z ′

p > T2].

The E -step of the EM-iteration needs the following conditional expectations:

E[lnZjk|Zjk > c] =
αβ

1− FX(c;α, β)

∫ ∞

c
x−β−1(1 + x−β)−(α+1) lnxdx = H1(xj , α, β),

E[ln(1 + Z−β
jk )|Zjk > c] =

αβ

1− FX(c;α, β)

∫ ∞

c
x−β−1(1 + x−β)−(α+1) ln(1 + x−β)dx

= H2(xj , α, β),

E[lnZ ′
p|Z ′

p > T1] =
αβ

1− FX(T1;α, β)

∫ ∞

T1

x−β−1(1 + x−β)−(α+1) lnxdx = H3(xj , α, β),

E[lnZ ′
p|Z ′

p > T2] =
αβ

1− FX(T2;α, β)

∫ ∞

T2

x−β−1(1 + x−β)−(α+1) lnxdx = H4(xj , α, β),

E[ln(1 + (Z ′
p)
−β)|Z ′

p > T1] =
αβ

1− FX(T1;α, β)

∫ ∞

T1

x−β−1(1 + x−β)−(α+1) ln(1 + x−β)dx

= H5(T1, α, β),
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and

E[ln(1 + (Z ′
p)
−β)|Z ′

p > T2] =
αβ

1− FX(T2;α, β)

∫ ∞

T2

x−β−1(1 + x−β)−(α+1) ln(1 + x−β)dx

= H6(T2, α, β),

The M-step in a EM-iteration is maximizing the likelihood under complete sample over (α, β),
with the missing values replaced by their conditional expectations.

2.2. Approximate Confidence Interval

For each unknown parameter, the approximate confidence intervals (ACIs) are pre-
sented by utilizing the observed Fisher information matrix. We have

(2.5) IX(θ) = IW(θ)− IZ|X(θ).

Where,

(2.6) IW(θ) = −Eθ

[∂2lComplete(θ)
∂θ2

]
; θ = (α, β),

and

l̂αα =
∂2l

∂α2
|α=α̂,β=β̂ = − ι

α̂2
−

ι∑
j=1

Rj

Aα
j ln2(Aj)

(Aα
j − 1)2

−$3,

Also, $3 is equal to R̃Q1+1{
Sα

1 ln2(S1)
(Sα

1 −1)2
}, 0 and R̃Q2+1{

Sα
2 ln2 S2

(Sα
2 −1)2

} for cases I, II and III respec-
tively.

l̂ββ =
∂2l

∂β2
|α=α,β=β̂ = − ι

β2
− (α+ 1)

ι∑
i=1

xβ
j ln2 xj

(1 + xβ
j )2

+
ι∑

j=1

αRj

xβ
j ln2 xj(Aα+1

j − 1)

(xβ
j (Aα+1

j − 1)− 1)2

−
ι∑

j=1

α(α+ 1)Rj
ln2 xj(Aj)α

(xβ
j (Aα+1

j − 1)− 1)2
+$4,

$4 = R̃Q1+1

{αT β
1 ln2 T1(Sα+1

1 − 1)

(T β
1 (Sα+1

1 − 1)− 1)2
− α(α+ 1) ln2 T1S

α
1

(T β
1 (Sα+1

1 − 1)− 1)2

}
for case I

$4 = 0 for case II

$4 = R̃Q2+1

{αT β
2 ln2 T2(Sα+1

2 − 1)

(T β
2 (Sα+1

2 − 1)− 1)2
− α(α+ 1) ln2 T2(S2)α

(T β
2 (Sα+1

2 − 1)− 1)2

}
for case III

and

l̂βα = l̂αβ =
∂2l

∂β∂α
|α=α̂,β=β̂ =

ι∑
j=1

xj

1 + xβ
j

−
ι∑

j=1

Rj
lnxj

xβ
j (Aα+1

j − 1)− 1

+
ι∑

j=1

αRj

Aα+1
j xβ

j lnxjln(Aj)

(xβ
j (Aα+1

j − 1)− 1)2
−$5
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$5 = R̃Q1+1

{ lnT1

T β
1 (Sα+1

1 − 1)− 1
− αT β

1 lnT1S
α+1
1 ln(S1)

(T β
1 (Sα+1

1 − 1)− 1)2

}
for case I

$5 = 0 for case II

$5 = R̃Q2+1

{ lnT2

T β
2 (Sα+1

2 − 1)− 1
− αT β

2 lnT1S
α+1
2 ln(S2)

(T β
2 (Sα+1

2 − 1)− 1)2

}
for case III.

Note that, we consider xj:m:n = xj , S1 = (1 + T−β
1 ), S2 = (1 + T−β

2 ), and Aj = (1 + x−β
j ).

Based on the conditional distribution, the Fisher information in the j-th observation can be
evaluated as

I
(j)
Z|X(θ) = −E

[ ∂2

∂θ2
ln(f(zjk|xj:m:n, θ))

]
.(2.7)

Therefore, we have

IZ|X (θ) =



q1∑
j=1

RiI
(j)
Z|X (θ) + R̃Q1+1I

∗
Z| X (θ), Case I

m∑
j=1

RiI
(j)
Z|X (θ), Case II

q2∑
j=1

RiI
(j)
Z|X (θ) + R̃Q2+1I

∗
Z|X (θ) Case III.

Where, I(j)
Z|X(θ) and I∗Z|X(θ) are the information matrix of a single observation for the trun-

cated inverse Burr distribution. Therefore, the 100(1− γ)% ACIs for the parameters are
given by:(

α̂− Zγ/2

√
Var(α̂) , α̂+ Zγ/2

√
Var(α̂)

)
and

(
β̂ − Zγ/2

√
Var(β̂) , β̂ + Zγ/2

√
Var(β̂)

)
.

3. BAYESIAN ETIMATION

In contrast to traditional frequentist methods, the Bayesian approaches take advan-
tage of available data information and incorporate prior information of parameters, thereby
attracting much attention in statistical inference. For obtaining the Bayesian estimates, we
consider independent gamma prior distributions for α and β with hyper-parameters (a1, b1)
and (a2, b2) respectively, that reflect prior beliefs. Hence the PDF of the joint prior distribu-
tion takes the following expression:

(3.1) π(α,β) ∝ αb1−1e−a1αβb2−1e−a2β ; α > 0, β > 0, a1 > 0, a2 > 0, b1 > 0, b2 > 0,

In prior distributions, hyper parameters ai and bi, i = 1, 2 are assumed as non-negative and
known. In the case of noninformative priors, very small non-negative values of the hyper-
parameters , i.e. a1 = a2 = b1 = b2 = 0.0001, are used as suggested by Congdon [8] which
are almost like Jeffrey’s priors, but they are proper, inversely. As more informative priors,
different cases of the hyperparameters can be evaluated. Therefore, Bayes estimation of a
general function of parameters (Υ(α, β)) with the square error loss function can be derived
as

(3.2) Υ̃(α, β) = E(Υ(α, β)|Data) = >−1

∫∫
Υ(α, β)π(α, β|Data)dαdβ,
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where > =
∫∫

π(α, β|Data)dαdβ and
(3.3)

π(α, β|Data) =



ψαq1+b1−1βq1+b2−1
q1∏

j=1
x−β−1

j:m:nA
−(α+1)
j e−αa1−βa2B

Rj

j DR̃Q1+1 case I,

ψαm+b1−1βm+b2−1
m∏

j=1
x−β−1

j:m:nA
−(α+1)
j e−αa1−βa2BRj case II,

ψαq2+b1−1βq2+b2−1
q2∏

j=1
x−β−1

j:m:nA
−(α+1)
j e−αa1−βa2B

Rj

j DR̃Q2+1 case III.

Here, Aj , Bj , D are introduced previously and ψ and Υ can be written as:

ψ =



q1∏
j=1

m∑
k=j

(1 +Rk) for case I,

m∏
j=1

m∑
k=j

(1 +Rk) for case II,

q2∏
j=1

m∑
k=j

(1 +Rk) for case III,

and

Υ(α, β) = αυ1βυ2 ;

{
υ1 = 1, υ2 = 0 for estimating α
υ1 = 0, υ2 = 1 for estimating β.

It is clear that the Bayes estimator in (3.2) cannot be obtained analytically. Therefore, some
approximation methods are required in order to compute the approximate Bayes estimates.
We adopt the Lindley’s method and Metropolis–Hastings algorithm to solve the problem.

3.1. Lindley’s Approximation

In the above Section, we see that the proposed Bayes estimates are in the form of the
ratio of two integrals. These integrals can not be evaluated in terms of some closed-form
expressions. So, we developed the Bayesian estimates using the Lindley’s approximation
(Lindley [19]). Based on the Lindley’s method, the Bayes estimations of parameters have the
following expression:

α̃ = α̂+
1
2
[
2ρ̂αv̂αα + 2ρ̂β v̂αβ + v̂2

αα l̂ααα + v̂ααv̂ββ l̂ββα + 2v̂αβ v̂βα l̂αββ + v̂αβ v̂ββ l̂βββ

]
,

and

β̃ = α̂+
1
2
[
2ρ̂αv̂ββ + 2ρ̂β v̂βα + v̂2

ββ l̂βββ + 3v̂ββ v̂αβ l̂αββ + v̂ααv̂βα l̂ααα

]
.

Here, ρ̂α = b1−1
α̂ − a1, ρ̂β = b2−1

β̂
− a2, l̂αnβm = ∂n+ml(α, β)/∂αn∂βm;n,m = 0, 1, ... and

v̂ij are the (ij)-th elements of matrix
[
− ∂2l(α, β)/∂α∂β

]−1; i, j = 1, 2. Also, we have

l̂ααα =
∂3l

∂α3
=

2ι
α3

−
ι∑

j=1

Rj

Aα
j ln3(Aj)

(Aα
j − 1)2

+ 2
ι∑

j=1

Rj

A2α
j ln3(Aj)

(Aα
j − 1)3

−$6,

$6 = R̃Q1+1

{Sα
1 ln3(S1)

(Sα
1 − 1)2

− 2
S2α

1 ln3(S1)
(Sα

1 − 1)3
}

for case I,

$6 = 0 for case II,

$6 = R̃Q2+1

{Sα
2 ln3(S2)

(Sα
2 − 1)2

− 2
S2α

2 ln3(S2)
(Sα

2 − 1)3
}

for case III,
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l̂ααβ = l̂αβα = l̂βαα =
∂3l

∂α2∂β
|α=α,β=β +

ι∑
j=1

Rj

αAα−1
j lnxjx

−β
j ln2(Aj)

(Aα
j − 1)2

+ 2
ι∑

j=1

Rj

Aα−1
j lnxjx

−β
j ln(Aj)

(Aα
j − 1)2

− 2
ι∑

j=1

Rj

αA2α−1
j lnxjx

−β
j ln2(Aj)

(Aα
j − 1)3

+$7,

$7 = R̃Q1+1

{αSα−1
1 T−β

1 lnT1 ln2(S1)
(Sα

1 − 1)2
+ 2

ln(S1)T
−β
1 lnT1S

α−1
1

(Sα
1 − 1)2

− 2
αS2α−1

1 T−β
1 lnT1 ln2(S1)

(Sα
1 − 1)3

}
for case I,

$7 = 0 for case II,

$7 = R̃Q2+1

{αSα−1
2 T−β

2 lnT2 ln2(S2)
(Sα

2 − 1)2
+ 2

ln(S2)T
−β
2 lnT2S

α−1
2

(Sα
2 − 1)2

− 2
αS2α−1

2 T−β
2 lnT2 ln2(S2)

(Sα
2 − 1)3

}
for case III,

l̂βββ =
∂3l

∂β3
|α=α̂,β=β̂ =

2ι
β3

−
ι∑

j=1

(α+ 1)
xβ

j ln3 xj

(1 + xβ
j )2

+
ι∑

j=1

2(α+ 1)
x2β

j ln3 xj

(1 + xβ
j )3

+
ι∑

j=1

αRj

xβ
j ln3 xj(Aα+1

j − 1)

(xβ
j (Aα+1

j − 1)− 1)2
−

ι∑
j=1

α(α+ 1)Rj

ln3 xjA
α
j

(xβ
j (Aα+1

j − 1)− 1)2

−
ι∑

j=1

2αRj

x2β
j ln3 xj(Aα+1

j − 1)2

(xβ
j (Aα+1

j − 1)− 1)3
+

ι∑
j=1

4α(α+ 1)Rj

xβ
jA

α
j ln3 xj(Aα+1

j − 1)

(xβ
j (Aα+1

j − 1)− 1)3

+
ι∑

j=1

α2(α+ 1)Rj

x−β
j ln3 xjA

α−1
j

(xβ
j (Aα+1

j − 1)− 1)2
−

ι∑
j=1

2α(α+ 1)2Rj

ln3 xjA
2α
j

(xβ
j (Aα+1

j − 1)− 1)3

+ $8,

$8 = R̃Q1+1

{αT β
1 ln3 T1(Sα+1

1 − 1)

(T β
1 (Sα+1

1 − 1)− 1)2
− α(α+ 1) ln3 T1S

α
1

(T β
1 (Sα+1

1 − 1)− 1)2

− 2αT 2β
1 ln3 T1(Sα+1

1 − 1)2

(T β
1 (Sα+1

1 − 1)− 1)3
+

4α(α+ 1)T β
1 ln3 T1S

α
1 (Sα+1

1 − 1)

(T β
1 (Sα+1

1 − 1)− 1)3

+
α2(α+ 1)T−β

1 ln3 T1S
α−1
1

(T β
1 (Sα+1

1 − 1)− 1)2
− 2α(α+ 1)2 ln3 T1S

2α
1

(T β
1 (Sα+1

1 − 1)− 1)3

}
for case I,

$8 = 0 for case II,

$8 = R̃Q2+1

{αT β
2 ln3 T2(Sα+1

2 − 1)

(T β
2 (Sα+1

2 − 1)− 1)2
− α(α+ 1) ln3 T2S

α
2

(T β
2 (Sα+1

2 − 1)− 1)2

− 2αT 2β
2 ln3 T2(Sα+1

2 − 1)2

(T β
2 (Sα+1

2 − 1)− 1)3
+

4α(α+ 1)T β
2 ln3 T2S

α
2 (Sα+1

2 − 1)

(T β
2 (Sα+1

2 − 1)− 1)3

+
α2(α+ 1)T−β

2 ln3 T2S
α−1
2

(T β
2 (Sα+1

2 − 1)− 1)2
− 2α(α+ 1)2 ln3 T2S

2α
2

(T β
2 (Sα+1

2 − 1)− 1)3

}
for case III,
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l̂ββα = l̂βαβ = l̂αββ =
∂3l

∂β2∂α
|α=α̂,β=β̂ = −

ι∑
i=1

xβ
j ln2 xj

(1 + xβ
j )2

+
ι∑

j=1

Rj

ln2 xjx
β
j (Aα+1

j − 1)

(xβ
j (Aα+1

j − 1)− 1)2
+

ι∑
j=1

αRj

Aα+1
j xβ

j ln(Aj) ln2 xj

(xβ
j (Aα+1

j − 1)− 1)2

−
ι∑

j=1

2αRj

Aα+1
j (Aα+1

j − 1)x2β
j ln2 xj ln(Aj)

(xβ
j (Aα+1

j − 1)− 1)3

−
ι∑

j=1

(2α+ 1)Rj

Aα
j ln2 xj

(xβ
j (Aα+1

j − 1)− 1)2
−

ι∑
j=1

(α2 + α)Rj

Aα
j ln2 xj ln(Aj)

(xβ
j (Aα+1

j − 1)− 1)2

+
ι∑

j=1

2α(α+ 1)Rj

A2α+1
j xβ

j ln2 xj ln(Aj)

(xβ
j (Aα+1

j − 1)− 1)3
+$9,

$9 = R̃Q1+1

{ T β
1 ln2 T1(Sα+1

1 − 1)

(T β
1 (Sα+1

1 − 1)− 1)2
+ α

ln2 T1S
α+1
1 ln(S1)T

β
1

(T β
1 (Sα+1

1 − 1)− 1)2

− 2α
T 2β

1 ln2 T1(Sα+1
1 − 1)Sα+1

1 lnS1

(T β
1 (Sα+1

1 − 1)− 1)3
− (2α+ 1)

ln2 T1(S1)α

(T β
1 (Sα+1

1 − 1)− 1)2

− (α+ α2)
ln2 T1 ln(S1)Sα

1

(T β
1 (Sα+1

1 − 1)− 1)2
+ 2α(α+ 1)

ln2 T1 ln(S1)T
β
1 S

2α+1
1

(T β
1 (Sα+1

1 − 1)− 1)3

}
for case I,

$9 = 0 for case II,

$9 = R̃Q2+1

{ T β
2 ln2 T2(Sα+1

2 − 1)

(T β
2 (Sα+1

2 − 1)− 1)2
+ α

ln2 T2S
α+1
1 ln(S2)T

β
2

(T β
2 (Sα+1

2 − 1)− 1)2

− 2α
T 2β

2 ln2 T2(Sα+1
2 − 1)Sα+1

2 lnS2

(T β
2 (Sα+1

2 − 1)− 1)3
− (2α+ 1)

ln2 T2S
α
2

(T β
2 (Sα+1

2 − 1)− 1)2

− (α+ α2)
ln2 T2 ln(S2)Sα

2

(T β
2 (Sα+1

2 − 1)− 1)2
+ 2α(α+ 1)

ln2 T2 ln(S2)T
β
2 S

2α+1
2

(T β
2 (Sα+1

2 − 1)− 1)3

}
for case III.

3.2. Metropolis–Hastings Algorithm

In the previous Subsection, we obtain the Bayes estimates using Lindley’s approxi-
mation method. One disadvantage of this method is that it requires higher order partial
derivatives of the log-likelihood function. Further, the Lindley’s approximation can not be
used to construct HPD credible intervals. Moreover, it is observed that the conditional pos-
terior distribution of unknown parameters cannot be reduced to any well-known distribution.
To overcome this problem, we propose to apply the Metropolis–Hastings (Metropolis et al.

[20]) algorithm for generating samples from the respective posterior distributions. This algo-
rithm is the most popular example of the Markov chain Monte Carlo (MCMC) method and it
is free from the higher order partial derivatives. The basic scheme of the Metropolis–Hastings
(M-H) is given as follows:
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Step 1: Use the MLEs of (α, β) as the initial point of the iteration, denoted by
(α0, β0).

Step 2: Generate αj and βj from the normal proposal distributions N(αj−1, σ
2) and

N(βj−1, σ
2), respectively, for j = 1, ..., N .

Step 3: Compute h =
π(αj , βj |Data)

π(αj−1, βj−1|Data)
.

Step 4: Accept the new sample with probability min(1, h).

Step 5: Set j = j + 1.

Step 6: Repeat Step 2–5, up to N times.

So, the Bayes estimates of α and β are respectively obtained as below:

α̃ =
1

N −N0

N∑
i=N0+1

αi, and β̃ =
1

N −N0

N∑
i=N0+1

βi.

In order to guarantee the convergence and to remove the affection of the selection of initial
values, the first N0 simulated varieties are discarded (burn-in-period of Markov chain). Also,
for computing the confidence interval based on MCMC samples, we first order the samples
α1:N , α2:N , ..., αN :N and β1:N , β2:N , ..., βN :N , then a (1− γ)× 100% HPD credible interval for
α and β are obtained as:

[αNγ , αN(1−γ)] and [βNγ , βN(1−γ)].

Finally, choose the interval which has the smallest width as a HPD credible interval.

4. SIMULATION STUDY

To evaluate the behavior of the theoretical results obtained in the previous Sections,
including the classical and Bayesian estimators and the associated confidence/credible inter-
vals, an extensive Monte Carlo simulation study is performed. We simulate GIIPH censored
samples for different combinations of (n,m, T1, T2) from the inverse Burr (α, β) distribution.
We adopted the true values of unknown parameters as α = 1.2 and β = 1.6. Note that all
the computations have been performed using R software. Through the sample data, we eval-
uate the MLEs by employing an EM algorithm. Approximate expressions for the Bayesian
estimators have been obtained using the Lindley’s approximation and Metropolis–Hastings
algorithm. Using the M-H sampler algorithm described in Subsection 3.2, 10000 MCMC
samples and discard the first 2000 values as ‘burn-in’ are generated. In Bayesian paradigm,
the choice of the hyper-parameter values is the main issue. For this propose, both non-
informative prior (NIP) and informative prior (IP) are taken into account in the Bayesian
approach, where all hyper-parameters in the NIP are chosen to be 0.0001 instead of 0, which
is more appropriate since the hyper-parameters are greater than 0, and the hyper-parameters
in the IP are selected according to this manner: the means of prior (PR) distributions are
equal to original parameters(a1 = 1.2, a2 = 1.6, b1 = 1, b2 = 1). The %95 approximate confi-
dence (AC) and Bayesian (HPD) intervals for the parameters are also constructed. The HPD
credible intervals are computed based on 10000 MCMC samples. We take three different
censoring schemes as follows:
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Scheme 1: Rm = n−m and Rj = 0 for j 6= m;

Scheme 2: R1 = Rm = (n−m)/2 and Rj = 0 for j 6= 1,m;

Scheme 3: Rm/2 = n−m and Rj = 0 for j 6= m/2.

Based on these set up assumptions, we show the numerical results in the Table 1,
Table 2, Table 3 and Table 4.

Tables 1 and 2 (also, Figure 5 and Figure 6) present the average ML and Bayes estimates
and the corresponding MSEs based on 10000 replications. Moreover, the average lower and
upper bounds of the AC and HPD intervals are displayed in Tables 3 and 4.

The following conclusions are found from Tables 1–4 and Figures 5–6:

• For fixed n, T1 and T2 as m increases, the average estimates and the MSEs of the
parameters decreases. Also, with increasing m, the average lengths of all intervals
mostly decrease.

• For fixed m, T1 and T2 as sample size n increases the MSEs of all the estimators
decreases ( Figure 6). Similar trend is observed (Figure 6) for fixed n, T1 and T2 as
m increases.

• The MSEs have a downward trend for fixed n, m, T1 and increasing T2 ( Figure 5).

• For fixed n, m and T2 as T1 increases, the MSEs decreases ( Figure 5).

• To evaluate the effect of the proposed estimation methods with respect to the small-
est MSE, it is observed that the Bayes estimates work efficiently and provide better
performance as compared to those obtained based on MLEs. For the parameters α
and β, the MSEs of the maximum likelihood estimates are larger than the Bayes
estimates.

• The Bayesian MCMC estimation using M-H algorithm sampler for the unknown
parameters under GIIPH censoring is recommended for all values of n, m, T1 and
T2.

• As expected, the Bayesian estimation with IP tends to be preferable to that with
NIP.

• The average lengths of the ACI for α and β are relatively large compared to those
of Bayesian credible intervals.

• As for the Bayes method, similar to the findings for the point estimates, the Bayesian
intervals under non-informative prior are slightly worse than those under informative
prior.
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Table 1: The MSEs of the MLEs (α̂), Lindleys (α̃LIN ) and M-Hs (α̃MH)
for T1 = 1, T2 = 2.5.

n m Scheme α̂(MSE) PR α̃LIN (MSE) α̃MH(MSE)

30 15 R1 1.4754(0.2256) IP 1.4897(0.1945) 1.4270(0.0979)
NIP 1.5023(0.2094) 1.4328(0.1006)

R2 1.4427(0.1789) IP 1.4475(0.1581) 1.3665(0.0733)
NIP 1.4596(0.1637) 1.3709(0.0769)

R3 1.4246(0.1005) IP 1.3937(0.0897) 1.3508(0.0621)
NIP 1.4214(0.0942) 1.3700(0.0699)

50 24 R1 1.2982(0.1785) IP 1.3687(0.1586) 1.2843(0.0464)
NIP 1.3278(0.1669) 1.3199(0.0497)

R2 1.3064(0.0939) IP 1.3000(0.0900) 1.1674(0.0175)
NIP 1.3087(0.0911) 1.1721(0.0244)

R3 0.9172(0.0439) IP 0.9450(0.0382) 0.9913(0.0230)
NIP 0.9608(0.0410) 0.9725(0.0277)

30 R1 1.2982(0.1316) IP 1.2786(0.1212) 1.2028(0.0388)
NIP 1.2865(0.1283) 1.2536(0.0449)

R2 1.1464(0.0476) IP 1.1397(0.0455) 0.9741(0.0091)
NIP 1.1471(0.0462) 01.9932(.0105)

R3 1.006(0.0295) IP 0.9995(0.0261) 1.001(0.0141)
NIP 1.002(0.0269) 1.009(0.0169)

100 48 R1 1.3875(0.1632) IP 1.3768(0.1544) 1.2434(0.0336)
NIP 1.3811(0.1598) 1.2709(0.0390)

R2 1.1687(0.0283) IP 1.1666(0.0277) 1.1019(0.0100)
NIP 1.1679(0.0281) 1.1052(0.0133)

R3 0.9414(0.0221) IP 0.9551(0.0205) 1.1174(0.0188)
NIP 0.9532(0.0215) 1.1168(0.0209)

60 R1 1.3212(0.1226) IP 1.3105(0.1152) 1.2190(0.0327)
NIP 1.3176(0.1174) 1.2187(0.0328)

R2 0.9028(0.0090) IP 0.9162(0.0070) 0.9786(0.0004)
NIP 0.9200(0.0084) 0.9921(0.0013)

R3 1.0090(0.0145) IP 1.0060(0.0136) 1.0400(0.0016)
NIP 1.008(0.0140) 1.0488(0.0021)
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Table 2: The MSEs of the MLEs (β̂), Lindleys (β̃LIN ) and M-Hs (β̃MH)
for T1 = 1, T2 = 2.5.

n m Scheme β̂(MSE) PR β̃LIN (MSE) β̃MH(MSE)

30 15 R1 1.3675(0.2354) IP 1.3954(0.1738) 1.3700(0.1614)
NIP 1.4186(0.1845) 1.3961(0.1823)

R2 1.6325(.1535) IP 1.5885(0.1366) 1.5143(0.1122)
NIP 1.5899(0.1389) 1.5357(0.1308)

R3 1.7859(0.1673) IP 1.7654(0.1611) 1.4998(0.1066)
NIP 1.7865(0.1738) 1.5403(0.1231)

50 24 R1 1.2763(0.1807) IP 1.3029(0.1322) 1.3122(0.1316)
NIP 1.3043(0.1493) 1.3145(0.1387)

R2 1.5917(.1068) IP 1.5643(0.1031) 1.5457(0.0900)
NIP 1.5749(0.1054) 1.5499(0.0938)

R3 1.7431(0.1673) IP 1.7183(0.1527) 1.5125(0.0760)
NIP 1.7327(0.1602) 1.5226(0.0811)

30 R1 1.3846(0.1155) IP 1.4220(0.1136) 1.7034(0.0921)
NIP 1.4165(0.1140) 1.6993(0.0976)

R2 1.5075(0.0860) IP 1.5064(0.0850) 1.6737(0.0540)
NIP 1.5069(0.0857) 1.3199(0.0497)

R3 1.6514(0.0897) IP 1.6094(0.0741) 1.5509(0.0240)
NIP 1.6328(0.0809) 1.5499(0.0296)

100 48 R1 1.2681(0.1699) IP 1.2796(0.1242) 1.6234(0.1045)
NIP 1.2765(0.1374) 1.6309(0.1089)

R2 1.7893(0.0558) IP 1.7674(0.0480) 1.4064(0.0540)
NIP 1.7763(0.0518) 1.4078(0.0616)

R3 1.6676(0.0573) IP 1.6559(0.0540) 1.4797(0.0244)
NIP 1.6621(0.0564) 1.4859(0.0289)

60 R1 1.3435(0.1047) IP 1.3586(0.0905) 1.6112(0.0446)
NIP 1.3488(0.0977) 1.6269(0.0535)

R2 1.5587(0.0460) IP 1.54974(0.0430) 1.6850(0.0070)
NIP 1.5546(0.0451) 1.6589(0.0087)

R3 1.5973(0.0397) IP 1.5784(0.0370) 1.6405(0.0046)
NIP 1.5884(0.0383) 1.6712(0.0065)
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Figure 5: The MSEs of the estimators for different choices of T1 and T2.

Figure 6: The MSEs of the estimators for different choices of n and m.
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Table 3: The average upper and lower bounds for α when T1 = 1, T2 = 2.5.

n m Scheme LACI UACI PR LHPD UHPD

30 15 R1 1.1432 1.8865 IP 1.1675 1.8536
NIP 1.1604 1.8653

R2 0.6884 1.4893 IP 0.7476 1.4280
NIP 0.7421 1.4452

R3 0.7189 1.3966 IP 0.7728 1.3609
NIP 0.7496 1.3648

50 24 R1 1.1820 1.7020 IP 1.1224 1.5726
NIP 1.1148 1.5921

R2 0.8440 1.3540 IP 0.9980 1.3932
NIP 0.9972 1.4266

R3 0.7850 1.2893 IP 0.9782 1.3780
NIP 0.9760 1.3882

30 R1 0.9334 1.4357 IP 0.9855 1.3921
NIP 0.9599 1.3989

R2 0.9233 1.3585 IP 0.9315 1.2667
NIP 0.9035 1.2833

R3 0.9540 1.3585 IP 0.8993 1.2264
NIP 0.8556 1.2345

100 48 R1 0.9420 1.4441 IP 1.1434 1.5134
NIP 1.1139 1.5173

R2 0.8021 1.2721 IP 1.0019 1.3431
NIP 1.0011 1.3564

R3 0.8527 1.2427 IP 1.0674 1.3174
NIP 1.0221 1.3308

60 R1 0.9378 1.3876 IP 1.0319 1.3108
NIP 0.9881 1.3288

R2 0.8937 1.2437 IP 0.9735 1.2899
NIP 0.9711 1.3004

R3 0.7860 1.2334 IP 0.9989 1.2206
NIP 0.9366 1.2371
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Table 4: The average upper and lower bounds for β when T1 = 1, T2 = 2.5.

n m Scheme LACI UACI IP LHPD UHPD

30 15 R1 0.5265 1.7832 IP 0.6643 1.7548
NIP 0.6532 1.7802

R2 0.9568 2.1005 IP 1.0944 1.9136
NIP 0.9867 1.9197

R3 1.2147 2.2715 IP 0.6957 1.6257
NIP 0.6809 1.6441

50 24 R1 0.5669 1.6790 IP 0.5997 1.6212
NIP 0.5911 1.63211

R2 1.0828 2.0995 IP 0.8532 1.6834
NIP 0.8498 1.6980

R3 1.2147 2.2715 IP 0.6957 1.6257
NIP 0.6709 1.6299

30 R1 0.7412 1.8433 IP 1.5999 2.3618
NIP 1.5799 1.3654

R2 1.0339 1.9803 IP 1.4956 2.1097
NIP 1.4832 2.1217

R3 1.1319 2.1708 IP 1.0911 1.6639
NIP 1.0783 1.6823

100 48 R1 0.9202 1.6397 IP 1.1000 2.0211
NIP 1.0906 2.0466

R2 1.3920 2.1866 IP 1.2016 1.6581
NIP 1.1923 1.6734

R3 0.9736 1.6248 IP 1.2079 1.6297
NIP 1.1996 1.6500

60 R1 0.9922 1.6392 IP 1.4573 1.9612
NIP 1.4524 1.9903

R2 1.1871 1.9002 IP 1.5417 1.8247
NIP 1.5289 1.8357

R3 1.3432 1.9515 IP 1.4902 1.8750
NIP 1.4599 1.8786
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5. APPLICATIONS OF BIII DISTRIBUTION TO SEPARATION OF SEWER
SOLIDS

A real set of experimental data contains the invert trap efficiency. The invert traps
are used to separate suspended solids in the sewers and storm water drainage channels. The
solid particles are deposited in the bottom of the sewer drainage channel and decreases the
channel cross section and thus reduces the hydraulic efficiency. Therefore, increasing invert
trap efficiency directly affects the hydraulic efficiency. For computational convenience we
divided each data point by 70. Figure 7(a) shows the velocity stream lines of water in
channel. The color of the velocity stream lines shows that the velocity decreases in the trap,
so the particles entering the low-velocity zone of the invert trap settle in the bottom of the
trap. Figure 7(b) shows 3D view of an open rectangular channel fitted with an invert trap
at the bottom of the channel. Before we carry out numerical calculations and give way to
an advanced point in the analysis of this data, we compute the Kolmogorov-Smirnov (K-S)
distances between the empirical distribution and the fitted distribution functions based on
MLEs, it is 0.1189, and the associated p-value is 0.8312. We also presented the P-P and CDF
(the empirical function and the fitted function) plots for the fitted inverse Burr distribution
in Figures 8 and 9 respectively. The result indicates that considered distribution can be used
to to obtain inferential results from the considered data set. We have obtained the MLEs
by using EM algorithm by taking initial values with the help of contour and 3D profile plot
given in Figure 10.

Figure 7: (a) stream lines of water in invert trap. (b) trapping of sewer solids,
flowing into a sewer drainage system. Particle traces coloured according
to the particle size of 150–300 micron.
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Figure 8: The P-P plot. Figure 9: The CDF plot.

Figure 10: Contour plot and 3D profile plot of log likelihood for invert
trap data (x=α and y=β).

We shall use these data to consider three different GIIPH censoring schemes:

Case I: n = 25,m = 20 R = (5, 0 ∗ 19),T1 = 1.4 and T2 = 1.6;

Case II: n = 25,m = 20 R = (5, 0 ∗ 19),T1 = 1.2 and T2 = 1.6;

Case III: n = 25,m = 20 R = (5, 0 ∗ 19),T1 = 1.2 and T2 = 1.35.

Based on the following censoring schemes, the MLEs and Bayes estimates of both the
unknown parameters are reported in Table 5.

The length of approximate intervals (LAC) and HPD intervals (LHPD) are also cal-
culated individually and presented in Table 5. For Bayesian aspect, we use non-informative
Gamma priors (a1 = 0.0001; a2 = 0.0001; b1 = 0.0001; b2 = 0.0001) due to the lack prior in-
formation.

As seen in Table 5, two types of point estimates of parameters are observed: MLEs
and Bayes estimates are quite similar. Comparing approximate and credible intervals derived
from Bayesian method, the latter are noticeably smaller in interval lengths than the former.
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Table 5: Different point and interval estimates of α and β for (n,m) = (25, 20).

Cases T1 T2 α̂ α̃LIN α̃MH LAC LHPD

Case I 1.4 1.6 0.99817 1.03622 0.94491 1.2327 0.8574
Case II 1.2 1.6 1.20987 1.23875 1.15643 1.3734 0.8897
Case III 1.2 1.35 1.21124 1.24054 1.15991 1.3798 0.8687

Cases T1 T2 β̂ β̃LIN β̃MH LAC LHPD

Case I 1.4 1.6 7.51460 7.74952 7.46857 2.7632 1.2864
Case II 1.2 1.6 7.66071 7.79034 7.65335 2.8395 1.3323
Case III 1.2 1.35 7.62534 7.75890 7.44881 2.8567 1.3682

6. CONCLUSIONS

In this paper, we derived the different point and interval estimators of the inverse
Burr distribution based on a newly proposed censoring scheme known as generalized pro-
gressive hybrid censoring, where experimenters are allowed more flexibility in designing the
test, leading to shorter experimental periods and higher efficiency. We obtained the maxi-
mum likelihood estimates using the EM algorithm. The observed Fisher information matrix
is used to construct the asymptotic confidence intervals of the unknown parameters. More-
over, the Bayesian approach is investigated with a flexible prior distribution, since Bayesian
estimation cannot be derived in closed form, two approximations say Lindley’s approxima-
tion and Metropolis–Hastings algorithm are utilized to achieve approximate point estimates.
Using these MCMC samples, the HPD credible intervals are also constructed. The numeri-
cal experiments are carried out to evaluate the performance of proposed point and interval
estimators, and some conclusions can be drawn from the results that the Bayesian method
is comparatively favorable compared to considered classical method. The applicability of
the inverse Burr distribution in real situation has been illustrated based on the separation
of sewer solids data and it was observed that the proposed distribution can be utilized for
analyzing this data well.
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