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Abstract:

• The inverse Burr distribution is a significant and commonly used lifetime distribution,
which plays an important role in reliability engineering. In this article, the estimation
of parameters of the inverse Burr distribution based on generalized Type II progres-
sive hybrid censored sample is studied. The expectation-maximization (EM) algo-
rithm is employed for computing the maximum likelihood estimates of the unknown
parameters. It is shown that the maximum likelihood estimates exist uniquely. The
asymptotic confidence intervals for the parameters are constructed using the missing
value principle. Under Bayesian framework, the Bayes estimators are developed based
on Lindley’s technique and Metropolis-Hastings algorithm. Furthermore, the high-
est posterior density (HPD) credible intervals are successively constructed. Finally,
simulation experiments are implemented to access performance of several proposed
methods in this article, and sewer invert trap real data is presented to exemplify the
theoretical outcomes.
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1. INTRODUCTION

Discharge of industrial and domestic effluent wastes, leakage from water
tanks, marine dumping and atmospheric deposition are major causes of pollu-
tion. The removal of suspended solids from any sewer plays an important part
in its overall waste treatment program. There are several methods for separating
suspended particles from sewers. One of these methods is the use of invert traps.
Several researcher have obtained experiment and simulation results on the invert
trap.
For instance, Buxton et al.[7] presented the results from a laboratory investi-
gation comparing the trapping performance of three slot size configurations of
a laboratory-scale invert trap. Thinglas [25] studied flow field prediction and
optimization of invert trap configuration using three-dimensional computational
fluid dynamics (CFD) modeling. Mohsin and Kaushal [21] considered the ex-
perimental and discrete phase modeling for sediment retention ratio for invert
traps. Moreover, in invert trap data analysis, the complete information is gener-
ally difficult to acquire on account of experimental cost and time-consuming of
simulation. Therefore, censored data is more common whose censoring schemes
are mainly divided into Type I and Type II censoring.
Furthermore, if Type I and Type II censored schemes are mixed together, it is
hybrid censoring scheme (Epstein [13]). In Type I hybrid censored sample, the
experiment stops at time T ∗ = min{xm:m:n, T}, where Xm:m:n means the m− th
failure time from n units, and T is the predetermined experiment time. Based on
this censoring, it is a possibility that very few failures may occur before time T ∗.
So, Childs et al. [10] introduced the Type II hybrid censoring scheme that would
terminate the experiment at T ∗ = max{xm:m:n, T}. Based on these censoring
schemes, many statistical inferences have been carried out by several authors,
see for example, Balakrishnan et al. [5], Banerjee and Kundu [4], Kundu and
Howlader [17], Gupta and Singh [14].
A progressive censoring scheme (PCS) was then proposed to permit more flex-
ibility in the conduct of the experiment, where individuals can be removed at
several stages of the experiment rather than at the end. It can be classified into
progressive Type I (PICS) and progressive Type II censoring schemes (PIICS).
In PICS, let the number of items used in a life testing experiment be n. In this
scheme, R1, R2, ..., Rm items are randomly withdrawn at pre-specified time points
T1, T2, ..., Tm, respectively. The test will be terminated at prefixed time point Tm
in this scheme. Now, we describe PIICS. Consider n number of total units at
initial time on an experiment. We remove randomly R1 number of survival units
when first failure time X1:m:n is observed. This process continues till m − th
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failure occurs. We assume that the m− th failure takes place at time Xm:m:n and

the remaining number of surviving units is Rm = n− (m+
m−1∑
i=1

Ri).

Today, due to the high lifespan of many products, the total experimental time
can be very long if PCS is used. Consequently, with the aim of enhancing the
experimental efficiency and accuracy, it was further proposed as a progressive
hybrid censoring scheme (PHCS). For various applications of the progressive hy-
brid sampling schemes in life testing experiments, we refer to Panahi [22] and
El-Sherpieny et al. [12]. The main limitation of PHCS is that the number of
observed failures is random and it can turn out to be a very small number, thus,
any inference procedure will be invalid or its accuracy will be extremely low.
To overcome this drawback, a new hybrid censoring scheme has been proposed by
Cho et al. [16] and is referred to generalized progressive hybrid censoring scheme
(GPHCS), which maintains the experimental time in an acceptable range for re-
searchers and guarantees a sufficient number of failed individuals. This scheme
provides not only time and cost savings but also promotes more efficient statisti-
cal inference based on more observable data. The procedure of generalized Type
II progressive hybrid (GIIPH) censoring scheme can be described as follows:
Suppose that n units are put on a test and the number of failures m, two
time points T1 and T2 (0 < T1 < T2 < ∞) and also the progressive censor-
ing scheme R1, R2, ..., Rm (

∑m
j=1Rj +m = n) are fixed beforehand. At the first

failure time, (say X1:m:n), R1 number of live items are selected and randomly
removed from the experiment. At the second failure time (X2:m:n), R2 units are
removed from the remaining test items and so on, until the termination time
T ∗ = max {T1, min(xm:m:n, T2)} failure observed and then all the remaining
units are removed from the experiment. Let Q1 and Q2 denoted the number of
observed failures up to time T1 and T2, respectively. Therefore,
If Xm:m:n < T1, then the experiment continue to observe failures until times T1.
In this case the failure times are denoted by x1:m:n, ..., xm:m:n, xm+1:m:n, ..., xq1:n
(say Case I).
If T1 < Xm:m:n < T2, then the experiment terminate at the mth failure. In this
case the failure times are represented by x1:m:n, ..., xq1:m:n, ..., xm:m:n (say Case
II).
If Xm:m:n > T2, then the experiment terminate at time T2. In this case the failure
times are denoted by x1:m:n, ..., xq2:m:n, ..., xm:m:n (say Case III).
Where, q1 and q2 are the observed values of Q1 and Q2 respectively. There are
some authors studying this scheme under different lifetime distributions, see for
example, Chan et al. [9], Gorny et al. [15], Koley and Cramer [18]. Based on the
observed GIIPH censored sample, the likelihood function can be written as:

(1.1) L(α, β) =


=i
∏Q1
j=1 f(xj:m:n)[1− F (xj:m:n)]Rj CaseI,

=i
∏m
j=1 f(xj:m:n)[1− F (xj:m:n)]Rj CaseII,

=i
∏Q2
j=1 f(xj:m:n)[1− F (xj:m:n)]Rj CaseIII,

=i =


[1− F (T1)]

R̃Q1+1
∏Q1
j=1

∑m
k=j(1 +Rk), CaseI,∏m

j=1

∑m
k=j(1 +Rk) CaseII,

[1− F (T2)]
R̃Q2+1

∏Q2
j=1

∑m
k=j(1 +Rk) CaseIII.
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In our work, estimation problems of unknown parameters of the inverse
Burr (Burr III) distribution under GIIPH censoring scheme gets discussed. The
Burr III distribution is one from twelve distributions was explored by using the
method of differential equation (Burr [6]). This distribution has the following
probability density function and the cumulative distribution function as:

(1.2) f(x;α, β) = αβx−β−1(1 + x−β)−(α+1); x > 0, α > 0, β > 0,

and

(1.3) F (x;α, β) = (1 + x−β)−α; x > 0, α > 0, β > 0.

From the Figure 1, it can be noticed that the inverse Burr distribution has two
important shapes of its hazard rate function: decreasing and upside-down bath-
tub (or unimodal). It is worth mentioning that in reliability engineering, biology
and several statistical modelling, different shaped hazard rate functions are used
with different interpretations. We would like to mention that because of various
shapes of the hazard rate function of inverse Burr distribution, it can be applied
in many areas of research. Further, for fitting various lifetime data, inverse Burr
distribution can be treated as an alternative model to other distributions such
as gamma, Weibull and log-normal. Moreover, there are various real engineering
data sets, for which inverse Burr (Burr III) distribution fits better than Weibull
distribution.
For example, the inverse Burr distribution fits the nano droplet dispersion data
set (see Panahi and Asadi [23]). The inverse Burr distribution has been studied

Figure 1: Graphs of the hazard rate function of the B-III distribution for
different sets of parameters.

by many researchers based on different censoring schemes. Abd-Elfattah and
Alharbey [1] discussed the parameter estimations of this distribution based on
a trimmed samples. Singh et al. [24] considered statistical inferences for the
unknown parameters based on Type II progressive censoring scheme. Altindag
et al. [2] studied the estimation and prediction problems for the inverse Burr
distribution under Type II censored data. Panahi and Asadi [23] studied the
application of this distribution on the Nano droplet censored data.
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To the best of our knowledge, nobody has considered the inverse Burr distribu-
tion for the purpose of statistical inference based on GIIPH censoring scheme.
Thus, our objectives in this study to close this gap are: First, estimating the
parameters of the inverse Burr distribution using the EM algorithm. Using the
Fisher information matrix, the approximate confidence intervals (ACIs) for un-
known parameters are obtained.
Second objective is to obtain the Bayes estimates of the unknown inverse Burr pa-
rameters using independent gamma priors. Since the Bayes estimates cannot be
obtained in closed expressions, Lindley’s approximation and Markov chain Monte
Carlo technique are considered to compute the complex posterior functions and
in turn calculating Bayes estimates and the associated highest posterior density
(HPD) credible intervals. Using various choices of the censoring schemes, the
performance of the proposed methods is compared through an extensive simu-
lation study in terms of their simulated mean squared-error (MSE) and average
confidence lengths.
Also, third objective is to show the practical application of this distribution in
separation of sewer solids data which are obtained by the authors using the com-
putational fluid dynamics (CFD) method. The rest of the paper is organized as
follows.
In section 2, it is represented how the EM algorithm is utilized to obtain the max-
imum likelihood estimators (MLEs) of the unknown parameters as well as Fisher
information matrix of the inverse Burr distribution under GIIPH censored sam-
ple. The existence and uniqueness properties of the MLEs have also been studied
graphically. In Section 3, we derive the approximate explicit expressions for the
Bayesian estimates using Lindley’s approximation and Markov chain Monte Carlo
technique. The Markov chain Monte Carlo samples are also used to construct
the HPD credible intervals of the unknown parameters. Section 4 is devoted a
simulation study to compare the proposed point and interval estimators. One
real data set is analyzed for illustration in Section 5. Conclusions are given in
Section 6.

2. Maximum likelihood estimators

In this Section, the maximum likelihood method is carried out on the model
based on the GIIPH censoring scheme. By ( 1.2), the likelihood function without
additive constant is presented as follows.
(2.1)

L(α, β) =



q1∏
j=1

m∑
k=j

(1 +Rk)(αβ)q1
q1∏
j=1

x−β−1j:m:nA
−(α+1)
j B

Rj
j DR̃Q1+1 caseI

m∏
j=1

m∑
k=j

(1 +Rk)(αβ)m
m∏
j=1

x−β−1j:m:nA
−(α+1)
j B

Rj
j caseII

q2∏
j=1

m∑
k=j

(1 +Rk)(αβ)q2
q2∏
j=1

x−β−1j:m:nA
−(α+1)
j B

Rj
j DR̃Q2+1 caseIII,
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where, Aj = (1 +x−βj:m:n), Bj = (1− (1 + x−βj:m:n)
−α

), R̃Q1+1 = n− q1−
∑m−1

j=1 Rj ,

R̃Q2+1 = n− q2 −
∑q2

j=1Rj and

D =

{
1− (1 + T−β1 )

−α
for caseI

1− (1 + T−β2 )
−α

for caseIII.

The corresponding log-likelihood function is given by:

l(α, β) = lnL(α, β) = ι(lnα+ lnβ)− (β + 1)
ι∑

j=1

lnxj:m:n − (α+ 1)
ι∑

j=1

lnAj

+
ι∑

j=1

RjlnBj + (R̃Qj+1)lnD

where,

(ι, R̃Qj+1) =


(q1, R̃Q1+1), CaseI,

(m, 0) CaseII,

(q2, R̃Q2+1), CaseIII.

After differentiating the function l(α, β) with respect to α and β, we have,

(2.2) α̂ = ι(

ι∑
j=1

lnAj −
ι∑

j=1

Rj
A−αj lnAj

Bj
−$1)

−1

β̂ = ι(
ι∑

j=1

lnxj:m:n +
ι∑

j=1

Rjα
x−βj:m:nlnxj:m:nA

−α−1
j

Bj

(2.3) −
ι∑

j=1

(α+ 1)
x−βj:m:nlnxj:m:n

Aj
+$2)

−1

where,

(ι,$1) =


(q1, R̃Q1+1

(1 + T−β1 )−αln(1 + T−β1 )

D
), CaseI,

(m, 0) CaseII,

(q2, R̃Q2+1
(1 + T−β2 )−αln(1 + T−β2 )

D
), CaseIII.

$2 =


R̃Q1+1

αT−β1 lnT1(1 + T−β1 )−α−1

D
, CaseI,

0 CaseII,

R̃Q2+1
αT−β2 lnT2(1 + T−β2 )−α−1

D
, CaseIII.

respectively. Now, we show the existence and uniqueness of the maximum likeli-
hood estimates of the parameters of the inverse Burr distribution under GIIPH
censored data using the graphical method (Ateya [3]) as:
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• A sample of size 50 from the inverse Burr distribution are generated.
• Based on certain case of censored data (T1 = .8, T2 = 2,m = 30, R15 = 20, Rj =
0, j 6= 15), the curves of the equations ∂(l(α, β))/∂(α) and ∂(l(α, β))/∂(β) are
presented in Figure 2.
• The curve of l(α̂, β) and l(α, β̂) are also drown in Figures 2 and 3 respectively.
• It is easy to see from Figure 1 that there exist one intersection point (1.1922,1.6455)

which indicates that the solution of ∂l(α,β)
∂α = 0 and ∂l(α,β)

∂β = 0, exists and is
unique. This concludes that the maximum likelihood estimates of the parame-
ters α and β exist and are unique.
• The Figure 3 shows that the previous intersection point maximizes the l(α, β̂).
• Similarly from Figure 4, it is observed the intersection point is the maximiza-
tion point of the l(α̂, β).
• An important implication is that the maximum likelihood estimates of the pa-
rameters α and β exist and are unique for other generalized Type II progressive
hybrid censored cases.

Figure 2: The plot of the ML estimates of α and β graphically.

Figure 3: The curve of the log-likelihood function l(α, β̂).



8 Hanieh Panahi, Saeid Asadi and Parya Parviz

Figure 4: The curve of the the log-likelihood function l(α̂, β).

2.1. EM algorithm

It is found that there is no explicit solution of ( 2.2) and ( 2.3), making
them incredibly difficult to get the exact form of their solutions, thus utilizing the
EM algorithm to work out these equations. Suppose that X = (X1, X2, · · · , Xι)
denotes the observed and (Zj ,Z

′) represent the censored data. Where, Zj =
(Zj1 , Zj2 , · · · , ZjRj ) and

Z′ =

{
(Z1, Z2, · · · , ZR̃Q1+1

) CaseI

(Z1, Z2, · · · , ZR̃Q2+1
) CaseIII,

The log-likelihood function of (α, β) under the complete data is:

(2.4) lComplete(α, β) =


∆ + {1 CaseI

∆ CaseII

∆ + {2 CaseIII,

∆ = nln(α) + n(lnβ)− (β + 1)

ι∑
j=1

lnxj:m:n − (α+ 1)

ι∑
j=1

ln(1 + x−βj:m:n)

−(β+1)

ι∑
j=1

Rj∑
k=1

E[lnZjk|Zjk > xj:m:n]−(α+1)

ι∑
j=1

Rj∑
k=1

E[ln(1+Z−βjk )|zjk > xj:m:n],

{1 = −(β+ 1)

R̃Q1+1∑
p=1

E[ln(Z ′p)|Z ′p > T1]− (α+ 1)

R̃Q1+1∑
p=1

E[ln(1 + (Z ′p)
−β)|Z ′p > T1],

and

{2 = −(β + 1)

R̃Q2+1∑
p=1

E[lnZ ′p|Z ′p > T2]− (α+ 1)

R̃Q2+1∑
p=1

E[ln(1 + (Z ′p)
−β)|Z ′p > T2].
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The E -step of the EM-iteration needs the following conditional expectations:

E[lnZjk|Zjk > c] =
αβ

1− FX(c;α, β)

∫ ∞
c

x−β−1(1 + x−β)−(α+1)lnxdx = H1(xj , α, β),

E[ln(1 + Z−βjk )|Zjk > c] =
αβ

1− FX(c;α, β)

∫ ∞
c

x−β−1(1 + x−β)−(α+1)ln(1 + x−β)dx

= H2(xj , α, β),

E[lnZ ′p|Z ′p > T1] =
αβ

1− FX(T1;α, β)

∫ ∞
T1

x−β−1(1 + x−β)−(α+1)lnxdx = H3(xj , α, β),

E[lnZ ′p|Z ′p > T2] =
αβ

1− FX(T2;α, β)

∫ ∞
T2

x−β−1(1 + x−β)−(α+1)lnxdx = H4(xj , α, β),

E[ln(1 + (Z ′p)
−β)|Z ′p > T1] =

αβ

1− FX(T1;α, β)

∫ ∞
T1

x−β−1(1 + x−β)−(α+1)ln(1 + x−β)dx

= H5(T1, α, β),

and

E[ln(1 + (Z ′p)
−β)|Z ′p > T2] =

αβ

1− FX(T2;α, β)

∫ ∞
T2

x−β−1(1 + x−β)−(α+1)ln(1 + x−β)dx

= H6(T2, α, β),

The M-step in a EM-iteration is maximizing the likelihood under complete sample
over (α, β), with the missing values replaced by their conditional expectations.

2.2. Approximate Confidence Interval

For each unknown parameter, the approximate confidence intervals (ACIs)
are presented by utilizing the observed Fisher information matrix. We have,

(2.5) IX(θ) = IW(θ)− IZ|X(θ).

Where,

(2.6) IW(θ) = −Eθ
[∂2lComplete(θ)

∂θ2
]
; θ = (α, β),

and,

l̂αα =
∂2l

∂α2
|α=α̂,β=β̂ = − ι

α̂2
−

ι∑
j=1

Rj
Aαj ln

2(Aj)

(Aαj − 1)2
−$3,
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Also, $3 is equal to R̃Q1+1{
Sα1 ln

2(S1)
(Sα1 −1)2

}, 0 and R̃Q2+1{
Sα2 ln

2S2

(Sα2 −1)2
} for cases I, II and

III respectively.

l̂ββ =
∂2l

∂β2
|α=α,β=β̂ = − ι

β2
− (α+ 1)

ι∑
i=1

xβj ln2 xj

(1 + xβj )2
+

ι∑
j=1

αRj
xβj ln

2xj(A
α+1
j − 1)

(xβj (Aα+1
j − 1)− 1)2

−
ι∑

j=1

α(α+ 1)Rj
ln2xj(Aj)

α

(xβj (Aα+1
j − 1)− 1)2

+$4,

$4 = R̃Q1+1

{αT β1 ln2T1(Sα+1
1 − 1)

(T β1 (Sα+1
1 − 1)− 1)2

− α(α+ 1)ln2T1S
α
1

(T β1 (Sα+1
1 − 1)− 1)2

}
for case I

$4 = 0 for case II

$4 = R̃Q2+1

{αT β2 ln2T2(Sα+1
2 − 1)

(T β2 (Sα+1
2 − 1)− 1)2

− α(α+ 1)ln2T2(S2)
α

(T β2 (Sα+1
2 − 1)− 1)2

}
for case III

and

l̂βα = l̂αβ =
∂2l

∂β∂α
|α=α̂,β=β̂ =

ι∑
j=1

xj

1 + xβj
−

ι∑
j=1

Rj
lnxj

xβj (Aα+1
j − 1)− 1

+

ι∑
j=1

αRj
Aα+1
j xβj lnxjln(Aj)

(xβj (Aα+1
j − 1)− 1)2

−$5

$5 = R̃Q1+1

{ lnT1

T β1 (Sα+1
1 − 1)− 1

− αT β1 lnT1S
α+1
1 ln(S1)

(T β1 (Sα+1
1 − 1)− 1)2

}
for case I

$5 = 0 for case II

$5 = R̃Q2+1

{ lnT2

T β2 (Sα+1
2 − 1)− 1

− αT β2 lnT1S
α+1
2 ln(S2)

(T β2 (Sα+1
2 − 1)− 1)2

}
for case III

Note that, we consider xj:m:n = xj , S1 = (1 + T−β1 ), S2 = (1 + T−β2 ), and

Aj = (1 + x−βj ). Based on the conditional distribution, the Fisher information in

the jth observation can be evaluated as

I
(j)
Z|X(θ) = −E

[ ∂2
∂θ2

ln(f(zjk|xj:m:n, θ))
]
.(2.7)

Therefore, we have,

IZ|X (θ) =



q1∑
j=1

RiI
(j)
Z|X (θ) + R̃Q1+1I

∗
Z| X (θ), CaseI

m∑
j=1

RiI
(j)
Z|X (θ), CaseII

q2∑
j=1

RiI
(j)
Z|X (θ) + R̃Q2+1I

∗
Z|X (θ) CaseIII.
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Where, I
(j)
Z|X(θ) and I∗Z|X(θ) are the information matrix of a single observation

for the truncated inverse Burr distribution. Therefore, the 100(1− γ)% ACIs for
the parameters are given by:(
α̂−Zγ/2

√
V ar(α̂) , α̂+Zγ/2

√
V ar(α̂)

)
and

(
β̂−Zγ/2

√
V ar(β̂) , β̂+Zγ/2

√
V ar(β̂)

)
.

3. Bayesian Etimation

In contrast to traditional frequentist methods, the Bayesian approaches
take advantage of available data information and incorporate prior information
of parameters, thereby attracting much attention in statistical inference. For
obtaining the Bayesian estimates, we consider independent gamma prior distri-
butions for α and β with hyper-parameters (a1, b1) and (a2, b2) respectively, that
reflect prior beliefs. Hence the PDF of the joint prior distribution takes the
following expression.
(3.1)
π(α,β) ∝ αb1−1e−a1αβb2−1e−a2β; α > 0, β > 0, a1 > 0, a2 > 0, b1 > 0, b2 > 0,

In prior distributions, hyper parameters ai and bi, i = 1, 2 are assumed as non-
negative and known. In the case of noninformative priors, very small non-negative
values of the hyper-parameters , i.e. a1 = a2 = b1 = b2 = 0.0001, are used as sug-
gested by Congdon [8] which are almost like Jeffrey’s priors, but they are proper,
inversely. As more informative priors, different cases of the hyperparameters can
be evaluated. Therefore, Bayes estimation of a general function of parameters
(Υ(α, β)) with the square error loss function can be derived as

(3.2) Υ̃(α, β) = E(Υ(α, β) |Data) = >−1
∫∫

Υ(α, β)π(α, β |Data)dαdβ,

where, > =
∫∫

π(α, β |Data)dαdβ and
(3.3)

π(α, β |Data) =



ψαq1+b1−1βq1+b2−1
q1∏
j=1

x−β−1j:m:nA
−(α+1)
j e−αa1−βa2B

Rj
j DR̃Q1+1 caseI

ψαm+b1−1βm+b2−1
m∏
j=1

x−β−1j:m:nA
−(α+1)
j e−αa1−βa2BRj caseII

ψαq2+b1−1βq2+b2−1
q2∏
j=1

x−β−1j:m:nA
−(α+1)
j e−αa1−βa2B

Rj
j DR̃Q2+1 caseIII

Here, Aj , Bj , D are introduced previously and ψ and Υ can be written as:

ψ =



q1∏
j=1

m∑
k=j

(1 +Rk)for caseI

m∏
j=1

m∑
k=j

(1 +Rk)for caseII

q2∏
j=1

m∑
k=j

(1 +Rk)for caseIII,
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and

Υ(α, β) = αυ1βυ2 ;

{
υ1 = 1, υ2 = 0 for estimating α
υ1 = 0, υ2 = 1 for estimating β.

It is clear that the Bayes estimator in (3.2) cannot be obtained analytically.
Therefore, some approximation methods are required in order to compute the
approximate Bayes estimates. We adopt the Lindley’s method and Metropolis-
Hastings algorithm to solve the problem.

3.1. Lindley’s Approximation

In the above Section, we see that the proposed Bayes estimates are in the
form of the ratio of two integrals. These integrals can not be evaluated in terms
of some closed-form expressions. So, we developed the Bayesian estimates using
the Lindley’s approximation (Lindley [19]). Based on the Lindley’s method, the
Bayes estimations of parameters have the following expression:

α̃ = α̂+
1

2

[
2ρ̂αv̂αα + 2ρ̂β v̂αβ + v̂2αα l̂ααα + v̂ααv̂ββ l̂ββα + 2v̂αβ v̂βα l̂αββ + v̂αβ v̂ββ l̂βββ

]
,

and

β̃ = α̂+
1

2

[
2ρ̂αv̂ββ + 2ρ̂β v̂βα + v̂2ββ l̂βββ + 3v̂ββ v̂αβ l̂αββ + v̂ααv̂βα l̂ααα

]
,

Here, ρ̂α = b1−1
α̂ − a1, ρ̂β = b2−1

β̂
− a2, l̂αnβm = ∂n+ml(α, β)/∂αn∂βm;n,m =

0, 1, ... and v̂ij are the (ij)th elements of matrix
[
− ∂2l(α, β)/∂α∂β

]−1
; i, j = 1, 2.

Also, we have,

l̂ααα =
∂3l

∂α3
=

2ι

α3
−

ι∑
j=1

Rj
Aαj ln

3(Aj)

(Aαj − 1)2
+ 2

ι∑
j=1

Rj
A2α
j ln

3(Aj)

(Aαj − 1)3
−$6,

$6 = R̃Q1+1

{Sα1 ln3(S1)
(Sα1 − 1)2

− 2
S2α
1 ln3(S1)

(Sα1 − 1)3

}
for case I,

$6 = 0 for case II,

$6 = R̃Q2+1

{Sα2 ln3(S2)
(Sα2 − 1)2

− 2
S2α
2 ln3(S2)

(Sα2 − 1)3

}
for case III,

l̂ααβ = l̂αβα = l̂βαα =
∂3l

∂α2∂β
|α=α,β=β +

ι∑
j=1

Rj
αAα−1j lnxjx

−β
j ln2(Aj)

(Aαj − 1)2

+ 2

ι∑
j=1

Rj
Aα−1j lnxjx

−β
j ln(Aj)

(Aαj − 1)2
− 2

ι∑
j=1

Rj
αA2α−1

j lnxjx
−β
j ln2(Aj)

(Aαj − 1)3
+$7,
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$7 = R̃Q1+1

{αSα−11 T−β1 lnT1ln
2(S1)

(Sα1 − 1)2
+ 2

ln(S1)T
−β
1 lnT1S

α−1
1

(Sα1 − 1)2

− 2
αS2α−1

1 T−β1 lnT1ln
2(S1)

(Sα1 − 1)3

}
for case I,

$7 = 0 for case II,

$7 = R̃Q2+1

{αSα−12 T−β2 lnT2ln
2(S2)

(Sα2 − 1)2
+ 2

ln(S2)T
−β
2 lnT2S

α−1
2

(Sα2 − 1)2

− 2
αS2α−1

2 T−β2 lnT2ln
2(S2)

(Sα2 − 1)3

}
for case III

l̂βββ =
∂3l

∂β3
|α=α̂,β=β̂ =

2ι

β3
−

ι∑
j=1

(α+ 1)
xβj ln3 xj

(1 + xβj )2
+

ι∑
j=1

2(α+ 1)
x2βj ln3 xj

(1 + xβj )3

+
ι∑

j=1

αRj
xβj ln

3xj(A
α+1
j − 1)

(xβj (Aα+1
j − 1)− 1)2

−
ι∑

j=1

α(α+ 1)Rj
ln3xjA

α
j

(xβj (Aα+1
j − 1)− 1)2

−
ι∑

j=1

2αRj
x2βj ln

3xj(A
α+1
j − 1)2

(xβj (Aα+1
j − 1)− 1)3

+
ι∑

j=1

4α(α+ 1)Rj
xβjA

α
j ln

3xj(A
α+1
j − 1)

(xβj (Aα+1
j − 1)− 1)3

+
ι∑

j=1

α2(α+ 1)Rj
x−βj ln3xjA

α−1
j

(xβj (Aα+1
j − 1)− 1)2

−
ι∑

j=1

2α(α+ 1)2Rj
ln3xjA

2α
j

(xβj (Aα+1
j − 1)− 1)3

+ $8,

$8 = R̃Q1+1

{αT β1 ln3T1(Sα+1
1 − 1)

(T β1 (Sα+1
1 − 1)− 1)2

− α(α+ 1)ln3T1S
α
1

(T β1 (Sα+1
1 − 1)− 1)2

− 2αT 2β
1 ln3T1(S

α+1
1 − 1)2

(T β1 (Sα+1
1 − 1)− 1)3

+
4α(α+ 1)T β1 ln

3T1S
α
1 (Sα+1

1 − 1)

(T β1 (Sα+1
1 − 1)− 1)3

+
α2(α+ 1)T−β1 ln3T1S

α−1
1

(T β1 (Sα+1
1 − 1)− 1)2

− 2α(α+ 1)2ln3T1S
2α
1

(T β1 (Sα+1
1 − 1)− 1)3

}
for case I

$8 = 0 for case II

$8 = R̃Q2+1

{αT β2 ln3T2(Sα+1
2 − 1)

(T β2 (Sα+1
2 − 1)− 1)2

− α(α+ 1)ln3T2S
α
2

(T β2 (Sα+1
2 − 1)− 1)2

− 2αT 2β
2 ln3T2(S

α+1
2 − 1)2

(T β2 (Sα+1
2 − 1)− 1)3

+
4α(α+ 1)T β2 ln

3T2S
α
2 (Sα+1

2 − 1)

(T β2 (Sα+1
2 − 1)− 1)3

+
α2(α+ 1)T−β2 ln3T2S

α−1
2

(T β2 (Sα+1
2 − 1)− 1)2

− 2α(α+ 1)2ln3T2S
2α
2

(T β2 (Sα+1
2 − 1)− 1)3

}
for case III
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l̂ββα = l̂βαβ = l̂αββ =
∂3l

∂β2∂α
|α=α̂,β=β̂ = −

ι∑
i=1

xβj ln
2xj

(1 + xβj )2

+
ι∑

j=1

Rj
ln2xjx

β
j (Aα+1

j − 1)

(xβj (Aα+1
j − 1)− 1)2

+
ι∑

j=1

αRj
Aα+1
j xβj ln(Aj)ln

2xj

(xβj (Aα+1
j − 1)− 1)2

−
ι∑

j=1

2αRj
Aα+1
j (Aα+1

j − 1)x2βj ln
2xjln(Aj)

(xβj (Aα+1
j − 1)− 1)3

−
ι∑

j=1

(2α+ 1)Rj
Aαj ln

2xj

(xβj (Aα+1
j − 1)− 1)2

−
ι∑

j=1

(α2 + α)Rj
Aαj ln

2xjln(Aj)

(xβj (Aα+1
j − 1)− 1)2

+

ι∑
j=1

2α(α+ 1)Rj
A2α+1
j xβj ln

2xjln(Aj)

(xβj (Aα+1
j − 1)− 1)3

+$9,

$9 = R̃Q1+1

{ T β1 ln
2T1(S

α+1
1 − 1)

(T β1 (Sα+1
1 − 1)− 1)2

+ α
ln2T1S

α+1
1 ln(S1)T

β
1

(T β1 (Sα+1
1 − 1)− 1)2

− 2α
T 2β
1 ln2T1(S

α+1
1 − 1)Sα+1

1 lnS1

(T β1 (Sα+1
1 − 1)− 1)3

− (2α+ 1)
ln2T1(S1)

α

(T β1 (Sα+1
1 − 1)− 1)2

− (α+ α2)
ln2T1ln(S1)S

α
1

(T β1 (Sα+1
1 − 1)− 1)2

+ 2α(α+ 1)
ln2T1ln(S1)T

β
1 S

2α+1
1

(T β1 (Sα+1
1 − 1)− 1)3

}
for case I

$9 = 0 , for case II

$9 = R̃Q2+1

{ T β2 ln
2T2(S

α+1
2 − 1)

(T β2 (Sα+1
2 − 1)− 1)2

+ α
ln2T2S

α+1
1 ln(S2)T

β
2

(T β2 (Sα+1
2 − 1)− 1)2

− 2α
T 2β
2 ln2T2(S

α+1
2 − 1)Sα+1

2 lnS2

(T β2 (Sα+1
2 − 1)− 1)3

− (2α+ 1)
ln2T2S

α
2

(T β2 (Sα+1
2 − 1)− 1)2

− (α+ α2)
ln2T2ln(S2)S

α
2

(T β2 (Sα+1
2 − 1)− 1)2

+ 2α(α+ 1)
ln2T2ln(S2)T

β
2 S

2α+1
2

(T β2 (Sα+1
2 − 1)− 1)3

}
for case III

3.2. Metropolis-Hastings Algorithm

In the previous Subsection, we obtain the Bayes estimates using Lindley’s
approximation method. One disadvantage of this method is that it requires higher
order partial derivatives of the log-likelihood function. Further, the Lindley’s ap-
proximation can not be used to construct HPD credible intervals. Moreover, it
is observed that the conditional posterior distribution of unknown parameters
cannot be reduced to any well-known distribution. To overcome this problem,
we propose to apply the Metropolis-Hastings (Metropolis et al.[20]) algorithm for
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generating samples from the respective posterior distributions. This algorithm is
the most popular example of the Markov chain Monte Carlo (MCMC) method
and it is free from the higher order partial derivatives. The basic scheme of the
Metropolis-Hastings (M-H) is given as follows:

Step 1: Use the MLEs of (α, β) as the initial point of the iteration, denoted
by (α0, β0).
Step 2: Generate αj and βj from the normal proposal distributions N(αj−1, σ

2)
and N(βj−1, σ

2), respectively, for j = 1, ..., N

Step 3: Compute h =
π(αj , βj |Data)

π(αj−1, βj−1 |Data)
.

Step 4: Accept the new sample with probability min(1, h).
Step 5: Set j = j + 1.
Step 6: Repeat Step 2-5, up to N times.
So, the Bayes estimates of α and β are respectively obtained as below:

α̃ =
1

N −N0

N∑
i=N0+1

αi, and β̃ =
1

N −N0

N∑
i=N0+1

βi.

In order to guarantee the convergence and to remove the affection of the selection
of initial values, the first N0 simulated varieties are discarded (burn-in-period of
Markov chain). Also, for computing the confidence interval based on MCMC
samples, we first order the samples α1:N , α2:N , ..., αN :N and β1:N , β2:N , ..., βN :N ,
then a (1− γ)× 100% HPD credible interval for α and β are obtained as:

[αNγ , αN(1−γ)] and [βNγ , βN(1−γ)]

Finally, choose the interval which has the smallest width as a HPD credible
interval.

4. Simulation Study

To evaluate the behavior of the theoretical results obtained in the previous
Sections, including the classical and Bayesian estimators and the associated confi-
dence/credible intervals, an extensive Monte Carlo simulation study is performed.
We simulate GIIPH censored samples for different combinations of (n,m, T1, T2)
from the inverse Burr (α, β) distribution. We adopted the true values of unknown
parameters as α = 1.2 and β = 1.6. Note that all the computations have been
performed using R software. Through the sample data, we evaluate the MLEs
by employing an EM algorithm. Approximate expressions for the Bayesian es-
timators have been obtained using the Lindley’s approximation and Metropolis-
Hastings algorithm. Using the M-H sampler algorithm described in Subsection
3.2, 10000 MCMC samples and discard the first 2000 values as ‘burn-in’ are gener-
ated. In Bayesian paradigm, the choice of the hyper-parameter values is the main
issue. For this propose, both non-informative prior (NIP) and informative prior
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(IP) are taken into account in the Bayesian approach, where all hyper-parameters
in the NIP are chosen to be 0.0001 instead of 0, which is more appropriate since
the hyper-parameters are greater than 0, and the hyper-parameters in the IP
are selected according to this manner: the means of prior (PR) distributions are
equal to original parameters(a1 = 1.2, a2 = 1.6, b1 = 1, b2 = 1). The %95 approx-
imate confidence (AC) and Bayesian (HPD) intervals for the parameters are also
constructed. The HPD credible intervals are computed based on 10000 MCMC
samples. We take three different censoring schemes as follows:
Scheme 1: Rm = n−m and Rj = 0 for j 6= m, Scheme 2: R1 = Rm = (n−m)/2
and Rj = 0 for j 6= 1,m, Scheme 3: Rm/2 = n−m and Rj = 0 for j 6= m/2.
Based on these set up assumptions, we show the numerical results in the Table 1,

Figure 5: The MSEs of the estimators for different choices of T1 and T2.

Table 2, Table 3 and Table 4.

Tables 1 and 2 (also, Figure 5 and Figure 6) present the average ML
and Bayes estimates and the corresponding MSEs based on 10000 replications.
Moreover, the average lower and upper bounds of the AC and HPD intervals are
displayed in Tables 3 and 4.

The following conclusions are found from Tables 1- 4 and Figures 5- 6:
• For fixed n, T1 and T2 as m increases, the average estimates and the MSEs
of the parameters decreases. Also, with increasing m, the average lengths of all
intervals mostly decrease.
• For fixed m, T1 and T2 as sample size n increases the MSEs of all the estimators
decreases ( Figure 6). Similar trend is observed (Figure 6) for fixed n, T1 and T2
as m increases.
• The MSEs have a downward trend for fixed n, m, T1 and increasing T2 (
Figure 5).
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Table 1: The MSEs of the MLEs (α̂) , Lindleys (α̃LIN ) and M-Hs (α̃MH)
for T1 = 1, T2 = 2.5.

n m Sc α̂(MSE) PR α̃LIN (MSE) α̃MH(MSE)

30 15 R1 1.4754(0.2256) IP 1.4897(0.1945) 1.4270(0.0979)

NIP 1.5023(0.2094) 1.4328(0.1006)

R2 1.4427(0.1789) IP 1.4475(0.1581) 1.3665(0.0733)

NIP 1.4596(0.1637) 1.3709(0.0769)

R3 1.4246(0.1005) IP 1.3937(0.0897) 1.3508(0.0621)

NIP 1.4214(0.0942) 1.3700(0.0699)

50 24 R1 1.2982(0.1785) IP 1.3687(0.1586) 1.2843(0.0464)

NIP 1.3278(0.1669) 1.3199(0.0497)

R2 1.3064(0.0939) IP 1.3000(0.0900) 1.1674(0.0175)

NIP 1.3087(0.0911) 1.1721(0.0244)

R3 0.9172(0.0439) IP 0.9450(0.0382) 0.9913(0.0230)

NIP 0.9608(0.0410) 0.9725(0.0277)

30 R1 1.2982(0.1316) IP 1.2786(0.1212) 1.2028(0.0388)

NIP 1.2865(0.1283) 1.2536(0.0449)

R2 1.1464(0.0476) IP 1.1397(0.0455) 0.9741(0.0091)

NIP 1.1471(0.0462) 01.9932(.0105)

R3 1.006(0.0295) IP 0.9995(0.0261) 1.001(0.0141)

NIP 1.002(0.0269) 1.009(0.0169)

100 48 R1 1.3875(0.1632) IP 1.3768(0.1544) 1.2434(0.0336)

NIP 1.3811(0.1598) 1.2709(0.0390)

R2 1.1687(0.0283) IP 1.1666(0.0277) 1.1019(0.0100)

NIP 1.1679(0.0281) 1.1052(0.0133)

R3 0.9414(0.0221) IP 0.9551(0.0205) 1.1174(0.0188)

NIP 0.9532(0.0215) 1.1168(0.0209)

60 R1 1.3212(0.1226) IP 1.3105(0.1152) 1.2190(0.0327)

NIP 1.3176(0.1174) 1.2187(0.0328)

R2 0.9028(0.0090) IP 0.9162(0.0070) 0.9786(0.0004)

NIP 0.9200(0.0084) 0.9921(0.0013)

R3 1.0090(0.0145) IP 1.0060(0.0136) 1.0400(0.0016)

NIP 1.008(0.0140) 1.0488(0.0021)

• For fixed n, m and T2 as T1 increases, the MSEs decreases ( Figure 5).
• To evaluate the effect of the proposed estimation methods with respect to
the smallest MSE, it is observed that the Bayes estimates work efficiently and
provide better performance as compared to those obtained based on MLEs. For
the parameters α and β, the MSEs of the maximum likelihood estimates are
larger than the Bayes estimates.
• The Bayesian MCMC estimation using M-H algorithm sampler for the unknown
parameters under GIIPH censoring is recommended for all values of n, m, T1 and
T2.



18 Hanieh Panahi, Saeid Asadi and Parya Parviz

Table 2: The MSEs of the MLEs (β̂) , Lindleys (β̃LIN ) and M-Hs (β̃MH)
for T1 = 1, T2 = 2.5.

n m Scheme β̂(MSE) PR β̃LIN (MSE) β̃MH(MSE)

30 15 R1 1.3675(0.2354) IP 1.3954(0.1738) 1.3700(0.1614)

NIP 1.4186(0.1845) 1.3961(0.1823)

R2 1.6325(.1535) IP 1.5885(0.1366) 1.5143(0.1122)

NIP 1.5899(0.1389) 1.5357(0.1308)

R3 1.7859(0.1673) IP 1.7654(0.1611) 1.4998(0.1066)

NIP 1.7865(0.1738) 1.5403(0.1231)

50 24 R1 1.2763(0.1807) IP 1.3029(0.1322) 1.3122(0.1316)

NIP 1.3043(0.1493) 1.3145(0.1387)

R2 1.5917(.1068) IP 1.5643(0.1031) 1.5457(0.0900)

NIP 1.5749(0.1054) 1.5499(0.0938)

R3 1.7431(0.1673) IP 1.7183(0.1527) 1.5125(0.0760)

NIP 1.7327(0.1602) 1.5226(0.0811)

30 R1 1.3846(0.1155) IP 1.4220(0.1136) 1.7034(0.0921)

NIP 1.4165(0.1140) 1.6993(0.0976)

R2 1.5075(0.0860) IP 1.5064(0.0850) 1.6737(0.0540)

NIP 1.5069(0.0857) 1.3199(0.0497)

R3 1.6514(0.0897) IP 1.6094(0.0741) 1.5509(0.0240)

NIP 1.6328(0.0809) 1.5499(0.0296)

100 48 R1 1.2681(0.1699) IP 1.2796(0.1242) 1.6234(0.1045)

NIP 1.2765(0.1374) 1.6309(0.1089)

R2 1.7893(0.0558) IP 1.7674(0.0480) 1.4064(0.0540)

NIP 1.7763(0.0518) 1.4078(0.0616)

R3 1.6676(0.0573) IP 1.6559(0.0540) 1.4797(0.0244)

NIP 1.6621(0.0564) 1.4859(0.0289)

60 R1 1.3435(0.1047) IP 1.3586(0.0905) 1.6112(0.0446)

NIP 1.3488(0.0977) 1.6269(0.0535)

R2 1.5587(0.0460) IP 1.54974(0.0430) 1.6850(0.0070)

NIP 1.5546(0.0451) 1.6589(0.0087)

R3 1.5973(0.0397) IP 1.5784(0.0370) 1.6405(0.0046)

NIP 1.5884(0.0383) 1.6712(0.0065)

• As expected, the Bayesian estimation with IP tends to be preferable to that
with NIP.
• The average lengths of the ACI for α and β are relatively large compared to
those of Bayesian credible intervals.
• As for the Bayes method, similar to the findings for the point estimates, the
Bayesian intervals under non-informative prior are slightly worse than those under
informative prior.
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Table 3: The average upper and lower bounds for α when T1 = 1, T2 =
2.5.

n m Scheme LACI UACI PR LHPD UHPD

30 15 R1 1.1432 1.8865 IP 1.1675 1.8536

NIP 1.1604 1.8653

R2 0.6884 1.4893 IP 0.7476 1.4280

NIP 0.7421 1.4452

R3 0.7189 1.3966 IP 0.7728 1.3609

NIP 0.7496 1.3648

50 24 R1 1.1820 1.7020 IP 1.1224 1.5726

NIP 1.1148 1.5921

R2 0.8440 1.3540 IP 0.9980 1.3932

NIP 0.9972 1.4266

R3 0.7850 1.2893 IP 0.9782 1.3780

NIP 0.9760 1.3882

30 R1 0.9334 1.4357 IP 0.9855 1.3921

NIP 0.9599 1.3989

R2 0.9233 1.3585 IP 0.9315 1.2667

NIP 0.9035 1.2833

R3 0.9540 1.3585 IP 0.8993 1.2264

NIP 0.8556 1.2345

100 48 R1 0.9420 1.4441 IP 1.1434 1.5134

NIP 1.1139 1.5173

R2 0.8021 1.2721 IP 1.0019 1.3431

NIP 1.0011 1.3564

R3 0.8527 1.2427 IP 1.0674 1.3174

NIP 1.0221 1.3308

60 R1 0.9378 1.3876 IP 1.0319 1.3108

NIP 0.9881 1.3288

R2 0.8937 1.2437 IP 0.9735 1.2899

NIP 0.9711 1.3004

R3 0.7860 1.2334 IP 0.9989 1.2206

NIP 0.9366 1.2371

5. Applications of BIII distribution to Separation of Sewer Solids

A real set of experimental data contains the invert trap efficiency. The
invert traps are used to separate suspended solids in the sewers and storm water
drainage channels. The solid particles are deposited in the bottom of the sewer
drainage channel and decreases the channel cross section and thus reduces the hy-
draulic efficiency. Therefore, increasing invert trap efficiency directly affects the
hydraulic efficiency. For computational convenience we divided each data point
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Table 4: The average upper and lower bounds for β when T1 = 1, T2 =
2.5.

n m Scheme LACI UACI IP LHPD UHPD

30 15 R1 0.5265 1.7832 IP 0.6643 1.7548

NIP 0.6532 1.7802

R2 0.9568 2.1005 IP 1.0944 1.9136

NIP 0.9867 1.9197

R3 1.2147 2.2715 IP 0.6957 1.6257

NIP 0.6809 1.6441

50 24 R1 0.5669 1.6790 IP 0.5997 1.6212

NIP 0.5911 1.63211

R2 1.0828 2.0995 IP 0.8532 1.6834

NIP 0.8498 1.6980

R3 1.2147 2.2715 IP 0.6957 1.6257

NIP 0.6709 1.6299

30 R1 0.7412 1.8433 IP 1.5999 2.3618

NIP 1.5799 1.3654

R2 1.0339 1.9803 IP 1.4956 2.1097

NIP 1.4832 2.1217

R3 1.1319 2.1708 IP 1.0911 1.6639

NIP 1.0783 1.6823

100 48 R1 0.9202 1.6397 IP 1.1000 2.0211

NIP 1.0906 2.0466

R2 1.3920 2.1866 IP 1.2016 1.6581

NIP 1.1923 1.6734

R3 0.9736 1.6248 IP 1.2079 1.6297

NIP 1.1996 1.6500

60 R1 0.9922 1.6392 IP 1.4573 1.9612

NIP 1.4524 1.9903

R2 1.1871 1.9002 IP 1.5417 1.8247

NIP 1.5289 1.8357

R3 1.3432 1.9515 IP 1.4902 1.8750

NIP 1.4599 1.8786

by 70. Figure (a) 7 shows the velocity stream lines of water in channel. The color
of the velocity stream lines shows that the velocity decreases in the trap, so the
particles entering the low-velocity zone of the invert trap settle in the bottom
of the trap. Figure (b) 7 shows 3D view of an open rectangular channel fitted
with an invert trap at the bottom of the channel. Before we carry out numerical
calculations and give way to an advanced point in the analysis of this data, we
compute the Kolmogorov-Smirnov (K-S) distances between the empirical distri-
bution and the fitted distribution functions based on MLEs, it is 0.1189, and the
associated p-value is 0.8312. We also presented the P-P and CDF (the empirical
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Figure 6: The MSEs of the estimators for different choices of n and m.

function and the fitted function) plots for the fitted inverse Burr distribution in
Figures 8 and 9 respectively. The result indicates that considered distribution
can be used to to obtain inferential results from the considered data set. We have
obtained the MLEs by using EM algorithm by taking initial values with the help
of contour and 3D profile plot given in Figure 10.
We shall use these data to consider three different GIIPH censoring schemes:

Figure 7: (a) stream lines of water in invert trap. (b) trapping of sewer
solids, flowing into a sewer drainage system. Particle traces
coloured according to the particle size of 150-300 micron.
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Table 5: Different point and interval estimates of α and β for (n,m) =
(25, 20)

Cases T1 T2 α̂ α̃LIN α̃MH LAC LHPD

Case I 1.4 1.6 0.99817 1.03622 0.94491 1.2327 0.8574

Case II 1.2 1.6 1.20987 1.23875 1.15643 1.3734 0.8897

Case III 1.2 1.35 1.21124 1.24054 1.15991 1.3798 0.8687

Cases T1 T2 β̂ β̃LIN β̃MH LAC LHPD

Case I 1.4 1.6 7.51460 7.74952 7.46857 2.7632 1.2864

Case II 1.2 1.6 7.66071 7.79034 7.65335 2.8395 1.3323

Case III 1.2 1.35 7.62534 7.75890 7.44881 2.8567 1.3682

Case I: n = 25,m = 20 R = (5, 0 ∗ 19),T1 = 1.4 and T2 = 1.6
Case II: n = 25,m = 20 R = (5, 0 ∗ 19),T1 = 1.2 and T2 = 1.6
Case III: n = 25,m = 20 R = (5, 0 ∗ 19),T1 = 1.2 and T2 = 1.35
Based on the following censoring schemes, the MLEs and Bayes estimates of both
the unknown parameters are reported in Table 5.

The length of approximate intervals (LAC) and HPD intervals (LHPD) are
also calculated individually and presented in Table 5. For Bayesian aspect, we
use non-informative Gamma priors (a1 = 0.0001; a2 = 0.0001; b1 = 0.0001; b2 =
0.0001) due to the lack prior information. As seen in Table 5, two types of

Figure 8: The P-P plot. Figure 9: The CDF plot.

point estimates of parameters are observed: MLEs and Bayes estimates are quite
similar. Comparing approximate and credible intervals derived from Bayesian
method, the latter are noticeably smaller in interval lengths than the former.
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Figure 10: Contour plot and 3D profile plot of log likelihood for invert trap
data (x=α and y=β)

6. Conclusions

In this paper, we derived the different point and interval estimators of the
inverse Burr distribution based on a newly proposed censoring scheme known
as generalized progressive hybrid censoring, where experimenters are allowed
more flexibility in designing the test, leading to shorter experimental periods
and higher efficiency. We obtained the maximum likelihood estimates using the
EM algorithm. The observed Fisher information matrix is used to construct
the asymptotic confidence intervals of the unknown parameters. Moreover, the
Bayesian approach is investigated with a flexible prior distribution, since Bayesian
estimation cannot be derived in closed form, two approximations say Lindley’s
approximation and Metropolis-Hastings algorithm are utilized to achieve approx-
imate point estimates. Using these MCMC samples, the HPD credible intervals
are also constructed. The numerical experiments are carried out to evaluate the
performance of proposed point and interval estimators, and some conclusions can
be drawn from the results that the Bayesian method is comparatively favorable
compared to considered classical method. The applicability of the inverse Burr
distribution in real situation has been illustrated based on the separation of sewer
solids data and it was observed that the proposed distribution can be utilized for
analyzing this data well.
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