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1. INTRODUCTION

The product of random stochastic matrices is one of the concepts that
has attracted the attention of many mathematicians [15]. The behavior of this
concept in science and engineering has been investigated under some specific
assumptions. The studies and applications of this concept are closely related
to the studies of averaging dynamics. Let us note that some applications are
presented by Touri [15].

Here, we consider the independent random matrices each of which has
independent rows and are identically distributed with the Dirichlet distribution,
and investigate some distributional and statistical properties of the product of
those random matrices. For this purpose, we have addressed the mixture random
variables and followed their traces in applied fields. Here we list some important
applications:

Cauchy Composition Test Let pi be the individual p-value for i = 1, 2, . . . , d.
We define the Cauchy combination test statistic as

(1.1) T =
d∑
i=1

ωi tan{(0.5−pi)π},

where the weights ωi’s are nonnegative and
∑d

i=1 ωi = 1. Given that pi is uni-
formly distributed between 0 and 1 under the null, the component tan{(0.5−pi)π}
follows a standard Cauchy distribution. To overcome these challenges, Liu and
Xie [11] propose a new test that takes advantage of the Cauchy distribution.
Their test statistic has a simple form and is defined as a weighted sum of Cauchy
transformation of individual p-values. We emphasize that some of the results
have been examined in a state where Wi are random variables. Here, we define
this statistic as a vector and obtain the properties of the statistic under some
specific assumptions. Of course, some of the results obtained in our study in-
dicate that these properties also apply to other distributions in addition to the
Cauchy distribution. For the notation and discussions we refer the reader to Liu
and Xie [11].

Real Lifetime Suppose that X1, . . . , Xr are random variables, and the co-
efficient of the impact of environment on lifetime, Y1, . . . , Yr, are independent
random variables with Gamma distribution that indicate the lifetime in the
laboratory conditions. The following random variable is called real lifetime:
T =

∑r
i=1 YiXi. In this paper, the random variable T presented in the research

by Homei and Nadarajah [9] has been generalized to vector random variables. In
this paper, some results and characterizations have been studied in vector ran-
dom variables for T ; we also answer some questions asked there (in particular, we
have generalized [9, Theorem 2.2] to the multivariate case in Theorem 3.4 below).
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Solving Some Differential Equations Using the properties of the Beta dis-
tribution, Homei [8] and Hadad et al. [2] solved some differential equations. In-
deed, the given equations may be solved by very long calculations. Let us recall
that Theorem 1 of Homei [4] identifies the distribution of (the 1-dimensional) Z
from the distributions of Xi’s by means of the following differential equation:

(1.2)
(−1)n

∗−1dn
∗−1

(n∗ − 1)!dzn∗−1
S(FZ , z) =

n∏
i=1

(−1)mi−1

(mi − 1)!

dmi−1

dzmi−1
S(FXi , z)

where FZ denote the cumulative distribution function of a random variable Y
and S(FZ , z) is Stieltjes transform defined by

(1.3) S(H, z) =

∫
1

z − x
H(dx), z ∈ C ∩ (suppH)c.

Here, suppH is the support of H; see [4].

Random Convex Combination A stochastic linear combination

(1.4) Ĉ1 ·Z1 + Ĉ2 ·Z2 + · · ·+ Ĉm ·Zm
of random variables Z1, . . . , Zm where Ĉi, 1 ≤ i ≤ m, are random variables such
that

(i) Ĉi ≥ 0, 1 ≤ i ≤ m, and

(ii)
∑m

i=1 Ĉi = 1, a.s.,

is called a random convex combination of the random variables Z1, . . . , Zm (for
more details see [4]).

Of course, another form of real lifetime is provided by Homei [4], which is
not far from the statistic defined by Liu and Xie [11]. Let Zi, i = 1, . . . , n, be the
lifetime measured in a laboratory and 0 ≤ Ci ≤ 1 be the random effect of the
environment on it, so CiZi ≤ Zi and thus

∑n
i=1CiZi is the average lifetime in the

environment, see Homei [8], Homei and Nadarajah [9]. If Yi is the real lifetime in

the ith area, Ci =
Yi∑n
i=1 Yi

is the random effect ratio in the ith area. Therefore,

it is clear that a good choice for the distribution of C = 〈C1, . . . , Cn〉 can be
Dirichlet distribution. It is important that the product of random stochastic
matrices connect us directly to stochastic linear combination.

The structure of the paper is as follows: the next subsection gives the
motivation of the research in this paper, and lists some innovations. In Section 2,
the mean, variance and moments of the randomly weighted averages on random
vectors with Dirichlet distributions are obtained. In Section 3, a new method for
calculating the distribution of randomly weighted averages are presented, and the
distribution of this random vector is calculated under some specific assumptions.
In Section 4 using simulation we suggest an approximation for the distribution
of randomly weighted averages.
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1.1. Motivation and Innovation

For obtaining the distribution of the randomly weighted averages, one sug-
gested method is using Stieltjes transforms, which is a very complex strategy.
In this paper, a novel method for obtaining those distributions in the multi-
variate case is presented. For evaluating this new method we have reproved
Theorem 3.4, for which we have also proved some new auxiliary theorems. In
spite of the fact that some special cases of those auxiliary results are well known
theorems, but these results in the general form that are presented here seem to be
new, with much simpler and more elementary proofs. For keeping the copyright
of the results, some preliminary versions had been put on the arXiv ([5]), and
re-emphasized in [9] that we would generalize the earlier results in the future. At
the end we also presented some of them in a national conference [7].

1.1.1. Some History and Earlier Results

Two ideas of [14], i.e., (i) defining the random coefficients, and (ii) using
Stieltjes transformations for obtaining the distribution of the randomly weighted
averages, have been taken from [13]. In fact, the class of randomly weighted
averages defined in those two papers are much more restricted in comparison
to the ones defined in this paper, since their defined coefficients have Dirichlet
distributions with limited parameters (which are positive integer numbers). But
in this paper, the random vectors are taken to have Dirichlet distributions without
any limitations on their parameters; notice that the assumption

∑
i αi=1 in [14,

Theorem 3.1] shows that the results of [14] (both Theorems 2 and 5) are weaker
than ours here.

To make a long story short, the main result of [14], which is their Theo-
rem 2.1, is not useful for a large part of the class of randomly weighted averages
defined in the present paper; and their Theorem 3.1 is a very special case of our
Theorem 3.4 below, which was published before in [5]. Therefore, our method is
much stronger, and even more elementary at the same time; indeed, Theorem 2.1
in [14] should be improved for being usable in our class of randomly weighted
averages. A complete and general proof for that theorem is in the possession of
the first author, and is planned for a publication in future. For further references,
we invite the readers to consult [6] and [12, p. 57].

2. Product Moments of Random Convex Combination

The concept of product of random stochastic matrices motivated us to dis-
cuss the distributional properties of random convex combinations. These proper-
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ties include the product moments, and the mean and the variance of components.
Throughout the paper, 〈W1, . . . ,Wr〉 is called random coefficient vector of envi-
ronmental effect in r-position. As mentioned in the introduction, the rows are
independent and have Dirichlet distribution in random stochastic matrices.

Theorem 2.1. Suppose that the independent random vectors X1, . . . ,Xr

have identical distributions with mean µ and variance S and that the random vec-
tor W = 〈W1, . . . ,Wr〉 is independent from X1, . . . ,Xr such that

∑r
j=1Wj = 1,

a.s. Then the mean and the variance of Z =
∑r

j=1WjXj are

E(Z) = µ and V ar(Z) =

r∑
j=1

EW 2
j S,

where S is variance-covariance matrix.

Proof: By using the double conditional expectation and the conditional
variance, the result is proved.

The following theorem results in product moments of random convex com-
bination when we consider the random vectors by Dirichlet distribution.

Theorem 2.2. Suppose that the independent random vectors X1, . . . ,Xr

have respectively,

Dirichlet(n11, . . . , n1k), . . . , Dirichlet(nr1, . . . , nrk)

distributions and that the random vector W = 〈W1, . . . ,Wr〉 is independent from
X1, . . . ,Xr and has Dirichlet(α1, . . . , αr) distribution.

Then the product moments in (s1, . . . , sk) of Z =
∑r

j=1WjXj are

E(Ls11 L
s2
2 · · ·L

sk
k ) =

Γ(α)

Γ(α+ h)

∑
h1

· · ·
∑
hk

( k∏
j=1

(
sj

h1j , . . . , hrj

)
×

r∏
i=1

Γ(αi + hi)

Γ(αi)

Γ(ni)

Γ(ni + hi)

r∏
i=1

k∏
j=1

Γ(nij + hij)

Γ(nij)

)
,

where Lj ’s are components of vector Z,
∑r

i=1 hi = h and
∑r

i=1 αi = α.

Proof: We find the general moments (s1, s2, . . . , sk) of Z as follows

E(Ls11 L
s2
2 · · ·L

sk
k ) = E

( k∏
j=1

(

r∑
i=1

WiXij)
sj

)
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= E

( k∏
j=1

(
∑
hj

(
sj

h1j , h2j , . . . , hnj

)
×

r∏
i=1

(WiXij)
hij )

)
,

where the expression
∑
hj denotes the summation over all the nonnegative inte-

gers hj = (h1j , h2j , . . . , hrj) subject to

r∑
i=1

hij = sj , (j = 1, 2, . . . , k).

This can be rearranged as

E

(∑
h1

∑
h2

· · ·
∑
hk

(

k∏
j=1

(
sj

h1j , h2j , . . . , hrj

) k∏
j=1

r∏
i=1

(WiXij)
hij )

)
=

E

(∑
h1

∑
h2

· · ·
∑
hk

(
k∏
j=1

(
sj

h1j , h2j , . . . , hrj

) r∏
i=1

W hi.
i

k∏
j=1

r∏
i=1

X
hij
ij )

)
,

where hi. =
∑k

j=1 hij and we have this equal to

(2.1)
∑
h1

· · ·
∑
hk

(
k∏
j=1

(
sj

h1j , h2j , . . . , hrj

)
E(

r∏
i=1

W hi.
i )E(

k∏
j=1

r∏
i=1

X
hij
ij )

)
,

now we find two expectations in equation (2.1):

E(

r∏
i=1

W hi.
i ) =

Γ(
∑r

i=1 αi)

Γ(
∑r

i=1(αi + hi.))
×

r∏
i=1

Γ(αi + hi.)

Γ(αi)
.

By using the Dirichlet distribution, we have

(2.2) E(
r∏
i=1

W hi.
i ) =

Γ(α)

Γ(α+ h)
×

r∏
i=1

Γ(αi + hi.)

Γ(αi)
.

Also, we have

E(

k∏
j=1

r∏
i=1

X
hij
ij ) =

r∏
i=1

E(

k∏
j=1

X
hij
ij )

=

r∏
i=1

(
Γ(
∑k

j=1 nij)

Γ(
∑k

j=1(nij + hij)
×

k∏
j=1

Γ(nij + hij)

Γ(nij)

)
,
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now we have
∑k

j=1 nij = ni. and
∑k

j=1 hij = hi., so the above is equal to

(2.3)
r∏
i=1

(
Γ(ni.)

Γ(ni. + hi.)
×

k∏
j=1

Γ(nij + hij)

Γ(nij)

)
and by using the Dirichlet distribution we have

E(

k∏
j=1

X
hij
ij ) =

Γ(
∑k

j=1 α
(i)
j )

Γ(
∑k

j=1 α
(i)
j + hi.)

k∏
j=1

Γ(α
(i)
j + hij)

Γ(α
(i)
j )

.

So, by using (2.2) and (2.3) in (2.1) the above is equal to

∑
h1

· · ·
∑
hk

( k∏
j=1

(
sj

h1j , h2j , . . . , hrj

)
Γ(α)

Γ(α+ h)

r∏
i=1

Γ(αi + hi.)

Γ(αi)

×
r∏
i=1

Γ(ni.)

Γ(ni. + hi.)

k∏
j=1

Γ(nij + hij)

Γ(ni))

)

=
Γ(α)

Γ(α+ h)

∑
h1

· · ·
∑
hk

k∏
j=1

(
sj

h1j , . . . , hrj

)

×
r∏
i=1

Γ(αi + hi·)

Γ(αi)

Γ(ni·)

Γ(ni. + hi)

r∏
i=1

k∏
j=1

Γ(nij + hij)

Γ(nij)
.

Therefore the proof of the product moments on (s1, . . . , sk) is complete.

The moments of Z on (s1, s2, s3) are given in Table 1.

3. Some Characterizations

In this section, some characterizations of random stochastic linear combi-
nations (real lifetime, random convex combination) in Dirichlet random vectors
are introduced.
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(n11, n12, n13) (n21, n22, n23) (n31, n32, n33) (α1, α2, α3) (s1, s2, s3) E(Z)

(1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) 0.001851852
(1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,2) 0.002469136
(1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,3,1) 0.003086420
(1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,2,3) 0.004938272
(1,1,1) (1,1,1) (1,1,1) (1,1,1) (2,4,5) 0.025925926
(1,1,1) (1,1,1) (1,1,1) (1,1,1) (2,2,2) 0.006172840
(1,1,1) (1,1,1) (1,1,1) (1,1,1) (2,2,1) 0.003703704
(1,1,1) (1,1,1) (1,1,1) (1,1,1) (2,2,3) 0.008641975
(1,1,1) (1,1,1) (1,1,1) (1,1,1) (3,3,3) 0.017901235
(1,1,1) (1,1,1) (1,1,1) (1,1,1) (3,3,1) 0.006790123
(1,1,1) (1,1,1) (1,1,1) (1,1,1) (3,3,5) 0.029012346
(1,1,1) (1,1,1) (1,1,1) (1,1,1) (4,3,5) 0.038271605

Theorem 3.1. Let the k-variate random vectors X1, . . . ,Xr be inde-
pendent with common distributions, and let Y1, . . . , Yr be independent with
Gamma(kα, 1µ) distributions, and independent from X1, . . . ,Xr. Then the com-

ponents of T =
∑r

i=1 YiXi have independent Gamma(rα, 1µ) distributions if and
only if Xi have Dirichlet(α, . . . , α) distributions (i = 1, . . . , n).

Proof: First we find the moment generating function of T

E(et
′
T ) = E(et

′∑r
i=1 YiXi)

=

r∏
i=1

E(et
′
YiXi)

=

r∏
i=1

E(E(et
′
YiXi |Xi))

=
r∏
i=1

E((
1

1− t′Xi

)α)

= Er(
1

1− t′Xi

)α

The second side of equation is well-known Stieltjes transformation; for more
application and properties of this transformation see [3], [4], [5], [7], and [1].

The last statement is the Stieltjes transformation which is unique, by which
both of the if part and the only if part can be easily proved.

The following theorem is a generalization Theorem 1 of Yeo and Milne [16] that
leads us to the next theorems.
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Theorem 3.2. Suppose that U and V are independent (absolutely con-
tinuous) nonnegative random variables, respectively, such that U has bounded
support and Z = UV . Then for arbitrary positive αi; i = 1, . . . , k and any two of
the following three conditions imply the third.
(i) Z ∼< Gamma1(α1,

1
µ), . . . , Gammak(αk,

1
µ) > where Gamma(αi,

1
µ) are in-

dependent;
(ii) U ∼ Dirichlet(α1, . . . , αk);
(iii) V ∼ Gamma(α+, 1µ), α+ =

∑
αi.

Proof: For proving (i), (ii)⇒ (iii), it suffices to note that the sum of the

components of Z and UV are identically distributed; i.e. V
d
= Gamma(α+, 1µ),

since random vectors Z and UV have identical distribution.

Now we prove the implication (i), (iii) ⇒ (ii). By using the general mo-
ments of (s11, . . . , skk) we have

E(Zs1111 Z
s12
12 · · ·Z

skk
kk ) = E(V

∑k
i=1 si) · E((U11)

s11(U12)
s12 · · · (Ukk)skk).

By substituting the gamma moments it can be shown that U has Dirichlet dis-
tribution.

Finally, assume that (ii) and (iii) are satisfied, then we can obtain the
distribution of UV by using the transformation method of random variables (or
change of variables),

f(z1, . . . , zr) =
1∏r

i=1 Γ(αi)µ(
∑r
i=1 αi)

e
−

∑r
i=1 zi
µ

r∏
i=1

zαi−1
i .

So, the proof is complete.

Remark 3.1. Throughout this paper we set α+ =
∑
αi.

Theorem 3.3. Let X be any random vector with bounded support and
Y be independent random variable of X with Gamma(

∑r
j=1 αj ,

1
µ) distribution.

If

(3.1)

r∑
i=1

YiXi
d
= YX,

where Yi(i = 1, . . . , r) are independent random variables with Gamma(αi,
1
µ)

distribution, then X and the randomly linear combination Z =
∑r

i=1WiXi have
identical distribution, where the random vector W = 〈W1, . . . ,Wr〉 is indepen-
dent from X1, . . . ,Xr and has Dirichlet(α1, . . . , αk) distribution.
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Proof: First we define Y + =
∑r

i=1 Yi, which has Gamma(α+, 1µ) distri-
bution, then by using (3.1) we have

Y + ·
∑r

i=1 YiXi

Y +

d
= YX,

the fraction
∑r
i=1 YiXi

Y + has the same distribution as Z, so we can rewrite the above
expression in the form of

(3.2) Y +Z
d
= YX.

The random vectors Y +Z and YX in (3.2) have the same moments, so

E((Y +)Z1
k1 · (Y +)k2Zk22 · · · (Y

+)krZkrr ) = E(Y k1Xk1
1 · Y

k2Xk2
2 · · ·Y

krXkr
r ),

and we have

E((Y +)k
+

)E(Zk11 Z
k2
2 · · · (Z

kr
r ) = E(Y k+(E(Xk1

1 ·X
k2
2 · · ·X

kr
r ))),

where k+ =
∑r

j=1

∑r
i=1 kij .

Considering the same distribution of Y + and Y , we can omit the first
expectations from both sides of the equation

E(Zk11 Z
k2
2 · · ·Z

kr
r ) = E(Xk1

1 ·X
k2
2 · · ·X

kr
r )

as a result of having bounded support variables, the equation of the same mo-
ments of two variables conduces to the same distribution, so the proof is com-
pleted and X and Z have identical distributions.

The following theorem is a generalization of Theorem 2.2 (Homei and
Nadarajah [9]) and we want to provide another perspective to prove Theorem
2.1 of Homei [8].

Theorem 3.4. If X1, . . . ,Xr are independent k-variate random vectors

with respectively Dirichlet(n
(1)
1 ), . . . , Dirichlet(n

(r)
k ) distributions, for some k-

dimensional vectors n
(j)
i = 〈n(j)1 , . . . , n

(j)
k 〉(j = 1, . . . , r), and the random vector

W = 〈W1, . . . ,Wr〉 is independent from X1, . . . ,Xr and has the distribution

Dirichlet(

k∑
i=1

n
(1)
i , . . . ,

k∑
i=1

n
(r)
i ),

then the randomly linear combination Z =
∑r

i=1WiXi has the distribution

Dirichlet(
r∑
j=1

n
(j)
1 , . . . ,

n∑
j=1

n
(j)
k ).
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Proof: Let Yj (j = 1, . . . , r) be independent random variables and in-

dependent from 〈X1, . . . ,Xr〉 that have the distribution Gamma(
∑k

i=1 n
(j)
i , 1µ),

respectively. It can be seen, by some classic ways (e.g. E(et
′
T ) = [Ψ(t)](

∑
j nj) see

Kerov and Tsilevich table 2 [10]), that the distribution of T =
∑

j Tj =
∑

j YjXj

is the same as the distribution of Tj with the parameter (
∑

j nj , . . . ,
∑

j nj). We

can also write T
d
= YX in which Y has the Gamma distribution with the param-

eter (
∑

j

∑k
i=1 n

(j)
i , 1µ), and Y and X are independent from each other. By using

Theorem 3.3 the proof is complete.

4. Simulation and its Application

We present a new method for approximating the distribution that can be
used for the multivariate random variables with a slight change in the approxi-
mation of Homei and Nadarajah [9]. The previous method of approximation was
for a univariate random variable, but we want to introduce a method that is able
to approximate the multivariate random variables. Calculating the distribution
of Z may not be easy; in this section we suggest a distribution which may be
close to the real distribution of Z. See [9] for more details.

Let X1 and X2 be independent random vectors with Dirichlet(1, 1, 1) dis-
tribution, and let w be a random variable independent from them with Beta(1, 1)
distribution. Calculating the distribution of

Z = wX1 + (1− w)X2

could be cumbersome, and it could be that there is no closed form. For estimat-
ing the distribution of Z we suggest the following. Firstly, we generate X1 and
X2 data by the means of Python software package. Then we compose them in
accordance with the definition of Z. We simulate random numbers with size 8000
of Z, and assume that it has the Dirichlet distribution; we estimate their param-
eters by the method of maximum likelihood estimation. As a result, the values of
Z will be observable. Our suggested approximation has the Dirichlet(2.7, 2.8, 3)
distribution and we expect it to be useful as mentioned in [9]. Figure 1 shows
the approximated distribution of Z, i.e., Dirichlet(2.7, 2.8, 3).

5. Conclusions

In this paper, a novel method for obtaining the distribution of the randomly
weighted averages on random vectors is presented, which is simpler and more
elementary than the others. Beside that one can obtain the distribution of T =∑

XiYi by that method, which is left to be done in the future. In case this
distribution appears to be complicated, we will approximate it by simulation, and



12 H. Homei and S. Nadarajah and A. Taherkhani

Figure 1: The approximate distribution is Dirichlet(2.7, 2.8, 3)

we will study some distributional properties of T in general. The four examples
illustrated in the Introduction (Cauchy Composition Test, Real Lifetime, Solving
Some Differential Equations, and Random Convex Combination) are some visible
applications of the research in this paper.
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